You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@systemml.apache.org by du...@apache.org on 2016/01/26 02:13:05 UTC

[41/55] [partial] incubator-systemml git commit: [SYSTEMML-482] [SYSTEMML-480] Adding a Git attributes file to enfore Unix-styled line endings, and normalizing all of the line endings.

http://git-wip-us.apache.org/repos/asf/incubator-systemml/blob/816e2db8/scripts/algorithms/random-forest.dml
----------------------------------------------------------------------
diff --git a/scripts/algorithms/random-forest.dml b/scripts/algorithms/random-forest.dml
index 7bdc1fb..b68d711 100644
--- a/scripts/algorithms/random-forest.dml
+++ b/scripts/algorithms/random-forest.dml
@@ -1,1375 +1,1375 @@
-#-------------------------------------------------------------
-#
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-# 
-#   http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-#
-#-------------------------------------------------------------
-
-#  
-# THIS SCRIPT IMPLEMENTS CLASSIFICATION RANDOM FOREST WITH BOTH SCALE AND CATEGORICAL FEATURES
-#
-# INPUT         		PARAMETERS:
-# ---------------------------------------------------------------------------------------------
-# NAME          		TYPE     DEFAULT      MEANING
-# ---------------------------------------------------------------------------------------------
-# X             		String   ---          Location to read feature matrix X; note that X needs to be both recoded and dummy coded 
-# Y 					String   ---		  Location to read label matrix Y; note that Y needs to be both recoded and dummy coded
-# R   	  				String   " "	      Location to read the matrix R which for each feature in X contains the following information 
-#												- R[,1]: column ids
-#												- R[,2]: start indices 
-#												- R[,3]: end indices
-#											  If R is not provided by default all variables are assumed to be scale
-# bins          		Int 	 20			  Number of equiheight bins per scale feature to choose thresholds
-# depth         		Int 	 25			  Maximum depth of the learned tree
-# num_leaf      		Int      10           Number of samples when splitting stops and a leaf node is added
-# num_samples   		Int 	 3000		  Number of samples at which point we switch to in-memory subtree building
-# num_trees     		Int 	 10			  Number of trees to be learned in the random forest model
-# subsamp_rate  		Double   1.0		  Parameter controlling the size of each tree in the forest; samples are selected from a 
-#											  Poisson distribution with parameter subsamp_rate (the default value is 1.0)
-# feature_subset    	Double   0.5    	  Parameter that controls the number of feature used as candidates for splitting at each tree node 
-#											  as a power of number of features in the dataset;
-#											  by default square root of features (i.e., feature_subset = 0.5) are used at each tree node 
-# impurity      		String   "Gini"    	  Impurity measure: entropy or Gini (the default)
-# M             		String 	 ---	   	  Location to write matrix M containing the learned tree
-# C 					String   " "		  Location to write matrix C containing the number of times samples are chosen in each tree of the random forest 
-# S_map					String   " "		  Location to write the mappings from scale feature ids to global feature ids
-# C_map					String   " "		  Location to write the mappings from categorical feature ids to global feature ids
-# fmt     	    		String   "text"       The output format of the model (matrix M), such as "text" or "csv"
-# ---------------------------------------------------------------------------------------------
-# OUTPUT: 
-# Matrix M where each column corresponds to a node in the learned tree and each row contains the following information:
-#	 M[1,j]: id of node j (in a complete binary tree)
-#	 M[2,j]: tree id to which node j belongs
-#	 M[3,j]: Offset (no. of columns) to left child of j 
-#	 M[4,j]: Feature index of the feature that node j looks at if j is an internal node, otherwise 0
-#	 M[5,j]: Type of the feature that node j looks at if j is an internal node: 1 for scale and 2 for categorical features, 
-#		     otherwise the label that leaf node j is supposed to predict
-#	 M[6,j]: 1 if j is an internal node and the feature chosen for j is scale, otherwise the size of the subset of values 
-#			 stored in rows 7,8,... if j is categorical
-#	 M[7:,j]: Only applicable for internal nodes. Threshold the example's feature value is compared to is stored at M[7,j] if the feature chosen for j is scale;
-# 			  If the feature chosen for j is categorical rows 7,8,... depict the value subset chosen for j   
-# -------------------------------------------------------------------------------------------
-# HOW TO INVOKE THIS SCRIPT - EXAMPLE:
-# hadoop jar SystemML.jar -f random-forest.dml -nvargs X=INPUT_DIR/X Y=INPUT_DIR/Y R=INPUT_DIR/R M=OUTPUT_DIR/model
-#     				                 				   bins=20 depth=25 num_leaf=10 num_samples=3000 num_trees=10 impurity=Gini fmt=csv
-
-
-# External function for binning
-binning = externalFunction(Matrix[Double] A, Integer binsize, Integer numbins) return (Matrix[Double] B, Integer numbinsdef) 
-	implemented in (classname="org.apache.sysml.udf.lib.BinningWrapper",exectype="mem")
-
-	
-# Default values of some parameters	
-fileR = ifdef ($R, " ");
-fileC = ifdef ($C, " ");
-fileS_map = ifdef ($S_map, " ");
-fileC_map = ifdef ($C_map, " ");
-fileM = $M;	
-num_bins = ifdef($bins, 20); 
-depth = ifdef($depth, 25);
-num_leaf = ifdef($num_leaf, 10);
-num_trees = ifdef($num_trees, 1); 
-threshold = ifdef ($num_samples, 3000);
-imp = ifdef($impurity, "Gini");
-rate = ifdef ($subsamp_rate, 1);
-fpow = ifdef ($feature_subset, 0.5);
-fmtO = ifdef($fmt, "text");
-
-X = read($X);
-Y_bin = read($Y);
-num_records = nrow (X);
-num_classes = ncol (Y_bin);
-
-# check if there is only one class label
-Y_bin_sum = sum (ppred (colSums (Y_bin), num_records, "=="));
-if (Y_bin_sum == 1) {
-	stop ("Y contains only one class label. No model will be learned!");
-} else if (Y_bin_sum > 1) {
-	stop ("Y is not properly dummy coded. Multiple columns of Y contain only ones!")
-}
-
-# split data into X_scale and X_cat
-if (fileR != " ") {
-	R = read (fileR);
-	R = order (target = R, by = 2); # sort by start indices
-	dummy_coded = ppred (R[,2], R[,3], "!=");
-	R_scale = removeEmpty (target = R[,2:3] * (1 - dummy_coded), margin = "rows");
-	R_cat = removeEmpty (target = R[,2:3] * dummy_coded, margin = "rows");
-	if (fileS_map != " ") {
-		scale_feature_mapping = removeEmpty (target = (1 - dummy_coded) * seq (1, nrow (R)), margin = "rows");
-		write (scale_feature_mapping, fileS_map, format = fmtO);
-	}
-	if (fileC_map != " ") {
-		cat_feature_mapping = removeEmpty (target = dummy_coded * seq (1, nrow (R)), margin = "rows");	
-		write (cat_feature_mapping, fileC_map, format = fmtO);		
-	}
-	sum_dummy = sum (dummy_coded);	
-	if (sum_dummy == nrow (R)) { # all features categorical
-		print ("All features categorical");
-		num_cat_features = nrow (R_cat);
-		num_scale_features = 0;
-		X_cat = X;	
-		distinct_values = t (R_cat[,2] - R_cat[,1] + 1);
-		distinct_values_max = max (distinct_values);
-		distinct_values_offset = cumsum (t (distinct_values));
-		distinct_values_overall = sum (distinct_values);
-	} else if (sum_dummy == 0) { # all features scale
-		print ("All features scale");
-		num_scale_features = ncol (X);
-		num_cat_features = 0;
-		X_scale = X;
-		distinct_values_max = 1;
-	} else { # some features scale some features categorical 
-		num_cat_features = nrow (R_cat);
-		num_scale_features = nrow (R_scale);
-		distinct_values = t (R_cat[,2] - R_cat[,1] + 1);
-		distinct_values_max = max (distinct_values);
-		distinct_values_offset = cumsum (t (distinct_values));
-		distinct_values_overall = sum (distinct_values);
-		
-		W = matrix (1, rows = num_cat_features, cols = 1) %*% matrix ("1 -1", rows = 1, cols = 2);
-		W = matrix (W, rows = 2 * num_cat_features, cols = 1);
-		if (as.scalar (R_cat[num_cat_features, 2]) == ncol (X)) {
-			W[2 * num_cat_features,] = 0;
-		}
-		
-		last = ppred (R_cat[,2], ncol (X), "!=");
-		R_cat1 = (R_cat[,2] + 1) * last;
-		R_cat[,2] = (R_cat[,2] * (1 - last)) + R_cat1;
-		R_cat_vec = matrix (R_cat, rows = 2 * num_cat_features, cols = 1);	
-
-		col_tab = table (R_cat_vec, 1, W, ncol (X), 1);
-		col_ind = cumsum (col_tab);
-		
-		col_ind_cat = removeEmpty (target = col_ind * seq (1, ncol (X)), margin = "rows");
-		col_ind_scale = removeEmpty (target = (1 - col_ind) * seq (1, ncol (X)), margin = "rows");	
-		X_cat = X %*% table (col_ind_cat, seq (1, nrow (col_ind_cat)), ncol (X), nrow (col_ind_cat));
-		X_scale = X %*% table (col_ind_scale, seq (1, nrow (col_ind_scale)), ncol (X), nrow (col_ind_scale));		
-	}	
-} else { # only scale features exist
-	print ("All features scale");
-	num_scale_features = ncol (X);
-	num_cat_features = 0;
-	X_scale = X;
-	distinct_values_max = 1;
-}	
-
-if (num_scale_features > 0) {
-
-	print ("COMPUTING BINNING...");
-	bin_size = max (as.integer (num_records / num_bins), 1);
-	count_thresholds = matrix (0, rows = 1, cols = num_scale_features)
-	thresholds = matrix (0, rows = num_bins + 1, cols = num_scale_features)
-	parfor(i1 in 1:num_scale_features) { 
-		col = order (target = X_scale[,i1], by = 1, decreasing = FALSE);
-		[col_bins, num_bins_defined] = binning (col, bin_size, num_bins);
-		count_thresholds[,i1] = num_bins_defined;
-		thresholds[,i1] = col_bins;	
-	}
-	
-	print ("PREPROCESSING SCALE FEATURE MATRIX...");
-	min_num_bins = min (count_thresholds);
-	max_num_bins = max (count_thresholds);
-	total_num_bins = sum (count_thresholds);
-	cum_count_thresholds = t (cumsum (t (count_thresholds)));
-	X_scale_ext = matrix (0, rows = num_records, cols = total_num_bins);
-	parfor (i2 in 1:num_scale_features, check = 0) { 
-		Xi2 = X_scale[,i2];
-		count_threshold = as.scalar (count_thresholds[,i2]);
-		offset_feature = 1;
-		if (i2 > 1) {
-			offset_feature = offset_feature + as.integer (as.scalar (cum_count_thresholds[, (i2 - 1)]));
-		}
-
-		ti2 = t(thresholds[1:count_threshold, i2]);
-		X_scale_ext[,offset_feature:(offset_feature + count_threshold - 1)] = outer (Xi2, ti2, "<");
-	}
-}
-
-num_features_total = num_scale_features + num_cat_features;
-num_feature_samples = as.integer (floor (num_features_total ^ fpow));
-
-##### INITIALIZATION
-L = matrix (1, rows = num_records, cols = num_trees); # last visited node id for each training sample
-
-# create matrix of counts (generated by Poisson distribution) storing how many times each sample appears in each tree
-print ("CONPUTING COUNTS...");
-C = rand (rows = num_records, cols = num_trees, pdf = "poisson", lambda = rate);
-Ix_nonzero = ppred (C, 0, "!=");
-L = L * Ix_nonzero;
-total_counts = sum (C);
-
-
-# model
-# LARGE leaf nodes
-# NC_large[,1]: node id
-# NC_large[,2]: tree id
-# NC_large[,3]: class label
-# NC_large[,4]: no. of misclassified samples 
-# NC_large[,5]: 1 if special leaf (impure and 3 samples at that leaf > threshold) or 0 otherwise 
-NC_large = matrix (0, rows = 5, cols = 1); 
-
-# SMALL leaf nodes 
-# same schema as for LARGE leaf nodes (to be initialized)
-NC_small = matrix (0, rows = 5, cols = 1); 
-
-# LARGE internal nodes
-# Q_large[,1]: node id
-# Q_large[,2]: tree id
-Q_large = matrix (0, rows = 2, cols = num_trees); 
-Q_large[1,] = matrix (1, rows = 1, cols = num_trees);
-Q_large[2,] = t (seq (1, num_trees));
-
-# SMALL internal nodes
-# same schema as for LARGE internal nodes (to be initialized)
-Q_small = matrix (0, rows = 2, cols = 1); 
-
-# F_large[,1]: feature
-# F_large[,2]: type
-# F_large[,3]: offset 
-F_large = matrix (0, rows = 3, cols = 1);
-
-# same schema as for LARGE nodes
-F_small = matrix (0, rows = 3, cols = 1); 
-
-# split points for LARGE internal nodes
-S_large = matrix (0, rows = 1, cols = 1);
-
-# split points for SMALL internal nodes 
-S_small = matrix (0, rows = 1, cols = 1); 
-
-# initialize queue
-cur_nodes_large = matrix (1, rows = 2, cols = num_trees);
-cur_nodes_large[2,] = t (seq (1, num_trees));
-
-num_cur_nodes_large = num_trees;
-num_cur_nodes_small = 0;
-level = 0;
-
-while ((num_cur_nodes_large + num_cur_nodes_small) > 0 & level < depth) {
-	
-	level = level + 1;
-	print (" --- start level " + level + " --- ");
-	
-	##### PREPARE MODEL
-	if (num_cur_nodes_large > 0) { # LARGE nodes to process
-		cur_Q_large = matrix (0, rows = 2, cols = 2 * num_cur_nodes_large);
-		cur_NC_large = matrix (0, rows = 5, cols = 2 * num_cur_nodes_large); 
-		cur_F_large = matrix (0, rows = 3, cols = num_cur_nodes_large); 
-		cur_S_large = matrix (0, rows = 1, cols = num_cur_nodes_large * distinct_values_max); 
-		cur_nodes_small = matrix (0, rows = 3, cols = 2 * num_cur_nodes_large); 
-	}
-
-	##### LOOP OVER LARGE NODES...
-	parfor (i6 in 1:num_cur_nodes_large, check = 0) { 
-	
-		cur_node = as.scalar (cur_nodes_large[1,i6]);
-		cur_tree = as.scalar (cur_nodes_large[2,i6]);
-			
-		# select sample features WOR
-		feature_samples = sample (num_features_total, num_feature_samples);
-		feature_samples = order (target = feature_samples, by = 1);
-		num_scale_feature_samples = sum (ppred (feature_samples, num_scale_features, "<="));
-		num_cat_feature_samples = num_feature_samples - num_scale_feature_samples;
-		
-		# --- find best split ---
-		# samples that reach cur_node 
-		Ix = ppred (L[,cur_tree], cur_node, "==");		
-		
-		cur_Y_bin = Y_bin * (Ix * C[,cur_tree]);
-		label_counts_overall = colSums (cur_Y_bin);
-		label_sum_overall = sum (label_counts_overall);
-		label_dist_overall = label_counts_overall / label_sum_overall;
-
-		if (imp == "entropy") {
-			label_dist_zero = ppred (label_dist_overall, 0, "==");
-			cur_impurity = - sum (label_dist_overall * log (label_dist_overall + label_dist_zero)); # / log (2); # impurity before
-		} else { # imp == "Gini"
-			cur_impurity = sum (label_dist_overall * (1 - label_dist_overall)); # impurity before
-		}
-		best_scale_gain = 0;
-		best_cat_gain = 0;
-		if (num_scale_features > 0 & num_scale_feature_samples > 0) {
-			
-			scale_feature_samples = feature_samples[1:num_scale_feature_samples,];
-			
-			# main operation	
-			label_counts_left_scale = t (t (cur_Y_bin) %*% X_scale_ext); 
-		
-			# compute left and right label distribution
-			label_sum_left = rowSums (label_counts_left_scale);
-			label_dist_left = label_counts_left_scale / label_sum_left;
-			if (imp == "entropy") {
-				label_dist_left = replace (target = label_dist_left, pattern = 0, replacement = 1);
-				log_label_dist_left = log (label_dist_left); # / log (2)
-				impurity_left_scale = - rowSums (label_dist_left * log_label_dist_left); 
-			} else { # imp == "Gini"
-				impurity_left_scale = rowSums (label_dist_left * (1 - label_dist_left)); 
-			}
-			#
-			label_counts_right_scale = - label_counts_left_scale + label_counts_overall; 
-			label_sum_right = rowSums (label_counts_right_scale);
-			label_dist_right = label_counts_right_scale / label_sum_right;
-			if (imp == "entropy") {
-				label_dist_right = replace (target = label_dist_right, pattern = 0, replacement = 1);
-				log_label_dist_right = log (label_dist_right); # / log (2)
-				impurity_right_scale = - rowSums (label_dist_right * log_label_dist_right); 		
-			} else { # imp == "Gini"
-				impurity_right_scale = rowSums (label_dist_right * (1 - label_dist_right)); 
-			}
-			
-			I_gain_scale = cur_impurity - ( ( label_sum_left / label_sum_overall ) * impurity_left_scale + ( label_sum_right / label_sum_overall ) * impurity_right_scale); 
-		
-			I_gain_scale = replace (target = I_gain_scale, pattern = "NaN", replacement = 0);	
-			
-			# determine best feature to split on and the split value
-			feature_start_ind = matrix (0, rows = 1, cols = num_scale_features);
-			feature_start_ind[1,1] = 1;
-			if (num_scale_features > 1) {
-				feature_start_ind[1,2:num_scale_features] = cum_count_thresholds[1,1:(num_scale_features - 1)] + 1;
-			}
-			max_I_gain_found = 0;
-			max_I_gain_found_ind = 0;
-			best_i = 0;
-			
-			for (i in 1:num_scale_feature_samples) { # assuming feature_samples is 5x1
-				cur_feature_samples_bin = as.scalar (scale_feature_samples[i,]); 
-				cur_start_ind = as.scalar (feature_start_ind[,cur_feature_samples_bin]);
-				cur_end_ind = as.scalar (cum_count_thresholds[,cur_feature_samples_bin]);
-				I_gain_portion = I_gain_scale[cur_start_ind:cur_end_ind,];
-				cur_max_I_gain = max (I_gain_portion);
-				cur_max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain_portion)));
-				if (cur_max_I_gain > max_I_gain_found) {
-					max_I_gain_found = cur_max_I_gain;
-					max_I_gain_found_ind = cur_max_I_gain_ind;
-					best_i = i;
-				}
-			}
-
-			best_scale_gain = max_I_gain_found;
-			max_I_gain_ind_scale = max_I_gain_found_ind;
-			best_scale_feature = 0;
-			if (best_i > 0) {
-				best_scale_feature = as.scalar (scale_feature_samples[best_i,]);
-			}
-			best_scale_split = max_I_gain_ind_scale;
-			if (best_scale_feature > 1) {
-				best_scale_split = best_scale_split + as.scalar(cum_count_thresholds[,(best_scale_feature - 1)]);
-			}					
-		}
-	
-		if (num_cat_features > 0 & num_cat_feature_samples > 0){
-			
-			cat_feature_samples = feature_samples[(num_scale_feature_samples + 1):(num_scale_feature_samples + num_cat_feature_samples),] - num_scale_features;
-			
-			# initialization
-			split_values_bin = matrix (0, rows = 1, cols = distinct_values_overall); 
-			split_values = split_values_bin; 
-			split_values_offset = matrix (0, rows = 1, cols = num_cat_features); 
-			I_gains = split_values_offset; 
-			impurities_left = split_values_offset;
-			impurities_right = split_values_offset;
-			best_label_counts_left = matrix (0, rows = num_cat_features, cols = num_classes);
-			best_label_counts_right = matrix (0, rows = num_cat_features, cols = num_classes);
-			
-			# main operation
-			label_counts = t (t (cur_Y_bin) %*% X_cat);  			
-			
-			parfor (i9 in 1:num_cat_feature_samples, check = 0){
-			
-				cur_cat_feature = as.scalar (cat_feature_samples[i9,1]);
-				start_ind = 1;
-				if (cur_cat_feature > 1) {
-					start_ind = start_ind + as.scalar (distinct_values_offset[(cur_cat_feature - 1),]);
-				}
-				offset = as.scalar (distinct_values[1,cur_cat_feature]);
-				
-				cur_label_counts = label_counts[start_ind:(start_ind + offset - 1),];
-								
-				label_sum = rowSums (cur_label_counts);
-				label_dist = cur_label_counts / label_sum;
-				if (imp == "entropy") {
-					label_dist = replace (target = label_dist, pattern = 0, replacement = 1);
-					log_label_dist = log (label_dist); # / log(2)
-					impurity = - rowSums (label_dist * log_label_dist); 
-					impurity = replace (target = impurity, pattern = "NaN", replacement = 1/0); 
-				} else { # imp == "Gini"
-					impurity = rowSums (label_dist * (1 - label_dist)); 				
-				}
-			
-				# sort cur feature by impurity
-				cur_distinct_values = seq (1, nrow (cur_label_counts));
-				cur_distinct_values_impurity = append (cur_distinct_values, impurity);
-				cur_feature_sorted = order (target = cur_distinct_values_impurity, by = 2, decreasing = FALSE);
-				P = table (cur_distinct_values, cur_feature_sorted); # permutation matrix
-				label_counts_sorted = P %*% cur_label_counts;
-
-				# compute left and right label distribution			
-				label_counts_left = cumsum (label_counts_sorted);
-			
-				label_sum_left = rowSums (label_counts_left);
-				label_dist_left = label_counts_left / label_sum_left;
-				label_dist_left = replace (target = label_dist_left, pattern = "NaN", replacement = 1);
-				if (imp == "entropy") {
-					label_dist_left = replace (target = label_dist_left, pattern = 0, replacement = 1);
-					log_label_dist_left = log (label_dist_left); # / log(2)
-					impurity_left = - rowSums (label_dist_left * log_label_dist_left);
-				} else { # imp == "Gini"
-					impurity_left = rowSums (label_dist_left * (1 - label_dist_left));					
-				}
-				#
-				label_counts_right = - label_counts_left + label_counts_overall;
-				label_sum_right = rowSums (label_counts_right);
-				label_dist_right = label_counts_right / label_sum_right;
-				label_dist_right = replace (target = label_dist_right, pattern = "NaN", replacement = 1);
-				if (imp == "entropy") {
-					label_dist_right = replace (target = label_dist_right, pattern = 0, replacement = 1);
-					log_label_dist_right = log (label_dist_right); # / log (2)
-					impurity_right = - rowSums (label_dist_right * log_label_dist_right);			
-				} else { # imp == "Gini"
-					impurity_right = rowSums (label_dist_right * (1 - label_dist_right));					
-				}
-				I_gain = cur_impurity - ( ( label_sum_left / label_sum_overall ) * impurity_left + ( label_sum_right / label_sum_overall ) * impurity_right);
-			
-				Ix_label_sum_left_zero = ppred (label_sum_left, 0, "==");
-				Ix_label_sum_right_zero = ppred (label_sum_right, 0, "==");
-				Ix_label_sum_zero = Ix_label_sum_left_zero * Ix_label_sum_right_zero;
-				I_gain = I_gain * (1 - Ix_label_sum_zero);	
-				
-				I_gain[nrow (I_gain),] = 0; # last entry invalid
-			
-				max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain)));
-
-				split_values[1, start_ind:(start_ind + max_I_gain_ind - 1)] = t (cur_feature_sorted[1:max_I_gain_ind,1]);
-				for (i10 in 1:max_I_gain_ind) {
-					ind = as.scalar (cur_feature_sorted[i10,1]);
-					if (ind == 1) {
-						split_values_bin[1,start_ind] = 1.0; 
-					} else {
-						split_values_bin[1,(start_ind + ind - 1)] = 1.0;
-					}
-				}
-				split_values_offset[1,cur_cat_feature] = max_I_gain_ind;
-			
-				I_gains[1,cur_cat_feature] = max (I_gain);
-			
-				impurities_left[1,cur_cat_feature] = as.scalar (impurity_left[max_I_gain_ind,]);
-				impurities_right[1,cur_cat_feature] = as.scalar (impurity_right[max_I_gain_ind,]);
-				best_label_counts_left[cur_cat_feature,] = label_counts_left[max_I_gain_ind,];
-				best_label_counts_right[cur_cat_feature,] = label_counts_right[max_I_gain_ind,];				
-			}
-			
-			# determine best feature to split on and the split values
-			best_cat_feature = as.scalar (rowIndexMax (I_gains));
-			best_cat_gain = max (I_gains);
-			start_ind = 1;
-			if (best_cat_feature > 1) {
-				start_ind = start_ind + as.scalar (distinct_values_offset[(best_cat_feature - 1),]);
-			}
-			offset = as.scalar (distinct_values[1,best_cat_feature]);
-			best_split_values_bin = split_values_bin[1, start_ind:(start_ind + offset - 1)];		
-		}		
-	
-		# compare best scale feature to best cat. feature and pick the best one
-		if (num_scale_features > 0 & num_scale_feature_samples > 0 & best_scale_gain >= best_cat_gain & best_scale_gain > 0) {
-			
-			# --- update model ---
-			cur_F_large[1,i6] = best_scale_feature;
-			cur_F_large[2,i6] = 1;
-			cur_F_large[3,i6] = 1;			
-			cur_S_large[1,(i6 - 1) * distinct_values_max + 1] = thresholds[max_I_gain_ind_scale, best_scale_feature]; 
-				
-			left_child = 2 * (cur_node - 1) + 1 + 1;
-			right_child = 2 * (cur_node - 1) + 2 + 1;
-					
-			# samples going to the left subtree
-			Ix_left = X_scale_ext[,best_scale_split]; 
-											
-			Ix_left = Ix * Ix_left;		
-			Ix_right = Ix * (1 - Ix_left);
-				
-			L[,cur_tree] = L[,cur_tree] * (1 - Ix_left) + (Ix_left * left_child);
-			L[,cur_tree] = L[,cur_tree] * (1 - Ix_right) + (Ix_right * right_child);								
-			
-			left_child_size = sum (Ix_left * C[,cur_tree]);
-			right_child_size = sum (Ix_right * C[,cur_tree]);
-			
-			# check if left or right child is a leaf
-			left_pure = FALSE;
-			right_pure = FALSE;
-			cur_impurity_left = as.scalar(impurity_left_scale[best_scale_split,]); # max_I_gain_ind_scale
-			cur_impurity_right = as.scalar(impurity_right_scale[best_scale_split,]); # max_I_gain_ind_scale
-			if ( (left_child_size <= num_leaf | cur_impurity_left == 0 | (level == depth)) & 
-			   (right_child_size <= num_leaf | cur_impurity_right == 0 | (level == depth)) | 
-			   (left_child_size <= threshold & right_child_size <= threshold & (level == depth)) ) { # both left and right nodes are leaf	
-				
-				cur_label_counts_left = label_counts_left_scale[best_scale_split,]; # max_I_gain_ind_scale
-				cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child; 
-				cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
-				cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label
-				left_pure = TRUE;	
-				# compute number of misclassified points 
-				cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max (cur_label_counts_left); 
-				
-				cur_label_counts_right = label_counts_overall - cur_label_counts_left;
-				cur_NC_large[1,(2 * i6)] = right_child; 
-				cur_NC_large[2,(2 * i6)] = cur_tree;
-				cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
-				right_pure = TRUE;	
-				# compute number of misclassified pints
-				cur_NC_large[4,(2 * i6)] = right_child_size - max (cur_label_counts_right); 
-				
-			} else if (left_child_size <= num_leaf | cur_impurity_left == 0 | (level == depth) | 
-					  (left_child_size <= threshold & (level == depth))) {	
-				
-				cur_label_counts_left = label_counts_left_scale[best_scale_split,]; # max_I_gain_ind_scale
-				cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child; 
-				cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
-				cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label				
-				left_pure = TRUE;
-				# compute number of misclassified points 
-				cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max (cur_label_counts_left);
-				
-			} else if (right_child_size <= num_leaf | cur_impurity_right == 0 | (level == depth) |
-					  (right_child_size <= threshold & (level == depth))) {
-					  
-				cur_label_counts_right = label_counts_right_scale[best_scale_split,]; # max_I_gain_ind_scale
-				cur_NC_large[1,(2 * i6)] = right_child; 
-				cur_NC_large[2,(2 * i6)] = cur_tree;
-				cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
-				right_pure = TRUE;
-				# compute number of misclassified pints
-				cur_NC_large[4,(2 * i6)] = right_child_size - max (cur_label_counts_right);
-				
-			}
-		
-		} else if (num_cat_features > 0 & num_cat_feature_samples > 0 & best_cat_gain > 0) {
-			
-			# --- update model ---
-			cur_F_large[1,i6] = best_cat_feature;
-			cur_F_large[2,i6] = 2;
-			offset_nonzero = as.scalar (split_values_offset[1,best_cat_feature]);
-			S_start_ind = (i6 - 1) * distinct_values_max + 1;
-			cur_F_large[3,i6] = offset_nonzero;
-			cur_S_large[1,S_start_ind:(S_start_ind + offset_nonzero - 1)] = split_values[1,start_ind:(start_ind + offset_nonzero - 1)];		
-		
-			left_child = 2 * (cur_node - 1) + 1 + 1;
-			right_child = 2 * (cur_node - 1) + 2 + 1;
-					
-			# samples going to the left subtree
-			Ix_left = rowSums (X_cat[,start_ind:(start_ind + offset - 1)] * best_split_values_bin);
-			Ix_left = ppred (Ix_left, 1, ">=");
-											  
-			Ix_left = Ix * Ix_left;		
-			Ix_right = Ix * (1 - Ix_left);
-			
-			L[,cur_tree] = L[,cur_tree] * (1 - Ix_left) + (Ix_left * left_child);
-			L[,cur_tree] = L[,cur_tree] * (1 - Ix_right) + (Ix_right * right_child);								
-			
-			left_child_size = sum (Ix_left * C[,cur_tree]);
-			right_child_size = sum (Ix_right * C[,cur_tree]);
-			
-			# check if left or right child is a leaf
-			left_pure = FALSE;
-			right_pure = FALSE;
-			cur_impurity_left = as.scalar(impurities_left[,best_cat_feature]); 
-			cur_impurity_right = as.scalar(impurities_right[,best_cat_feature]); 
-			if ( (left_child_size <= num_leaf | cur_impurity_left == 0 | (level == depth)) & 
-			   (right_child_size <= num_leaf | cur_impurity_right == 0 | (level == depth)) | 
-			   (left_child_size <= threshold & right_child_size <= threshold & (level == depth)) ) { # both left and right nodes are leaf	
-				
-				cur_label_counts_left = best_label_counts_left[best_cat_feature,];
-				cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child; 
-				cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
-				cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label
-				left_pure = TRUE;
-				# compute number of misclassified points 
-				cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max (cur_label_counts_left); 
-				
-				cur_label_counts_right = label_counts_overall - cur_label_counts_left;
-				cur_NC_large[1,(2 * i6)] = right_child; 
-				cur_NC_large[2,(2 * i6)] = cur_tree;	
-				cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
-				right_pure = TRUE;
-				# compute number of misclassified pints
-				cur_NC_large[4,(2 * i6)] = right_child_size - max (cur_label_counts_right);			
-			
-			} else if (left_child_size <= num_leaf | cur_impurity_left == 0 | (level == depth) |
-					  (left_child_size <= threshold & (level == depth))) {	
-				
-				cur_label_counts_left = best_label_counts_left[best_cat_feature,];
-				cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child; 
-				cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;	
-				cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label				
-				left_pure = TRUE;
-				# compute number of misclassified points 
-				cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max (cur_label_counts_left);				
-			
-			} else if (right_child_size <= num_leaf | cur_impurity_right == 0 | (level == depth) |
-					  (right_child_size <= threshold & (level == depth))) {
-				
-				cur_label_counts_right = best_label_counts_right[best_cat_feature,];
-				cur_NC_large[1,(2 * i6)] = right_child; 
-				cur_NC_large[2,(2 * i6)] = cur_tree;
-				cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
-				right_pure = TRUE;
-				# compute number of misclassified pints
-				cur_NC_large[4,(2 * i6)] = right_child_size - max (cur_label_counts_right);		
-			
-			}		
-		} else {
-			
-			print ("NUMBER OF SAMPLES AT NODE " + cur_node + " in tree " + cur_tree + " CANNOT BE REDUCED TO MATCH " + num_leaf + ". THIS NODE IS DECLARED AS LEAF!");
-			right_pure = TRUE;
-			left_pure = TRUE;
-			cur_NC_large[1,(2 * (i6 - 1) + 1)] = cur_node;
-			cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
-			class_label = as.scalar (rowIndexMax (label_counts_overall));
-			cur_NC_large[3,(2 * (i6 - 1) + 1)] = class_label;
-			cur_NC_large[4,(2 * (i6 - 1) + 1)] = label_sum_overall - max (label_counts_overall);
-			cur_NC_large[5,(2 * (i6 - 1) + 1)] = 1; # special leaf	
-						
-		}
-		
-		# add nodes to Q
-		if (!left_pure) {
-			if (left_child_size > threshold) {
-				cur_Q_large[1,(2 * (i6 - 1)+ 1)] = left_child; 
-				cur_Q_large[2,(2 * (i6 - 1)+ 1)] = cur_tree; 
-			} else {
-				cur_nodes_small[1,(2 * (i6 - 1)+ 1)] = left_child;
-				cur_nodes_small[2,(2 * (i6 - 1)+ 1)] = left_child_size;
-				cur_nodes_small[3,(2 * (i6 - 1)+ 1)] = cur_tree;				
-			}
-		}
-		if (!right_pure) {
-			if (right_child_size > threshold) {
-				cur_Q_large[1,(2 * i6)] = right_child;
-				cur_Q_large[2,(2 * i6)] = cur_tree;				
-			} else{
-				cur_nodes_small[1,(2 * i6)] = right_child;
-				cur_nodes_small[2,(2 * i6)] = right_child_size;
-				cur_nodes_small[3,(2 * i6)] = cur_tree;								
-			}	
-		}
-	}
-	
-	##### PREPARE MODEL FOR LARGE NODES
-	if (num_cur_nodes_large > 0) {
-		cur_Q_large = removeEmpty (target = cur_Q_large, margin = "cols");
-		if (as.scalar (cur_Q_large[1,1]) != 0) Q_large = append (Q_large, cur_Q_large);
-		cur_NC_large = removeEmpty (target = cur_NC_large, margin = "cols");
-		if (as.scalar (cur_NC_large[1,1]) != 0) NC_large = append (NC_large, cur_NC_large);
-
-		cur_F_large = removeEmpty (target = cur_F_large, margin = "cols");
-		if (as.scalar (cur_F_large[1,1]) != 0) F_large = append (F_large, cur_F_large);
-		cur_S_large = removeEmpty (target = cur_S_large, margin = "cols");
-		if (as.scalar (cur_S_large[1,1]) != 0) S_large = append (S_large, cur_S_large);	
-			
-		num_cur_nodes_large_pre = 2 * num_cur_nodes_large;
-		if (as.scalar (cur_Q_large[1,1]) == 0) {
-			num_cur_nodes_large = 0;
-		} else {
-			cur_nodes_large = cur_Q_large;
-			num_cur_nodes_large = ncol (cur_Q_large);
-		}	
-	}
-
-	##### PREPARE MODEL FOR SMALL NODES	
-	cur_nodes_small_nonzero = removeEmpty (target = cur_nodes_small, margin = "cols");
-	if (as.scalar (cur_nodes_small_nonzero[1,1]) != 0) { # if SMALL nodes exist
-		num_cur_nodes_small = ncol (cur_nodes_small_nonzero);
-	}
-		
-	if (num_cur_nodes_small > 0) { # SMALL nodes to process		
-		reserve_len = sum (2 ^ (ceil (log (cur_nodes_small_nonzero[2,]) / log (2)))) + num_cur_nodes_small;
-		cur_Q_small =  matrix (0, rows = 2, cols = reserve_len);
-		cur_F_small = matrix (0, rows = 3, cols = reserve_len); 
-		cur_NC_small = matrix (0, rows = 5, cols = reserve_len); 
-		cur_S_small = matrix (0, rows = 1, cols = reserve_len * distinct_values_max); # split values of the best feature	
-	}
-
-	##### LOOP OVER SMALL NODES...
-	parfor (i7 in 1:num_cur_nodes_small, check = 0) { 
-	
-		cur_node_small = as.scalar (cur_nodes_small_nonzero[1,i7]);	
-		cur_tree_small = as.scalar (cur_nodes_small_nonzero[3,i7]);
-		
-		# build dataset for SMALL node
-		Ix = ppred (L[,cur_tree_small], cur_node_small, "==");			
-		if (num_scale_features > 0) {
-			X_scale_ext_small = removeEmpty (target = X_scale_ext, margin = "rows", select = Ix);
-		}
-		if (num_cat_features > 0) {
-			X_cat_small = removeEmpty (target = X_cat, margin = "rows", select = Ix);
-		}
-		
-		L_small = removeEmpty (target = L * Ix, margin = "rows");
-		C_small = removeEmpty (target = C * Ix, margin = "rows");
-		Y_bin_small = removeEmpty (target = Y_bin * Ix, margin = "rows");
-			
-		# compute offset
-		offsets = cumsum (t (2 ^ ceil (log (cur_nodes_small_nonzero[2,]) / log (2))));
-		start_ind_global = 1;
-		if (i7 > 1) {
-			start_ind_global = start_ind_global + as.scalar (offsets[(i7 - 1),]);
-		}
-		start_ind_S_global = 1;
-		if (i7 > 1) {
-			start_ind_S_global = start_ind_S_global + (as.scalar (offsets[(i7 - 1),]) * distinct_values_max);
-		}
-			
-		Q = matrix (0, rows = 2, cols = 1); 
-		Q[1,1] = cur_node_small;
-		Q[2,1] = cur_tree_small;
-		F = matrix (0, rows = 3, cols = 1); 
-		NC = matrix (0, rows = 5, cols = 1); 
-		S = matrix (0, rows = 1, cols = 1); 
-
-		cur_nodes_ = matrix (cur_node_small, rows = 2, cols = 1);
-		cur_nodes_[1,1] = cur_node_small;
-		cur_nodes_[2,1] = cur_tree_small;
-		
-		num_cur_nodes = 1;
-		level_ = level;
-		while (num_cur_nodes > 0 & level_ < depth) {
-			
-			level_ = level_ + 1;
-				
-			cur_Q = matrix (0, rows = 2, cols = 2 * num_cur_nodes);
-			cur_F = matrix (0, rows = 3, cols = num_cur_nodes); 
-			cur_NC = matrix (0, rows = 5, cols = 2 * num_cur_nodes); 
-			cur_S = matrix (0, rows = 1, cols = num_cur_nodes * distinct_values_max);
-		
-			parfor (i8 in 1:num_cur_nodes, check = 0) { 
-			
-				cur_node = as.scalar (cur_nodes_[1,i8]);	
-				cur_tree = as.scalar (cur_nodes_[2,i8]);
-				
-				# select sample features WOR
-				feature_samples = sample (num_features_total, num_feature_samples);
-				feature_samples = order (target = feature_samples, by = 1);
-				num_scale_feature_samples = sum (ppred (feature_samples, num_scale_features, "<="));
-				num_cat_feature_samples = num_feature_samples - num_scale_feature_samples;
-		
-				# --- find best split ---
-				# samples that reach cur_node 
-				Ix = ppred (L_small[,cur_tree], cur_node, "==");		
-				cur_Y_bin = Y_bin_small * (Ix * C_small[,cur_tree]);
-				label_counts_overall = colSums (cur_Y_bin);
-				
-				label_sum_overall = sum (label_counts_overall);
-				label_dist_overall = label_counts_overall / label_sum_overall;
-				if (imp == "entropy") {
-					label_dist_zero = ppred (label_dist_overall, 0, "==");
-					cur_impurity = - sum (label_dist_overall * log (label_dist_overall + label_dist_zero)); # / log (2);
-				} else { # imp == "Gini"
-					cur_impurity = sum (label_dist_overall * (1 - label_dist_overall)); 			
-				}
-				best_scale_gain = 0;
-				best_cat_gain = 0;
-				if (num_scale_features > 0 & num_scale_feature_samples > 0) {
-					
-					scale_feature_samples = feature_samples[1:num_scale_feature_samples,];
-					
-					# main operation	
-					label_counts_left_scale = t (t (cur_Y_bin) %*% X_scale_ext_small); 
-		
-					# compute left and right label distribution
-					label_sum_left = rowSums (label_counts_left_scale);
-					label_dist_left = label_counts_left_scale / label_sum_left;
-					if (imp == "entropy") {
-						label_dist_left = replace (target = label_dist_left, pattern = 0, replacement = 1);
-						log_label_dist_left = log (label_dist_left); # / log (2)
-						impurity_left_scale = - rowSums (label_dist_left * log_label_dist_left); 
-					} else { # imp == "Gini"
-						impurity_left_scale = rowSums (label_dist_left * (1 - label_dist_left)); 
-					}
-					#
-					label_counts_right_scale = - label_counts_left_scale + label_counts_overall; 
-					label_sum_right = rowSums (label_counts_right_scale);
-					label_dist_right = label_counts_right_scale / label_sum_right;
-					if (imp == "entropy") {
-						label_dist_right = replace (target = label_dist_right, pattern = 0, replacement = 1);
-						log_label_dist_right = log (label_dist_right); # log (2)
-						impurity_right_scale = - rowSums (label_dist_right * log_label_dist_right); 		
-					} else { # imp == "Gini"
-						impurity_right_scale = rowSums (label_dist_right * (1 - label_dist_right)); 			
-					}
-					I_gain_scale = cur_impurity - ( ( label_sum_left / label_sum_overall ) * impurity_left_scale + ( label_sum_right / label_sum_overall ) * impurity_right_scale); 
-			
-					I_gain_scale = replace (target = I_gain_scale, pattern = "NaN", replacement = 0);		
-			
-					# determine best feature to split on and the split value
-					feature_start_ind = matrix (0, rows = 1, cols = num_scale_features);
-					feature_start_ind[1,1] = 1;
-					if (num_scale_features > 1) {
-						feature_start_ind[1,2:num_scale_features] = cum_count_thresholds[1,1:(num_scale_features - 1)] + 1;
-					}
-					max_I_gain_found = 0;
-					max_I_gain_found_ind = 0;
-					best_i = 0;			
-						
-					for (i in 1:num_scale_feature_samples) { # assuming feature_samples is 5x1
-						cur_feature_samples_bin = as.scalar (scale_feature_samples[i,]); 
-						cur_start_ind = as.scalar (feature_start_ind[,cur_feature_samples_bin]);
-						cur_end_ind = as.scalar (cum_count_thresholds[,cur_feature_samples_bin]);
-						I_gain_portion = I_gain_scale[cur_start_ind:cur_end_ind,];
-						cur_max_I_gain = max (I_gain_portion);
-						cur_max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain_portion)));
-						if (cur_max_I_gain > max_I_gain_found) {
-							max_I_gain_found = cur_max_I_gain;
-							max_I_gain_found_ind = cur_max_I_gain_ind;
-							best_i = i;
-						}
-					}
-	
-					best_scale_gain = max_I_gain_found;
-					max_I_gain_ind_scale = max_I_gain_found_ind;
-					best_scale_feature = 0;
-					if (best_i > 0) {
-						best_scale_feature = as.scalar (scale_feature_samples[best_i,]);
-					}
-					best_scale_split = max_I_gain_ind_scale;
-					if (best_scale_feature > 1) {
-						best_scale_split = best_scale_split + as.scalar(cum_count_thresholds[,(best_scale_feature - 1)]);
-					}				
-				}
-				
-				if (num_cat_features > 0 & num_cat_feature_samples > 0){
-						
-					cat_feature_samples = feature_samples[(num_scale_feature_samples + 1):(num_scale_feature_samples + num_cat_feature_samples),] - num_scale_features;
-						
-					# initialization
-					split_values_bin = matrix (0, rows = 1, cols = distinct_values_overall); 
-					split_values = split_values_bin; 
-					split_values_offset = matrix (0, rows = 1, cols = num_cat_features); 
-					I_gains = split_values_offset; 
-					impurities_left = split_values_offset;
-					impurities_right = split_values_offset;
-					best_label_counts_left = matrix (0, rows = num_cat_features, cols = num_classes);
-					best_label_counts_right = matrix (0, rows = num_cat_features, cols = num_classes);
-			
-					# main operation
-					label_counts = t (t (cur_Y_bin) %*% X_cat_small);  		
-					
-					parfor (i9 in 1:num_cat_feature_samples, check = 0){
-				
-						cur_cat_feature = as.scalar (cat_feature_samples[i9,1]);
-						start_ind = 1;
-						if (cur_cat_feature > 1) {
-							start_ind = start_ind + as.scalar (distinct_values_offset[(cur_cat_feature - 1),]);
-						}
-						offset = as.scalar (distinct_values[1,cur_cat_feature]);
-				
-						cur_label_counts = label_counts[start_ind:(start_ind + offset - 1),];
-							
-						label_sum = rowSums (cur_label_counts);
-						label_dist = cur_label_counts / label_sum;
-						if (imp == "entropy") {
-							label_dist = replace (target = label_dist, pattern = 0, replacement = 1);
-							log_label_dist = log (label_dist); # / log(2)
-							impurity = - rowSums (label_dist * log_label_dist); 
-							impurity = replace (target = impurity, pattern = "NaN", replacement = 1/0); 
-						} else { # imp == "Gini"
-							impurity = rowSums (label_dist * (1 - label_dist)); 				
-						}
-				
-						# sort cur feature by impurity
-						cur_distinct_values = seq (1, nrow (cur_label_counts));
-						cur_distinct_values_impurity = append (cur_distinct_values, impurity);
-						cur_feature_sorted = order (target = cur_distinct_values_impurity, by = 2, decreasing = FALSE);
-						P = table (cur_distinct_values, cur_feature_sorted); # permutation matrix
-						label_counts_sorted = P %*% cur_label_counts;
-	
-						# compute left and right label distribution			
-						label_counts_left = cumsum (label_counts_sorted);
-			
-						label_sum_left = rowSums (label_counts_left);
-						label_dist_left = label_counts_left / label_sum_left;
-						label_dist_left = replace (target = label_dist_left, pattern = "NaN", replacement = 1);
-						if (imp == "entropy") {
-							label_dist_left = replace (target = label_dist_left, pattern = 0, replacement = 1);
-							log_label_dist_left = log (label_dist_left); # / log(2)
-							impurity_left = - rowSums (label_dist_left * log_label_dist_left);
-						} else { # imp == "Gini"
-							impurity_left = rowSums (label_dist_left * (1 - label_dist_left));					
-						}
-						#
-						label_counts_right = - label_counts_left + label_counts_overall;
-						label_sum_right = rowSums (label_counts_right);
-						label_dist_right = label_counts_right / label_sum_right;
-						label_dist_right = replace (target = label_dist_right, pattern = "NaN", replacement = 1);
-						if (imp == "entropy") {
-							label_dist_right = replace (target = label_dist_right, pattern = 0, replacement = 1);
-							log_label_dist_right = log (label_dist_right); # / log (2)
-							impurity_right = - rowSums (label_dist_right * log_label_dist_right);			
-						} else { # imp == "Gini"
-							impurity_right = rowSums (label_dist_right * (1 - label_dist_right));					
-						}
-						I_gain = cur_impurity - ( ( label_sum_left / label_sum_overall ) * impurity_left + ( label_sum_right / label_sum_overall ) * impurity_right);
-			
-						Ix_label_sum_left_zero = ppred (label_sum_left, 0, "==");
-						Ix_label_sum_right_zero = ppred (label_sum_right, 0, "==");
-						Ix_label_sum_zero = Ix_label_sum_left_zero * Ix_label_sum_right_zero;
-						I_gain = I_gain * (1 - Ix_label_sum_zero);	
-				
-						I_gain[nrow (I_gain),] = 0; # last entry invalid
-			
-						max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain)));
-
-						split_values[1, start_ind:(start_ind + max_I_gain_ind - 1)] = t (cur_feature_sorted[1:max_I_gain_ind,1]);
-						for (i10 in 1:max_I_gain_ind) {
-							ind = as.scalar (cur_feature_sorted[i10,1]);
-							if (ind == 1) {
-								split_values_bin[1,start_ind] = 1.0; 
-							} else {
-								split_values_bin[1,(start_ind + ind - 1)] = 1.0;
-							}
-						}
-						split_values_offset[1,cur_cat_feature] = max_I_gain_ind;
-			
-						I_gains[1,cur_cat_feature] = max (I_gain);
-		
-						impurities_left[1,cur_cat_feature] = as.scalar (impurity_left[max_I_gain_ind,]);
-						impurities_right[1,cur_cat_feature] = as.scalar (impurity_right[max_I_gain_ind,]);
-						best_label_counts_left[cur_cat_feature,] = label_counts_left[max_I_gain_ind,];
-						best_label_counts_right[cur_cat_feature,] = label_counts_right[max_I_gain_ind,];				
-					}
-			
-					# determine best feature to split on and the split values
-					best_cat_feature = as.scalar (rowIndexMax (I_gains));
-					best_cat_gain = max (I_gains);
-					start_ind = 1;
-					if (best_cat_feature > 1) {
-						start_ind = start_ind + as.scalar (distinct_values_offset[(best_cat_feature - 1),]);
-					}
-					offset = as.scalar (distinct_values[1,best_cat_feature]);
-					best_split_values_bin = split_values_bin[1, start_ind:(start_ind + offset - 1)];
-				}
-				
-				# compare best scale feature to best cat. feature and pick the best one
-				if (num_scale_features > 0 & num_scale_feature_samples > 0 & best_scale_gain >= best_cat_gain & best_scale_gain > 0) {
-					
-					# --- update model ---
-					cur_F[1,i8] = best_scale_feature;
-					cur_F[2,i8] = 1;
-					cur_F[3,i8] = 1;		
-					cur_S[1,(i8 - 1) * distinct_values_max + 1] = thresholds[max_I_gain_ind_scale, best_scale_feature]; 
-					
-					left_child = 2 * (cur_node - 1) + 1 + 1;
-					right_child = 2 * (cur_node - 1) + 2 + 1;
-					
-					# samples going to the left subtree
-					Ix_left = X_scale_ext_small[, best_scale_split]; 
-											
-					Ix_left = Ix * Ix_left;		
-					Ix_right = Ix * (1 - Ix_left);
-				
-					L_small[,cur_tree] = L_small[,cur_tree] * (1 - Ix_left) + (Ix_left * left_child);
-					L_small[,cur_tree] = L_small[,cur_tree] * (1 - Ix_right) + (Ix_right * right_child);								
-			
-					left_child_size = sum (Ix_left * C_small[,cur_tree]);
-					right_child_size = sum (Ix_right * C_small[,cur_tree]);
-				
-					# check if left or right child is a leaf
-					left_pure = FALSE;
-					right_pure = FALSE;
-					cur_impurity_left = as.scalar(impurity_left_scale[best_scale_split,]); 
-					cur_impurity_right = as.scalar(impurity_right_scale[best_scale_split,]); 
-					if ( (left_child_size <= num_leaf | cur_impurity_left == 0 | level_ == depth) & 
-					   (right_child_size <= num_leaf | cur_impurity_right == 0 | level_ == depth) ) { # both left and right nodes are leaf	
-						
-						cur_label_counts_left = label_counts_left_scale[best_scale_split,]; 
-						cur_NC[1,(2 * (i8 - 1) + 1)] = left_child; 
-						cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;
-						cur_NC[3,(2 * (i8 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label
-						left_pure = TRUE;	
-						# compute number of misclassified points 
-						cur_NC[4,(2 * (i8 - 1) + 1)] = left_child_size - max (cur_label_counts_left); 
-				
-						cur_label_counts_right = label_counts_overall - cur_label_counts_left;
-						cur_NC[1,(2 * i8)] = right_child; 
-						cur_NC[2,(2 * i8)] = cur_tree;	
-						cur_NC[3,(2 * i8)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
-						right_pure = TRUE;	
-						# compute number of misclassified points 
-						cur_NC[4,(2 * i8)] = right_child_size - max (cur_label_counts_right);					
-						
-					} else if (left_child_size <= num_leaf | cur_impurity_left == 0 | level_ == depth) {
-						
-						cur_label_counts_left = label_counts_left_scale[best_scale_split,]; 
-						cur_NC[1,(2 * (i8 - 1) + 1)] = left_child;
-						cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;						
-						cur_NC[3,(2 * (i8 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label				
-						left_pure = TRUE;	
-						# compute number of misclassified points 
-						cur_NC[4,(2 * (i8 - 1) + 1)] = left_child_size - max (cur_label_counts_left); 
-						
-					} else if (right_child_size <= num_leaf | cur_impurity_right == 0 | level_ == depth) {
-						
-						cur_label_counts_right = label_counts_right_scale[best_scale_split,]; 
-						cur_NC[1,(2 * i8)] = right_child;
-						cur_NC[2,(2 * i8)] = cur_tree;							
-						cur_NC[3,(2 * i8)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
-						right_pure = TRUE;
-						# compute number of misclassified points 
-						cur_NC[4,(2 * i8)] = right_child_size - max (cur_label_counts_right);						
-						
-					}									
-														
-				} else if (num_cat_features > 0 & num_cat_feature_samples > 0 & best_cat_gain > 0) {
-					
-					# --- update model ---
-					cur_F[1,i8] = best_cat_feature;
-					cur_F[2,i8] = 2;
-					offset_nonzero = as.scalar (split_values_offset[1,best_cat_feature]);
-					S_start_ind = (i8 - 1) * distinct_values_max + 1;
-					cur_F[3,i8] = offset_nonzero;
-					cur_S[1,S_start_ind:(S_start_ind + offset_nonzero - 1)] = split_values[1,start_ind:(start_ind + offset_nonzero - 1)];	
-		
-					left_child = 2 * (cur_node - 1) + 1 + 1;
-					right_child = 2 * (cur_node - 1) + 2 + 1;
-					
-					# samples going to the left subtree
-					Ix_left = rowSums (X_cat_small[,start_ind:(start_ind + offset - 1)] * best_split_values_bin);
-					Ix_left = ppred (Ix_left, 1, ">=");
-											  
-					Ix_left = Ix * Ix_left;		
-					Ix_right = Ix * (1 - Ix_left);
-			
-					L_small[,cur_tree] = L_small[,cur_tree] * (1 - Ix_left) + (Ix_left * left_child);
-					L_small[,cur_tree] = L_small[,cur_tree] * (1 - Ix_right) + (Ix_right * right_child);								
-			
-					left_child_size = sum (Ix_left * C_small[,cur_tree]);
-					right_child_size = sum (Ix_right * C_small[,cur_tree]);
-		
-					# check if left or right child is a leaf
-					left_pure = FALSE;
-					right_pure = FALSE;
-					cur_impurity_left = as.scalar(impurities_left[,best_cat_feature]); 
-					cur_impurity_right = as.scalar(impurities_right[,best_cat_feature]); 
-					if ( (left_child_size <= num_leaf | cur_impurity_left == 0 | level_ == depth) & 
-					   (right_child_size <= num_leaf | cur_impurity_right == 0 | level_ == depth) ) { # both left and right nodes are leaf	
-						
-						cur_label_counts_left = best_label_counts_left[best_cat_feature,];
-						cur_NC[1,(2 * (i8 - 1) + 1)] = left_child;
-						cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;						
-						cur_NC[3,(2 * (i8 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label
-						left_pure = TRUE;
-						# compute number of misclassified points 
-						cur_NC[4,(2 * (i8 - 1) + 1)] = left_child_size - max (cur_label_counts_left); 
-						
-						cur_label_counts_right = label_counts_overall - cur_label_counts_left;
-						cur_NC[1,(2 * i8)] = right_child;
-						cur_NC[2,(2 * i8)] = cur_tree;						
-						cur_NC[3,(2 * i8)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
-						right_pure = TRUE;
-						# compute number of misclassified points 
-						cur_NC[4,(2 * i8)] = right_child_size - max (cur_label_counts_right);
-						
-					} else if (left_child_size <= num_leaf | cur_impurity_left == 0 | level_ == depth) {	
-					
-						cur_label_counts_left = best_label_counts_left[best_cat_feature,];
-						cur_NC[1,(2 * (i8 - 1) + 1)] = left_child; 
-						cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;
-						cur_NC[3,(2 * (i8 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label				
-						left_pure = TRUE;
-						# compute number of misclassified points 
-						cur_NC[4,(2 * (i8 - 1) + 1)] = left_child_size - max (cur_label_counts_left);
-						
-					} else if (right_child_size <= num_leaf | cur_impurity_right == 0 | level_ == depth) {
-						cur_label_counts_right = best_label_counts_right[best_cat_feature,];
-						cur_NC[1,(2 * i8)] = right_child; 
-						cur_NC[2,(2 * i8)] = cur_tree;
-						cur_NC[3,(2 * i8)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
-						right_pure = TRUE;
-						# compute number of misclassified points 
-						cur_NC[4,(2 * i8)] = right_child_size - max (cur_label_counts_right);
-						
-					}		
-				} else {
-							
-					print ("NUMBER OF SAMPLES AT NODE " + cur_node + " in tree " + cur_tree + " CANNOT BE REDUCED TO MATCH " + num_leaf + ". THIS NODE IS DECLARED AS LEAF!");							
-					right_pure = TRUE;
-					left_pure = TRUE;
-					cur_NC[1,(2 * (i8 - 1) + 1)] = cur_node;
-					cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;
-					class_label = as.scalar (rowIndexMax (label_counts_overall));
-					cur_NC[3,(2 * (i8 - 1) + 1)] = class_label;
-					cur_NC[4,(2 * (i8 - 1) + 1)] = label_sum_overall - max (label_counts_overall);
-					cur_NC[5,(2 * (i8 - 1) + 1)] = 1; # special leaf
-					
-				}
-			
-				# add nodes to Q
-				if (!left_pure) {
-					cur_Q[1,(2 * (i8 - 1)+ 1)] = left_child; 
-					cur_Q[2,(2 * (i8 - 1)+ 1)] = cur_tree; 
-				}
-				if (!right_pure) {
-					cur_Q[1,(2 * i8)] = right_child;
-					cur_Q[2,(2 * i8)] = cur_tree;				
-				}
-			}
-		
-			cur_Q = removeEmpty (target = cur_Q, margin = "cols"); 
-			Q = append (Q, cur_Q);
-			NC = append (NC, cur_NC);
-			F = append (F, cur_F);
-			S = append (S, cur_S);
-		
-			num_cur_nodes_pre = 2 * num_cur_nodes;
-			if (as.scalar (cur_Q[1,1]) == 0) {
-				num_cur_nodes = 0;
-			} else {
-				cur_nodes_ = cur_Q;
-				num_cur_nodes = ncol (cur_Q);
-			}
-		}
-		
-		cur_Q_small[,start_ind_global:(start_ind_global + ncol (Q) - 1)] = Q;
-		cur_NC_small[,start_ind_global:(start_ind_global + ncol (NC) - 1)] = NC;
-		cur_F_small[,start_ind_global:(start_ind_global + ncol (F) - 1)] = F;	
-		cur_S_small[,start_ind_S_global:(start_ind_S_global + ncol (S) - 1)] = S; 
-	}
-
-	##### PREPARE MODEL FOR SMALL NODES	
-	if (num_cur_nodes_small > 0) {	# small nodes already processed
-		cur_Q_small = removeEmpty (target = cur_Q_small, margin = "cols");
-		if (as.scalar (cur_Q_small[1,1]) != 0) Q_small = append (Q_small, cur_Q_small);
-		cur_NC_small = removeEmpty (target = cur_NC_small, margin = "cols");
-		if (as.scalar (cur_NC_small[1,1]) != 0) NC_small = append (NC_small, cur_NC_small);
-	
-		cur_F_small = removeEmpty (target = cur_F_small, margin = "cols"); # 
-		if (as.scalar (cur_F_small[1,1]) != 0) F_small = append (F_small, cur_F_small);
-		cur_S_small = removeEmpty (target = cur_S_small, margin = "cols"); #		
-		if (as.scalar (cur_S_small[1,1]) != 0) S_small = append (S_small, cur_S_small); 
-		
-		num_cur_nodes_small = 0; # reset
-	} 
-		
-	print (" --- end level " + level + ", remaining no. of LARGE nodes to expand " + num_cur_nodes_large + " --- ");
-}
-
-#### prepare model
-print ("PREPARING MODEL...")
-### large nodes
-if (as.scalar (Q_large[1,1]) == 0 & ncol (Q_large) > 1) {
-	Q_large = Q_large[,2:ncol (Q_large)];
-}
-if (as.scalar (NC_large[1,1]) == 0 & ncol (NC_large) > 1) {
-	NC_large = NC_large[,2:ncol (NC_large)];
-}
-if (as.scalar (S_large[1,1]) == 0 & ncol (S_large) > 1) {
-	S_large = S_large[,2:ncol (S_large)];
-}
-if (as.scalar (F_large[1,1]) == 0 & ncol (F_large) > 1) {
-	F_large = F_large[,2:ncol (F_large)];
-}
-### small nodes
-if (as.scalar (Q_small[1,1]) == 0 & ncol (Q_small) > 1) {
-	Q_small = Q_small[,2:ncol (Q_small)];
-}
-if (as.scalar (NC_small[1,1]) == 0 & ncol (NC_small) > 1) {
-	NC_small = NC_small[,2:ncol (NC_small)];
-}
-if (as.scalar (S_small[1,1]) == 0 & ncol (S_small) > 1) {
-	S_small = S_small[,2:ncol (S_small)];
-}
-if (as.scalar (F_small[1,1]) == 0 & ncol (F_small) > 1) {
-	F_small = F_small[,2:ncol (F_small)];
-}
-
-# check for special leaves and if there are any remove them from Q_large and Q_small 
-special_large_leaves_ind = NC_large[5,];
-num_special_large_leaf = sum (special_large_leaves_ind);
-if (num_special_large_leaf > 0) {
-	print ("PROCESSING " + num_special_large_leaf + " SPECIAL LARGE LEAVES...");
-	special_large_leaves = removeEmpty (target = NC_large[1:2,] * special_large_leaves_ind, margin = "cols");
-	large_internal_ind = 1 - colSums (outer (t (special_large_leaves[1,]), Q_large[1,], "==") * outer (t (special_large_leaves[2,]), Q_large[2,], "=="));
-	Q_large = removeEmpty (target = Q_large * large_internal_ind, margin = "cols");
-	F_large = removeEmpty (target = F_large, margin = "cols"); # remove special leaves from F
-}
-
-special_small_leaves_ind = NC_small[5,];
-num_special_small_leaf = sum (special_small_leaves_ind);
-if (num_special_small_leaf > 0) {
-	print ("PROCESSING " + num_special_small_leaf + " SPECIAL SMALL LEAVES...");
-	special_small_leaves = removeEmpty (target = NC_small[1:2,] * special_small_leaves_ind, margin = "cols");
-	small_internal_ind = 1 - colSums (outer (t (special_small_leaves[1,]), Q_small[1,], "==") * outer (t (special_small_leaves[2,]), Q_small[2,], "=="));
-	Q_small = removeEmpty (target = Q_small * small_internal_ind, margin = "cols");
-	F_small = removeEmpty (target = F_small, margin = "cols"); # remove special leaves from F
-}
-
-# model corresponding to large internal nodes
-no_large_internal_node = FALSE;
-if (as.scalar (Q_large[1,1]) != 0) {
-	print ("PROCESSING LARGE INTERNAL NODES...");
-	num_large_internal = ncol (Q_large);
-	max_offset = max (max (F_large[3,]), max (F_small[3,]));
-	M1_large = matrix (0, rows = 6 + max_offset, cols = num_large_internal);
-	M1_large[1:2,] = Q_large;
-	M1_large[4:6,] = F_large;
-	# process S_large
-	cum_offsets_large = cumsum (t (F_large[3,]));
-	parfor (it in 1:num_large_internal, check = 0) {
-		start_ind = 1;
-		if (it > 1) {
-			start_ind = start_ind + as.scalar (cum_offsets_large[(it - 1),]);
-		}
-		offset = as.scalar (F_large[3,it]);
-		M1_large[7:(7 + offset - 1),it] = t (S_large[1,start_ind:(start_ind + offset - 1)]); 
-	}	
-} else {
-	print ("No LARGE internal nodes available");
-	no_large_internal_node = TRUE;
-}
-
-# model corresponding to small internal nodes
-no_small_internal_node = FALSE;
-if (as.scalar (Q_small[1,1]) != 0) {
-	print ("PROCESSING SMALL INTERNAL NODES...");
-	num_small_internal = ncol (Q_small);
-	M1_small = matrix (0, rows = 6 + max_offset, cols = num_small_internal);
-	M1_small[1:2,] = Q_small;
-	M1_small[4:6,] = F_small;
-	# process S_small
-	cum_offsets_small = cumsum (t (F_small[3,]));
-	parfor (it in 1:num_small_internal, check = 0) {
-		start_ind = 1;
-		if (it > 1) {
-			start_ind = start_ind + as.scalar (cum_offsets_small[(it - 1),]);
-		}
-		offset = as.scalar (F_small[3,it]);
-		M1_small[7:(7 + offset - 1),it] = t (S_small[1,start_ind:(start_ind + offset - 1)]); 
-	}
-} else {
-	print ("No SMALL internal nodes available");	
-	no_small_internal_node = TRUE;
-}
-
-# model corresponding to large leaf nodes
-no_large_leaf_node = FALSE;
-if (as.scalar (NC_large[1,1]) != 0) {
-	print ("PROCESSING LARGE LEAF NODES...");
-	num_large_leaf = ncol (NC_large);
-	M2_large = matrix (0, rows = 6 + max_offset, cols = num_large_leaf);
-	M2_large[1:2,] = NC_large[1:2,];
-	M2_large[5:7,] = NC_large[3:5,];
-} else {
-	print ("No LARGE leaf nodes available");
-	no_large_leaf_node = TRUE;
-}
-
-# model corresponding to small leaf nodes
-no_small_leaf_node = FALSE;
-if (as.scalar (NC_small[1,1]) != 0) {
-	print ("PROCESSING SMALL LEAF NODES...");
-	num_small_leaf = ncol (NC_small);
-	M2_small = matrix (0, rows = 6 + max_offset, cols = num_small_leaf);
-	M2_small[1:2,] = NC_small[1:2,];
-	M2_small[5:7,] = NC_small[3:5,];
-} else {
-	print ("No SMALL leaf nodes available");
-	no_small_leaf_node = TRUE;
-}
-
-if (no_large_internal_node) {
-	M1 = M1_small;
-} else if (no_small_internal_node) {
-	M1 = M1_large;
-} else {
-	M1 = append (M1_large, M1_small);
-}
-
-if (no_large_leaf_node) {
-	M2 = M2_small;
-} else if (no_small_leaf_node) {
-	M2 = M2_large;
-} else {
-	M2 = append (M2_large, M2_small);
-}
-
-M = append (M1, M2);
-M = t (order (target = t (M), by = 1)); # sort by node id
-M = t (order (target = t (M), by = 2)); # sort by tree id
-
-
-# removing redundant subtrees
-if (ncol (M) > 1) {
-	print ("CHECKING FOR REDUNDANT SUBTREES...");
-	red_leaf = TRUE;
-	process_red_subtree = FALSE;
-	invalid_node_ind = matrix (0, rows = 1, cols = ncol (M));
-	while (red_leaf & ncol (M) > 1) {
-		leaf_ind = ppred (M[4,], 0, "==");
-		labels = M[5,] * leaf_ind;
-		tree_ids = M[2,];
-		parent_ids = floor (M[1,] /2);
-		cond1 = ppred (labels[,1:(ncol (M) - 1)], labels[,2:ncol (M)], "=="); # siebling leaves with same label
-		cond2 = ppred (parent_ids[,1:(ncol (M) - 1)], parent_ids[,2:ncol (M)], "=="); # same parents
-		cond3 = ppred (tree_ids[,1:(ncol (M) - 1)], tree_ids[,2:ncol (M)], "=="); # same tree
-		red_leaf_ind =  cond1 * cond2 * cond3 * leaf_ind[,2:ncol (M)];	
-		
-		if (sum (red_leaf_ind) > 0) { # if redundant subtrees exist
-			red_leaf_ids = M[1:2,2:ncol (M)] * red_leaf_ind;
-			red_leaf_ids_nonzero = removeEmpty (target = red_leaf_ids, margin = "cols");
-			parfor (it in 1:ncol (red_leaf_ids_nonzero), check = 0){
-				cur_right_leaf_id = as.scalar (red_leaf_ids_nonzero[1,it]); 
-				cur_parent_id = floor (cur_right_leaf_id / 2);
-				cur_tree_id = as.scalar (red_leaf_ids_nonzero[2,it]); 
-				cur_right_leaf_pos = as.scalar (rowIndexMax (ppred (M[1,], cur_right_leaf_id, "==") * ppred (M[2,], cur_tree_id, "==")));
-				cur_parent_pos = as.scalar(rowIndexMax (ppred (M[1,], cur_parent_id, "==") * ppred (M[2,], cur_tree_id, "==")));
-				M[3:nrow (M), cur_parent_pos] = M[3:nrow (M), cur_right_leaf_pos];
-				M[4,cur_right_leaf_pos] = -1;
-				M[4,cur_right_leaf_pos - 1] = -1;
-				invalid_node_ind[1,cur_right_leaf_pos] = 1;
-				invalid_node_ind[1,cur_right_leaf_pos - 1] = 1;				
-			}
-			process_red_subtree = TRUE;
-		} else {
-			red_leaf = FALSE;
-		}
-	}
-	
-	if (process_red_subtree) {
-		print ("REMOVING REDUNDANT SUBTREES...");
-		valid_node_ind = ppred (invalid_node_ind, 0, "==");
-		M = removeEmpty (target = M * valid_node_ind, margin = "cols");
-	}
-}
-
-internal_ind = ppred (M[4,], 0, ">");
-internal_ids = M[1:2,] * internal_ind; 
-internal_ids_nonzero = removeEmpty (target = internal_ids, margin = "cols");
-if (as.scalar (internal_ids_nonzero[1,1]) > 0) { # if internal nodes exist 
-    a1 = internal_ids_nonzero[1,];
-    a2 = internal_ids_nonzero[1,] * 2;
-    vcur_tree_id = internal_ids_nonzero[2,];
-    pos_a1 = rowIndexMax( outer(t(a1), M[1,], "==") * outer(t(vcur_tree_id), M[2,], "==") );
-    pos_a2 = rowIndexMax( outer(t(a2), M[1,], "==") * outer(t(vcur_tree_id), M[2,], "==") );
-    M[3,] = t(table(pos_a1, 1, pos_a2 - pos_a1, ncol(M), 1));
-} 
-else {
-    print ("All trees in the random forest contain only one leaf!");
-}
-
-if (fileC != " ") {
-	write (C, fileC, format = fmtO);
-}
-write (M, fileM, format = fmtO);
+#-------------------------------------------------------------
+#
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+# 
+#   http://www.apache.org/licenses/LICENSE-2.0
+# 
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License.
+#
+#-------------------------------------------------------------
+
+#  
+# THIS SCRIPT IMPLEMENTS CLASSIFICATION RANDOM FOREST WITH BOTH SCALE AND CATEGORICAL FEATURES
+#
+# INPUT         		PARAMETERS:
+# ---------------------------------------------------------------------------------------------
+# NAME          		TYPE     DEFAULT      MEANING
+# ---------------------------------------------------------------------------------------------
+# X             		String   ---          Location to read feature matrix X; note that X needs to be both recoded and dummy coded 
+# Y 					String   ---		  Location to read label matrix Y; note that Y needs to be both recoded and dummy coded
+# R   	  				String   " "	      Location to read the matrix R which for each feature in X contains the following information 
+#												- R[,1]: column ids
+#												- R[,2]: start indices 
+#												- R[,3]: end indices
+#											  If R is not provided by default all variables are assumed to be scale
+# bins          		Int 	 20			  Number of equiheight bins per scale feature to choose thresholds
+# depth         		Int 	 25			  Maximum depth of the learned tree
+# num_leaf      		Int      10           Number of samples when splitting stops and a leaf node is added
+# num_samples   		Int 	 3000		  Number of samples at which point we switch to in-memory subtree building
+# num_trees     		Int 	 10			  Number of trees to be learned in the random forest model
+# subsamp_rate  		Double   1.0		  Parameter controlling the size of each tree in the forest; samples are selected from a 
+#											  Poisson distribution with parameter subsamp_rate (the default value is 1.0)
+# feature_subset    	Double   0.5    	  Parameter that controls the number of feature used as candidates for splitting at each tree node 
+#											  as a power of number of features in the dataset;
+#											  by default square root of features (i.e., feature_subset = 0.5) are used at each tree node 
+# impurity      		String   "Gini"    	  Impurity measure: entropy or Gini (the default)
+# M             		String 	 ---	   	  Location to write matrix M containing the learned tree
+# C 					String   " "		  Location to write matrix C containing the number of times samples are chosen in each tree of the random forest 
+# S_map					String   " "		  Location to write the mappings from scale feature ids to global feature ids
+# C_map					String   " "		  Location to write the mappings from categorical feature ids to global feature ids
+# fmt     	    		String   "text"       The output format of the model (matrix M), such as "text" or "csv"
+# ---------------------------------------------------------------------------------------------
+# OUTPUT: 
+# Matrix M where each column corresponds to a node in the learned tree and each row contains the following information:
+#	 M[1,j]: id of node j (in a complete binary tree)
+#	 M[2,j]: tree id to which node j belongs
+#	 M[3,j]: Offset (no. of columns) to left child of j 
+#	 M[4,j]: Feature index of the feature that node j looks at if j is an internal node, otherwise 0
+#	 M[5,j]: Type of the feature that node j looks at if j is an internal node: 1 for scale and 2 for categorical features, 
+#		     otherwise the label that leaf node j is supposed to predict
+#	 M[6,j]: 1 if j is an internal node and the feature chosen for j is scale, otherwise the size of the subset of values 
+#			 stored in rows 7,8,... if j is categorical
+#	 M[7:,j]: Only applicable for internal nodes. Threshold the example's feature value is compared to is stored at M[7,j] if the feature chosen for j is scale;
+# 			  If the feature chosen for j is categorical rows 7,8,... depict the value subset chosen for j   
+# -------------------------------------------------------------------------------------------
+# HOW TO INVOKE THIS SCRIPT - EXAMPLE:
+# hadoop jar SystemML.jar -f random-forest.dml -nvargs X=INPUT_DIR/X Y=INPUT_DIR/Y R=INPUT_DIR/R M=OUTPUT_DIR/model
+#     				                 				   bins=20 depth=25 num_leaf=10 num_samples=3000 num_trees=10 impurity=Gini fmt=csv
+
+
+# External function for binning
+binning = externalFunction(Matrix[Double] A, Integer binsize, Integer numbins) return (Matrix[Double] B, Integer numbinsdef) 
+	implemented in (classname="org.apache.sysml.udf.lib.BinningWrapper",exectype="mem")
+
+	
+# Default values of some parameters	
+fileR = ifdef ($R, " ");
+fileC = ifdef ($C, " ");
+fileS_map = ifdef ($S_map, " ");
+fileC_map = ifdef ($C_map, " ");
+fileM = $M;	
+num_bins = ifdef($bins, 20); 
+depth = ifdef($depth, 25);
+num_leaf = ifdef($num_leaf, 10);
+num_trees = ifdef($num_trees, 1); 
+threshold = ifdef ($num_samples, 3000);
+imp = ifdef($impurity, "Gini");
+rate = ifdef ($subsamp_rate, 1);
+fpow = ifdef ($feature_subset, 0.5);
+fmtO = ifdef($fmt, "text");
+
+X = read($X);
+Y_bin = read($Y);
+num_records = nrow (X);
+num_classes = ncol (Y_bin);
+
+# check if there is only one class label
+Y_bin_sum = sum (ppred (colSums (Y_bin), num_records, "=="));
+if (Y_bin_sum == 1) {
+	stop ("Y contains only one class label. No model will be learned!");
+} else if (Y_bin_sum > 1) {
+	stop ("Y is not properly dummy coded. Multiple columns of Y contain only ones!")
+}
+
+# split data into X_scale and X_cat
+if (fileR != " ") {
+	R = read (fileR);
+	R = order (target = R, by = 2); # sort by start indices
+	dummy_coded = ppred (R[,2], R[,3], "!=");
+	R_scale = removeEmpty (target = R[,2:3] * (1 - dummy_coded), margin = "rows");
+	R_cat = removeEmpty (target = R[,2:3] * dummy_coded, margin = "rows");
+	if (fileS_map != " ") {
+		scale_feature_mapping = removeEmpty (target = (1 - dummy_coded) * seq (1, nrow (R)), margin = "rows");
+		write (scale_feature_mapping, fileS_map, format = fmtO);
+	}
+	if (fileC_map != " ") {
+		cat_feature_mapping = removeEmpty (target = dummy_coded * seq (1, nrow (R)), margin = "rows");	
+		write (cat_feature_mapping, fileC_map, format = fmtO);		
+	}
+	sum_dummy = sum (dummy_coded);	
+	if (sum_dummy == nrow (R)) { # all features categorical
+		print ("All features categorical");
+		num_cat_features = nrow (R_cat);
+		num_scale_features = 0;
+		X_cat = X;	
+		distinct_values = t (R_cat[,2] - R_cat[,1] + 1);
+		distinct_values_max = max (distinct_values);
+		distinct_values_offset = cumsum (t (distinct_values));
+		distinct_values_overall = sum (distinct_values);
+	} else if (sum_dummy == 0) { # all features scale
+		print ("All features scale");
+		num_scale_features = ncol (X);
+		num_cat_features = 0;
+		X_scale = X;
+		distinct_values_max = 1;
+	} else { # some features scale some features categorical 
+		num_cat_features = nrow (R_cat);
+		num_scale_features = nrow (R_scale);
+		distinct_values = t (R_cat[,2] - R_cat[,1] + 1);
+		distinct_values_max = max (distinct_values);
+		distinct_values_offset = cumsum (t (distinct_values));
+		distinct_values_overall = sum (distinct_values);
+		
+		W = matrix (1, rows = num_cat_features, cols = 1) %*% matrix ("1 -1", rows = 1, cols = 2);
+		W = matrix (W, rows = 2 * num_cat_features, cols = 1);
+		if (as.scalar (R_cat[num_cat_features, 2]) == ncol (X)) {
+			W[2 * num_cat_features,] = 0;
+		}
+		
+		last = ppred (R_cat[,2], ncol (X), "!=");
+		R_cat1 = (R_cat[,2] + 1) * last;
+		R_cat[,2] = (R_cat[,2] * (1 - last)) + R_cat1;
+		R_cat_vec = matrix (R_cat, rows = 2 * num_cat_features, cols = 1);	
+
+		col_tab = table (R_cat_vec, 1, W, ncol (X), 1);
+		col_ind = cumsum (col_tab);
+		
+		col_ind_cat = removeEmpty (target = col_ind * seq (1, ncol (X)), margin = "rows");
+		col_ind_scale = removeEmpty (target = (1 - col_ind) * seq (1, ncol (X)), margin = "rows");	
+		X_cat = X %*% table (col_ind_cat, seq (1, nrow (col_ind_cat)), ncol (X), nrow (col_ind_cat));
+		X_scale = X %*% table (col_ind_scale, seq (1, nrow (col_ind_scale)), ncol (X), nrow (col_ind_scale));		
+	}	
+} else { # only scale features exist
+	print ("All features scale");
+	num_scale_features = ncol (X);
+	num_cat_features = 0;
+	X_scale = X;
+	distinct_values_max = 1;
+}	
+
+if (num_scale_features > 0) {
+
+	print ("COMPUTING BINNING...");
+	bin_size = max (as.integer (num_records / num_bins), 1);
+	count_thresholds = matrix (0, rows = 1, cols = num_scale_features)
+	thresholds = matrix (0, rows = num_bins + 1, cols = num_scale_features)
+	parfor(i1 in 1:num_scale_features) { 
+		col = order (target = X_scale[,i1], by = 1, decreasing = FALSE);
+		[col_bins, num_bins_defined] = binning (col, bin_size, num_bins);
+		count_thresholds[,i1] = num_bins_defined;
+		thresholds[,i1] = col_bins;	
+	}
+	
+	print ("PREPROCESSING SCALE FEATURE MATRIX...");
+	min_num_bins = min (count_thresholds);
+	max_num_bins = max (count_thresholds);
+	total_num_bins = sum (count_thresholds);
+	cum_count_thresholds = t (cumsum (t (count_thresholds)));
+	X_scale_ext = matrix (0, rows = num_records, cols = total_num_bins);
+	parfor (i2 in 1:num_scale_features, check = 0) { 
+		Xi2 = X_scale[,i2];
+		count_threshold = as.scalar (count_thresholds[,i2]);
+		offset_feature = 1;
+		if (i2 > 1) {
+			offset_feature = offset_feature + as.integer (as.scalar (cum_count_thresholds[, (i2 - 1)]));
+		}
+
+		ti2 = t(thresholds[1:count_threshold, i2]);
+		X_scale_ext[,offset_feature:(offset_feature + count_threshold - 1)] = outer (Xi2, ti2, "<");
+	}
+}
+
+num_features_total = num_scale_features + num_cat_features;
+num_feature_samples = as.integer (floor (num_features_total ^ fpow));
+
+##### INITIALIZATION
+L = matrix (1, rows = num_records, cols = num_trees); # last visited node id for each training sample
+
+# create matrix of counts (generated by Poisson distribution) storing how many times each sample appears in each tree
+print ("CONPUTING COUNTS...");
+C = rand (rows = num_records, cols = num_trees, pdf = "poisson", lambda = rate);
+Ix_nonzero = ppred (C, 0, "!=");
+L = L * Ix_nonzero;
+total_counts = sum (C);
+
+
+# model
+# LARGE leaf nodes
+# NC_large[,1]: node id
+# NC_large[,2]: tree id
+# NC_large[,3]: class label
+# NC_large[,4]: no. of misclassified samples 
+# NC_large[,5]: 1 if special leaf (impure and 3 samples at that leaf > threshold) or 0 otherwise 
+NC_large = matrix (0, rows = 5, cols = 1); 
+
+# SMALL leaf nodes 
+# same schema as for LARGE leaf nodes (to be initialized)
+NC_small = matrix (0, rows = 5, cols = 1); 
+
+# LARGE internal nodes
+# Q_large[,1]: node id
+# Q_large[,2]: tree id
+Q_large = matrix (0, rows = 2, cols = num_trees); 
+Q_large[1,] = matrix (1, rows = 1, cols = num_trees);
+Q_large[2,] = t (seq (1, num_trees));
+
+# SMALL internal nodes
+# same schema as for LARGE internal nodes (to be initialized)
+Q_small = matrix (0, rows = 2, cols = 1); 
+
+# F_large[,1]: feature
+# F_large[,2]: type
+# F_large[,3]: offset 
+F_large = matrix (0, rows = 3, cols = 1);
+
+# same schema as for LARGE nodes
+F_small = matrix (0, rows = 3, cols = 1); 
+
+# split points for LARGE internal nodes
+S_large = matrix (0, rows = 1, cols = 1);
+
+# split points for SMALL internal nodes 
+S_small = matrix (0, rows = 1, cols = 1); 
+
+# initialize queue
+cur_nodes_large = matrix (1, rows = 2, cols = num_trees);
+cur_nodes_large[2,] = t (seq (1, num_trees));
+
+num_cur_nodes_large = num_trees;
+num_cur_nodes_small = 0;
+level = 0;
+
+while ((num_cur_nodes_large + num_cur_nodes_small) > 0 & level < depth) {
+	
+	level = level + 1;
+	print (" --- start level " + level + " --- ");
+	
+	##### PREPARE MODEL
+	if (num_cur_nodes_large > 0) { # LARGE nodes to process
+		cur_Q_large = matrix (0, rows = 2, cols = 2 * num_cur_nodes_large);
+		cur_NC_large = matrix (0, rows = 5, cols = 2 * num_cur_nodes_large); 
+		cur_F_large = matrix (0, rows = 3, cols = num_cur_nodes_large); 
+		cur_S_large = matrix (0, rows = 1, cols = num_cur_nodes_large * distinct_values_max); 
+		cur_nodes_small = matrix (0, rows = 3, cols = 2 * num_cur_nodes_large); 
+	}
+
+	##### LOOP OVER LARGE NODES...
+	parfor (i6 in 1:num_cur_nodes_large, check = 0) { 
+	
+		cur_node = as.scalar (cur_nodes_large[1,i6]);
+		cur_tree = as.scalar (cur_nodes_large[2,i6]);
+			
+		# select sample features WOR
+		feature_samples = sample (num_features_total, num_feature_samples);
+		feature_samples = order (target = feature_samples, by = 1);
+		num_scale_feature_samples = sum (ppred (feature_samples, num_scale_features, "<="));
+		num_cat_feature_samples = num_feature_samples - num_scale_feature_samples;
+		
+		# --- find best split ---
+		# samples that reach cur_node 
+		Ix = ppred (L[,cur_tree], cur_node, "==");		
+		
+		cur_Y_bin = Y_bin * (Ix * C[,cur_tree]);
+		label_counts_overall = colSums (cur_Y_bin);
+		label_sum_overall = sum (label_counts_overall);
+		label_dist_overall = label_counts_overall / label_sum_overall;
+
+		if (imp == "entropy") {
+			label_dist_zero = ppred (label_dist_overall, 0, "==");
+			cur_impurity = - sum (label_dist_overall * log (label_dist_overall + label_dist_zero)); # / log (2); # impurity before
+		} else { # imp == "Gini"
+			cur_impurity = sum (label_dist_overall * (1 - label_dist_overall)); # impurity before
+		}
+		best_scale_gain = 0;
+		best_cat_gain = 0;
+		if (num_scale_features > 0 & num_scale_feature_samples > 0) {
+			
+			scale_feature_samples = feature_samples[1:num_scale_feature_samples,];
+			
+			# main operation	
+			label_counts_left_scale = t (t (cur_Y_bin) %*% X_scale_ext); 
+		
+			# compute left and right label distribution
+			label_sum_left = rowSums (label_counts_left_scale);
+			label_dist_left = label_counts_left_scale / label_sum_left;
+			if (imp == "entropy") {
+				label_dist_left = replace (target = label_dist_left, pattern = 0, replacement = 1);
+				log_label_dist_left = log (label_dist_left); # / log (2)
+				impurity_left_scale = - rowSums (label_dist_left * log_label_dist_left); 
+			} else { # imp == "Gini"
+				impurity_left_scale = rowSums (label_dist_left * (1 - label_dist_left)); 
+			}
+			#
+			label_counts_right_scale = - label_counts_left_scale + label_counts_overall; 
+			label_sum_right = rowSums (label_counts_right_scale);
+			label_dist_right = label_counts_right_scale / label_sum_right;
+			if (imp == "entropy") {
+				label_dist_right = replace (target = label_dist_right, pattern = 0, replacement = 1);
+				log_label_dist_right = log (label_dist_right); # / log (2)
+				impurity_right_scale = - rowSums (label_dist_right * log_label_dist_right); 		
+			} else { # imp == "Gini"
+				impurity_right_scale = rowSums (label_dist_right * (1 - label_dist_right)); 
+			}
+			
+			I_gain_scale = cur_impurity - ( ( label_sum_left / label_sum_overall ) * impurity_left_scale + ( label_sum_right / label_sum_overall ) * impurity_right_scale); 
+		
+			I_gain_scale = replace (target = I_gain_scale, pattern = "NaN", replacement = 0);	
+			
+			# determine best feature to split on and the split value
+			feature_start_ind = matrix (0, rows = 1, cols = num_scale_features);
+			feature_start_ind[1,1] = 1;
+			if (num_scale_features > 1) {
+				feature_start_ind[1,2:num_scale_features] = cum_count_thresholds[1,1:(num_scale_features - 1)] + 1;
+			}
+			max_I_gain_found = 0;
+			max_I_gain_found_ind = 0;
+			best_i = 0;
+			
+			for (i in 1:num_scale_feature_samples) { # assuming feature_samples is 5x1
+				cur_feature_samples_bin = as.scalar (scale_feature_samples[i,]); 
+				cur_start_ind = as.scalar (feature_start_ind[,cur_feature_samples_bin]);
+				cur_end_ind = as.scalar (cum_count_thresholds[,cur_feature_samples_bin]);
+				I_gain_portion = I_gain_scale[cur_start_ind:cur_end_ind,];
+				cur_max_I_gain = max (I_gain_portion);
+				cur_max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain_portion)));
+				if (cur_max_I_gain > max_I_gain_found) {
+					max_I_gain_found = cur_max_I_gain;
+					max_I_gain_found_ind = cur_max_I_gain_ind;
+					best_i = i;
+				}
+			}
+
+			best_scale_gain = max_I_gain_found;
+			max_I_gain_ind_scale = max_I_gain_found_ind;
+			best_scale_feature = 0;
+			if (best_i > 0) {
+				best_scale_feature = as.scalar (scale_feature_samples[best_i,]);
+			}
+			best_scale_split = max_I_gain_ind_scale;
+			if (best_scale_feature > 1) {
+				best_scale_split = best_scale_split + as.scalar(cum_count_thresholds[,(best_scale_feature - 1)]);
+			}					
+		}
+	
+		if (num_cat_features > 0 & num_cat_feature_samples > 0){
+			
+			cat_feature_samples = feature_samples[(num_scale_feature_samples + 1):(num_scale_feature_samples + num_cat_feature_samples),] - num_scale_features;
+			
+			# initialization
+			split_values_bin = matrix (0, rows = 1, cols = distinct_values_overall); 
+			split_values = split_values_bin; 
+			split_values_offset = matrix (0, rows = 1, cols = num_cat_features); 
+			I_gains = split_values_offset; 
+			impurities_left = split_values_offset;
+			impurities_right = split_values_offset;
+			best_label_counts_left = matrix (0, rows = num_cat_features, cols = num_classes);
+			best_label_counts_right = matrix (0, rows = num_cat_features, cols = num_classes);
+			
+			# main operation
+			label_counts = t (t (cur_Y_bin) %*% X_cat);  			
+			
+			parfor (i9 in 1:num_cat_feature_samples, check = 0){
+			
+				cur_cat_feature = as.scalar (cat_feature_samples[i9,1]);
+				start_ind = 1;
+				if (cur_cat_feature > 1) {
+					start_ind = start_ind + as.scalar (distinct_values_offset[(cur_cat_feature - 1),]);
+				}
+				offset = as.scalar (distinct_values[1,cur_cat_feature]);
+				
+				cur_label_counts = label_counts[start_ind:(start_ind + offset - 1),];
+								
+				label_sum = rowSums (cur_label_counts);
+				label_dist = cur_label_counts / label_sum;
+				if (imp == "entropy") {
+					label_dist = replace (target = label_dist, pattern = 0, replacement = 1);
+					log_label_dist = log (label_dist); # / log(2)
+					impurity = - rowSums (label_dist * log_label_dist); 
+					impurity = replace (target = impurity, pattern = "NaN", replacement = 1/0); 
+				} else { # imp == "Gini"
+					impurity = rowSums (label_dist * (1 - label_dist)); 				
+				}
+			
+				# sort cur feature by impurity
+				cur_distinct_values = seq (1, nrow (cur_label_counts));
+				cur_distinct_values_impurity = append (cur_distinct_values, impurity);
+				cur_feature_sorted = order (target = cur_distinct_values_impurity, by = 2, decreasing = FALSE);
+				P = table (cur_distinct_values, cur_feature_sorted); # permutation matrix
+				label_counts_sorted = P %*% cur_label_counts;
+
+				# compute left and right label distribution			
+				label_counts_left = cumsum (label_counts_sorted);
+			
+				label_sum_left = rowSums (label_counts_left);
+				label_dist_left = label_counts_left / label_sum_left;
+				label_dist_left = replace (target = label_dist_left, pattern = "NaN", replacement = 1);
+				if (imp == "entropy") {
+					label_dist_left = replace (target = label_dist_left, pattern = 0, replacement = 1);
+					log_label_dist_left = log (label_dist_left); # / log(2)
+					impurity_left = - rowSums (label_dist_left * log_label_dist_left);
+				} else { # imp == "Gini"
+					impurity_left = rowSums (label_dist_left * (1 - label_dist_left));					
+				}
+				#
+				label_counts_right = - label_counts_left + label_counts_overall;
+				label_sum_right = rowSums (label_counts_right);
+				label_dist_right = label_counts_right / label_sum_right;
+				label_dist_right = replace (target = label_dist_right, pattern = "NaN", replacement = 1);
+				if (imp == "entropy") {
+					label_dist_right = replace (target = label_dist_right, pattern = 0, replacement = 1);
+					log_label_dist_right = log (label_dist_right); # / log (2)
+					impurity_right = - rowSums (label_dist_right * log_label_dist_right);			
+				} else { # imp == "Gini"
+					impurity_right = rowSums (label_dist_right * (1 - label_dist_right));					
+				}
+				I_gain = cur_impurity - ( ( label_sum_left / label_sum_overall ) * impurity_left + ( label_sum_right / label_sum_overall ) * impurity_right);
+			
+				Ix_label_sum_left_zero = ppred (label_sum_left, 0, "==");
+				Ix_label_sum_right_zero = ppred (label_sum_right, 0, "==");
+				Ix_label_sum_zero = Ix_label_sum_left_zero * Ix_label_sum_right_zero;
+				I_gain = I_gain * (1 - Ix_label_sum_zero);	
+				
+				I_gain[nrow (I_gain),] = 0; # last entry invalid
+			
+				max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain)));
+
+				split_values[1, start_ind:(start_ind + max_I_gain_ind - 1)] = t (cur_feature_sorted[1:max_I_gain_ind,1]);
+				for (i10 in 1:max_I_gain_ind) {
+					ind = as.scalar (cur_feature_sorted[i10,1]);
+					if (ind == 1) {
+						split_values_bin[1,start_ind] = 1.0; 
+					} else {
+						split_values_bin[1,(start_ind + ind - 1)] = 1.0;
+					}
+				}
+				split_values_offset[1,cur_cat_feature] = max_I_gain_ind;
+			
+				I_gains[1,cur_cat_feature] = max (I_gain);
+			
+				impurities_left[1,cur_cat_feature] = as.scalar (impurity_left[max_I_gain_ind,]);
+				impurities_right[1,cur_cat_feature] = as.scalar (impurity_right[max_I_gain_ind,]);
+				best_label_counts_left[cur_cat_feature,] = label_counts_left[max_I_gain_ind,];
+				best_label_counts_right[cur_cat_feature,] = label_counts_right[max_I_gain_ind,];				
+			}
+			
+			# determine best feature to split on and the split values
+			best_cat_feature = as.scalar (rowIndexMax (I_gains));
+			best_cat_gain = max (I_gains);
+			start_ind = 1;
+			if (best_cat_feature > 1) {
+				start_ind = start_ind + as.scalar (distinct_values_offset[(best_cat_feature - 1),]);
+			}
+			offset = as.scalar (distinct_values[1,best_cat_feature]);
+			best_split_values_bin = split_values_bin[1, start_ind:(start_ind + offset - 1)];		
+		}		
+	
+		# compare best scale feature to best cat. feature and pick the best one
+		if (num_scale_features > 0 & num_scale_feature_samples > 0 & best_scale_gain >= best_cat_gain & best_scale_gain > 0) {
+			
+			# --- update model ---
+			cur_F_large[1,i6] = best_scale_feature;
+			cur_F_large[2,i6] = 1;
+			cur_F_large[3,i6] = 1;			
+			cur_S_large[1,(i6 - 1) * distinct_values_max + 1] = thresholds[max_I_gain_ind_scale, best_scale_feature]; 
+				
+			left_child = 2 * (cur_node - 1) + 1 + 1;
+			right_child = 2 * (cur_node - 1) + 2 + 1;
+					
+			# samples going to the left subtree
+			Ix_left = X_scale_ext[,best_scale_split]; 
+											
+			Ix_left = Ix * Ix_left;		
+			Ix_right = Ix * (1 - Ix_left);
+				
+			L[,cur_tree] = L[,cur_tree] * (1 - Ix_left) + (Ix_left * left_child);
+			L[,cur_tree] = L[,cur_tree] * (1 - Ix_right) + (Ix_right * right_child);								
+			
+			left_child_size = sum (Ix_left * C[,cur_tree]);
+			right_child_size = sum (Ix_right * C[,cur_tree]);
+			
+			# check if left or right child is a leaf
+			left_pure = FALSE;
+			right_pure = FALSE;
+			cur_impurity_left = as.scalar(impurity_left_scale[best_scale_split,]); # max_I_gain_ind_scale
+			cur_impurity_right = as.scalar(impurity_right_scale[best_scale_split,]); # max_I_gain_ind_scale
+			if ( (left_child_size <= num_leaf | cur_impurity_left == 0 | (level == depth)) & 
+			   (right_child_size <= num_leaf | cur_impurity_right == 0 | (level == depth)) | 
+			   (left_child_size <= threshold & right_child_size <= threshold & (level == depth)) ) { # both left and right nodes are leaf	
+				
+				cur_label_counts_left = label_counts_left_scale[best_scale_split,]; # max_I_gain_ind_scale
+				cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child; 
+				cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
+				cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label
+				left_pure = TRUE;	
+				# compute number of misclassified points 
+				cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max (cur_label_counts_left); 
+				
+				cur_label_counts_right = label_counts_overall - cur_label_counts_left;
+				cur_NC_large[1,(2 * i6)] = right_child; 
+				cur_NC_large[2,(2 * i6)] = cur_tree;
+				cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax (cur_label_counts_right)); # leaf class label
+				right_pure = TRUE;	
+				# compute number of misclassified pints
+				cur_NC_large[4,(2 * i6)] = right_child_size - max (cur_label_counts_right); 
+				
+			} else if (left_child_size <= num_leaf | cur_impurity_left == 0 | (level == depth) | 
+					  (left_child_size <= threshold & (level == depth))) {	
+				
+				cur_label_counts_left = label_counts_left_scale[best_scale_split,]; # max_I_gain_ind_scale
+				cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child; 
+				cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
+				cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax (cur_label_counts_left)); # leaf class label				
+				left_pure = TRUE;
+				# compute number of misclassified points 
+				cur_NC_large[4,(2 * (i

<TRUNCATED>