You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@mxnet.apache.org by GitBox <gi...@apache.org> on 2018/09/05 18:34:56 UTC

[GitHub] anirudh2290 closed pull request #12427: Improved test for BilinearSampler

anirudh2290 closed pull request #12427: Improved test for BilinearSampler
URL: https://github.com/apache/incubator-mxnet/pull/12427
 
 
   

This is a PR merged from a forked repository.
As GitHub hides the original diff on merge, it is displayed below for
the sake of provenance:

As this is a foreign pull request (from a fork), the diff is supplied
below (as it won't show otherwise due to GitHub magic):

diff --git a/src/operator/bilinear_sampler-inl.h b/src/operator/bilinear_sampler-inl.h
index 657aebafdb7..e0b4db7b367 100644
--- a/src/operator/bilinear_sampler-inl.h
+++ b/src/operator/bilinear_sampler-inl.h
@@ -44,7 +44,10 @@ enum BilinearSamplerOpOutputs {kOut, kTmp};
 }
 
 struct BilinearSamplerParam : public dmlc::Parameter<BilinearSamplerParam> {
+  dmlc::optional<bool> cudnn_off;
   DMLC_DECLARE_PARAMETER(BilinearSamplerParam) {
+    DMLC_DECLARE_FIELD(cudnn_off).set_default(dmlc::optional<bool>())
+        .describe("whether to turn cudnn off");
   }
 };
 
diff --git a/src/operator/bilinear_sampler.cu b/src/operator/bilinear_sampler.cu
index 0ab628da700..e1f205258a2 100644
--- a/src/operator/bilinear_sampler.cu
+++ b/src/operator/bilinear_sampler.cu
@@ -212,7 +212,11 @@ Operator* CreateOp<gpu>(BilinearSamplerParam param, int dtype) {
   Operator *op = NULL;
 #if MXNET_USE_CUDNN == 1 && CUDNN_MAJOR >= 5
   MSHADOW_REAL_TYPE_SWITCH(dtype, DType, {
-    op = new CuDNNBilinearSamplerOp<DType>(param);
+    if (param.cudnn_off.has_value() && param.cudnn_off.value()) {
+      op = new BilinearSamplerOp<gpu, DType>(param);
+    } else {
+      op = new CuDNNBilinearSamplerOp<DType>(param);
+    }
   })
 #else
   MSHADOW_REAL_TYPE_SWITCH(dtype, DType, {
diff --git a/tests/python/gpu/test_operator_gpu.py b/tests/python/gpu/test_operator_gpu.py
index 0ff33e1e409..7b75275e0c9 100644
--- a/tests/python/gpu/test_operator_gpu.py
+++ b/tests/python/gpu/test_operator_gpu.py
@@ -1918,6 +1918,65 @@ def test_softmax_activation():
         assert_almost_equal(cpu_a.grad.asnumpy(), gpu_a.grad.asnumpy(),
                 atol = 1e-3, rtol = 1e-3)
 
+
+@with_seed()
+def test_bilinear_sampler_versions():
+    data = mx.sym.Variable('data')
+    grid = mx.sym.Variable('grid')
+    sym1 = mx.sym.BilinearSampler(data=data, grid=grid)
+    sym2 = mx.sym.BilinearSampler(data=data, grid=grid, cudnn_off=True)
+    sym3 = mx.sym.BilinearSampler(data=data, grid=grid)
+
+    test_cases = [[(1,3,15,16),(1,2,10,10)],
+                 [(1,6,7,16),(1,2,10,4)],
+                 [(1,7,3,16),(1,2,8,11)],
+                 [(1,9,50,50),(1,2,50,50)]]
+
+    for item in test_cases:
+        data_shape, grid_shape = item
+        # kWriteTo
+        exe_cpu = sym1.simple_bind(data=data_shape, grid=grid_shape, ctx=mx.cpu(), grad_req='write')
+        exe_gpu = sym2.simple_bind(data=data_shape, grid=grid_shape, ctx=default_context(), grad_req='write')
+        exe_cudnn = sym3.simple_bind(data=data_shape, grid=grid_shape, ctx=default_context(), grad_req='write')
+        exe_list = [exe_cpu, exe_gpu, exe_cudnn]
+        ref_idx = 0
+        test_data = np.random.uniform(low=-0.1, high=0.1,size=data_shape).astype(np.float32)
+        test_grid = np.random.uniform(low=-2, high=2, size=grid_shape).astype(np.float32)
+        for exe in exe_list:
+            exe.arg_dict['data'][:] = test_data
+            exe.arg_dict['grid'][:] = test_grid
+            exe.forward(is_train=True)
+            assert_almost_equal(exe_list[0].outputs[0].asnumpy(), exe.outputs[0].asnumpy(), rtol=1e-3, atol=1e-5)
+
+        out_grad = np.random.uniform(low=-0.01, high=0.01,size=data_shape[:2] + grid_shape[2:]).astype(np.float32)
+        for exe in exe_list:
+            exe.backward(mx.nd.array(out_grad))
+            assert_almost_equal(exe.grad_dict['data'].asnumpy(), exe_list[ref_idx].grad_dict['data'].asnumpy(), rtol=1e-3, atol=1e-5)
+            assert_almost_equal(exe.grad_dict['grid'].asnumpy(), exe_list[ref_idx].grad_dict['grid'].asnumpy(), rtol=1e-3, atol=1e-5)
+
+        data_grad = exe_list[ref_idx].grad_dict['data'].asnumpy()
+        grid_grad = exe_list[ref_idx].grad_dict['grid'].asnumpy()
+
+        # kAddTo
+        exe_cpu_addto = sym1.simple_bind(data=data_shape, grid=grid_shape, ctx=mx.cpu(), grad_req='add')
+        exe_gpu_addto = sym2.simple_bind(data=data_shape, grid=grid_shape, ctx=default_context(), grad_req='add')
+        exe_cudnn_addto = sym3.simple_bind(data=data_shape, grid=grid_shape, ctx=default_context(), grad_req='add')
+        exe_list = [exe_cpu_addto, exe_gpu_addto, exe_cudnn_addto]
+        data_initial_grad = np.random.normal(size=exe_list[ref_idx].grad_dict['data'].shape).astype(np.float32)
+        grid_initial_grad = np.random.normal(size=exe_list[ref_idx].grad_dict['grid'].shape).astype(np.float32)
+        for exe in exe_list:
+            exe.arg_dict['data'][:] = test_data
+            exe.arg_dict['grid'][:] = test_grid
+            exe.grad_dict['data'][:] = data_initial_grad
+            exe.grad_dict['grid'][:] = grid_initial_grad
+            exe.forward(is_train=True)
+            exe.backward(mx.nd.array(out_grad))
+            assert_almost_equal(exe.grad_dict['data'].asnumpy(), exe_list[ref_idx].grad_dict['data'].asnumpy(), rtol=1e-3, atol=1e-5)
+            assert_almost_equal(exe.grad_dict['grid'].asnumpy(), exe_list[ref_idx].grad_dict['grid'].asnumpy(), rtol=1e-3, atol=1e-5)
+        assert_almost_equal(exe_list[ref_idx].grad_dict['data'].asnumpy(), data_grad + data_initial_grad, rtol=1e-3, atol=1e-5)
+        assert_almost_equal(exe_list[ref_idx].grad_dict['grid'].asnumpy(), grid_grad + grid_initial_grad, rtol=1e-3, atol=1e-5)
+
+
 def test_context_num_gpus():
     # Test that num_gpus reports at least one GPU, as the test is run on a GPU host.
     assert mx.context.num_gpus() > 0
diff --git a/tests/python/unittest/test_operator.py b/tests/python/unittest/test_operator.py
index 5bd88dd5869..2e43c8b9c44 100644
--- a/tests/python/unittest/test_operator.py
+++ b/tests/python/unittest/test_operator.py
@@ -3948,166 +3948,6 @@ def test_grid_generator():
         assert_almost_equal(exe_add.grad_dict['flow'].asnumpy(), grad_est + flow_grad_npy, rtol=1e-3, atol=1e-5)
 
 
-@unittest.skip("Flaky test https://github.com/apache/incubator-mxnet/issues/12248")
-def test_bilinear_sampler():
-    from math import floor
-
-    def between(x, lowerbound, upperbound):
-        return x>=lowerbound and x<=upperbound
-
-    def bilinear_forward_numpy(data, grid):
-
-        batchsize = data.shape[0]
-        input_height = data.shape[2]
-        input_width = data.shape[3]
-        num_channel = data.shape[1]
-
-        output_height = grid.shape[2]
-        output_width = grid.shape[3]
-        out = np.zeros(data.shape[:2] + grid.shape[2:], dtype=np.float32)
-
-        for i in range(batchsize):
-            for yout in range(output_height):
-                for xout in range(output_width):
-
-                    xcoord = np.float32((grid[i, 0, yout, xout] + 1) * (input_width-1) / 2.0)
-                    ycoord = np.float32((grid[i, 1, yout, xout] + 1) * (input_height-1) / 2.0)
-
-                    xInTopLeft = int(floor(xcoord))
-                    xWeightTopLeft = np.float32(1-(xcoord - xInTopLeft))
-
-                    yInTopLeft = int(floor(ycoord))
-                    yWeightTopLeft = np.float32(1-(ycoord - yInTopLeft))
-
-                    # interpolation
-                    for channel in range(num_channel):
-
-                        inTopLeft = data[i,channel,yInTopLeft, xInTopLeft] \
-                            if between(xInTopLeft,0,input_width-1) and between(yInTopLeft,0,input_height-1) else 0.0
-                        inTopRight = data[i,channel,yInTopLeft, xInTopLeft+1] \
-                            if between(xInTopLeft+1,0,input_width-1) and between(yInTopLeft,0,input_height-1) else 0.0
-                        inBottomLeft = data[i,channel,yInTopLeft+1, xInTopLeft] \
-                            if between(xInTopLeft,0,input_width-1) and between(yInTopLeft+1,0,input_height-1) else 0.0
-                        inBottomRight = data[i,channel,yInTopLeft+1, xInTopLeft+1] \
-                            if between(xInTopLeft+1,0,input_width-1) and between(yInTopLeft+1,0,input_height-1) else 0.0
-
-                        out[i,channel,yout,xout] = xWeightTopLeft * yWeightTopLeft * inTopLeft\
-                                +  (1-xWeightTopLeft)*yWeightTopLeft * inTopRight\
-                                +  xWeightTopLeft * (1-yWeightTopLeft) * inBottomLeft\
-                            +(1-xWeightTopLeft) * (1-yWeightTopLeft) * inBottomRight
-        return out
-
-    def bilinear_backward_numpy(out_grad, data, grid):
-
-        data_grad = np.zeros(data.shape, dtype=np.float32)
-        grid_grad = np.zeros(grid.shape, dtype=np.float32)
-
-        batchsize = data.shape[0]
-        input_height = data.shape[2]
-        input_width = data.shape[3]
-        num_channel = data.shape[1]
-        output_height = grid.shape[2]
-        output_width = grid.shape[3]
-
-        for i in range(batchsize):
-            for yout in range(output_height):
-                for xout in range(output_width):
-
-                    top_left_y_gw = np.float32(0.0);
-                    top_left_x_gw = np.float32(0.0);
-
-                    xcoord = np.float32((grid[i, 0, yout, xout] + 1) * (input_width-1) / 2.0)
-                    ycoord = np.float32((grid[i, 1, yout, xout] + 1) * (input_height-1) / 2.0)
-
-                    xInTopLeft = int(floor(xcoord))
-                    xWeightTopLeft = np.float32(1-(xcoord - xInTopLeft))
-
-                    yInTopLeft = int(floor(ycoord))
-                    yWeightTopLeft = np.float32(1-(ycoord - yInTopLeft))
-
-                    topLeftDotProduct = np.float32(0)
-                    topRightDotProduct = np.float32(0)
-                    bottomLeftDotProduct = np.float32(0)
-                    bottomRightDotProduct = np.float32(0)
-
-                    for channel in range(num_channel):
-                        # left top
-                        if between(xInTopLeft,0,input_width-1) and between(yInTopLeft,0,input_height-1):
-                            topLeftDotProduct += data[i,channel,yInTopLeft, xInTopLeft] * \
-                                out_grad[i,channel,yout,xout]
-                            data_grad[i, channel, yInTopLeft, xInTopLeft] += xWeightTopLeft * \
-                                yWeightTopLeft * out_grad[i,channel,yout,xout]
-                        # right top
-                        if between(xInTopLeft+1,0,input_width-1) and between(yInTopLeft,0,input_height-1):
-                            topRightDotProduct += data[i, channel, yInTopLeft,xInTopLeft+1] * \
-                                out_grad[i, channel, yout,xout]
-                            data_grad[i, channel,yInTopLeft, xInTopLeft+1] += (1-xWeightTopLeft) * \
-                                yWeightTopLeft * out_grad[i,channel,yout,xout]
-                        # left bottom
-                        if between(xInTopLeft,0,input_width-1) and between(yInTopLeft+1,0,input_height-1):
-                            bottomLeftDotProduct += data[i, channel,yInTopLeft+1, xInTopLeft] * \
-                                out_grad[i,channel,yout,xout]
-                            data_grad[i,channel,yInTopLeft+1,xInTopLeft]+=xWeightTopLeft * \
-                                (1-yWeightTopLeft)* out_grad[i,channel,yout,xout]
-                        # right bottom
-                        if between(xInTopLeft+1,0,input_width-1) and between(yInTopLeft+1,0,input_height-1):
-                            bottomRightDotProduct += data[i,channel,yInTopLeft+1, xInTopLeft+1] * \
-                                out_grad[i,channel,yout,xout]
-                            data_grad[i,channel,yInTopLeft+1,xInTopLeft+1]+= (1-xWeightTopLeft) * \
-                                (1-yWeightTopLeft)*out_grad[i,channel,yout,xout]
-
-                    yf = np.float32(-xWeightTopLeft * topLeftDotProduct + xWeightTopLeft*bottomLeftDotProduct - \
-                        (1-xWeightTopLeft)* topRightDotProduct + (1-xWeightTopLeft)*bottomRightDotProduct)
-                    xf = np.float32(-yWeightTopLeft * topLeftDotProduct + yWeightTopLeft*topRightDotProduct - \
-                        (1-yWeightTopLeft)*bottomLeftDotProduct + (1-yWeightTopLeft)*bottomRightDotProduct)
-
-                    grid_grad[i,0,yout,xout] = xf * (input_width-1) / 2.0
-                    grid_grad[i,1,yout,xout] = yf * (input_height-1) / 2.0
-
-        return data_grad, grid_grad
-
-    data = mx.sym.Variable('data')
-    grid = mx.sym.Variable('grid')
-    net = mx.sym.BilinearSampler(data=data,grid=grid)
-
-    test_case = [[(1,3,15,16),(1,2,10,10)],
-                 [(1,6,7,16),(1,2,10,4)],
-                 [(1,7,3,16),(1,2,8,11)],
-                 [(1,9,50,50),(1,2,50,50)]]
-
-    for ctx in [default_context()]:
-        for item in test_case:
-            data_shape, grid_shape = item
-            exe = net.simple_bind(data=data_shape,grid=grid_shape,ctx=ctx,grad_req='write')
-            # check forward
-            exe.arg_dict['data'][:] = np.random.uniform(low=-0.1, high=0.1,size=data_shape).astype(np.float32)
-            exe.arg_dict['grid'][:] = np.random.uniform(low=-2, high=2, size=grid_shape).astype(np.float32)
-            exe.forward(is_train=True)
-            out = bilinear_forward_numpy(exe.arg_dict['data'].asnumpy(), exe.arg_dict['grid'].asnumpy())
-            assert_almost_equal(exe.outputs[0].asnumpy(), out, rtol=1e-3,atol=1e-5)
-
-            # check backward
-            out_grad = np.random.uniform(low=-0.01, high=0.01,size=data_shape[:2] + grid_shape[2:]).astype(np.float32)
-            exe.backward(mx.nd.array(out_grad))
-            data_grad, grid_grad = bilinear_backward_numpy(out_grad,exe.arg_dict['data'].asnumpy(),
-                                                       exe.arg_dict['grid'].asnumpy())
-            assert_almost_equal(exe.grad_dict['data'].asnumpy(), data_grad, rtol=1e-3, atol=1e-5)
-            assert_almost_equal(exe.grad_dict['grid'].asnumpy(), grid_grad, rtol=1e-3, atol=1e-5)
-
-            # check kAddTo
-            exe_addto = net.simple_bind(data=data_shape, grid=grid_shape, ctx=ctx, grad_req='add')
-            data_initial_grid = np.random.normal(size=exe_addto.grad_dict['data'].shape).astype(np.float32)
-            grid_initial_grid = np.random.normal(size=exe_addto.grad_dict['grid'].shape).astype(np.float32)
-            exe_addto.arg_dict['data'][:] = exe.arg_dict['data'][:]
-            exe_addto.arg_dict['grid'][:] = exe.arg_dict['grid'][:]
-            exe_addto.grad_dict['data'][:] = data_initial_grid
-            exe_addto.grad_dict['grid'][:] = grid_initial_grid
-            exe_addto.forward(is_train=True)
-            exe_addto.backward(mx.nd.array(out_grad))
-            assert_almost_equal(exe_addto.grad_dict['data'].asnumpy(), data_grad + data_initial_grid, rtol=1e-3,atol=1e-5)
-            assert_almost_equal(exe_addto.grad_dict['grid'].asnumpy(), grid_grad + grid_initial_grid, rtol=1e-3,atol=1e-5)
-
-
 @with_seed()
 def test_index2d():
     for _ in range(30):


 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


With regards,
Apache Git Services