You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@commons.apache.org by tn...@apache.org on 2015/02/25 23:02:45 UTC

[3/4] [math] Remove deprecated interpolation and fitter classes.

http://git-wip-us.apache.org/repos/asf/commons-math/blob/0a5cd113/src/main/java/org/apache/commons/math4/fitting/CurveFitter.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/fitting/CurveFitter.java b/src/main/java/org/apache/commons/math4/fitting/CurveFitter.java
deleted file mode 100644
index 8cce426..0000000
--- a/src/main/java/org/apache/commons/math4/fitting/CurveFitter.java
+++ /dev/null
@@ -1,233 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.fitting;
-
-import java.util.ArrayList;
-import java.util.List;
-
-import org.apache.commons.math4.analysis.MultivariateMatrixFunction;
-import org.apache.commons.math4.analysis.MultivariateVectorFunction;
-import org.apache.commons.math4.analysis.ParametricUnivariateFunction;
-import org.apache.commons.math4.optim.InitialGuess;
-import org.apache.commons.math4.optim.MaxEval;
-import org.apache.commons.math4.optim.PointVectorValuePair;
-import org.apache.commons.math4.optim.nonlinear.vector.ModelFunction;
-import org.apache.commons.math4.optim.nonlinear.vector.ModelFunctionJacobian;
-import org.apache.commons.math4.optim.nonlinear.vector.MultivariateVectorOptimizer;
-import org.apache.commons.math4.optim.nonlinear.vector.Target;
-import org.apache.commons.math4.optim.nonlinear.vector.Weight;
-
-/**
- * Fitter for parametric univariate real functions y = f(x).
- * <br/>
- * When a univariate real function y = f(x) does depend on some
- * unknown parameters p<sub>0</sub>, p<sub>1</sub> ... p<sub>n-1</sub>,
- * this class can be used to find these parameters. It does this
- * by <em>fitting</em> the curve so it remains very close to a set of
- * observed points (x<sub>0</sub>, y<sub>0</sub>), (x<sub>1</sub>,
- * y<sub>1</sub>) ... (x<sub>k-1</sub>, y<sub>k-1</sub>). This fitting
- * is done by finding the parameters values that minimizes the objective
- * function &sum;(y<sub>i</sub>-f(x<sub>i</sub>))<sup>2</sup>. This is
- * really a least squares problem.
- *
- * @param <T> Function to use for the fit.
- *
- * @since 2.0
- * @deprecated As of 3.3. Please use {@link AbstractCurveFitter} and
- * {@link WeightedObservedPoints} instead.
- */
-@Deprecated
-public class CurveFitter<T extends ParametricUnivariateFunction> {
-    /** Optimizer to use for the fitting. */
-    private final MultivariateVectorOptimizer optimizer;
-    /** Observed points. */
-    private final List<WeightedObservedPoint> observations;
-
-    /**
-     * Simple constructor.
-     *
-     * @param optimizer Optimizer to use for the fitting.
-     * @since 3.1
-     */
-    public CurveFitter(final MultivariateVectorOptimizer optimizer) {
-        this.optimizer = optimizer;
-        observations = new ArrayList<WeightedObservedPoint>();
-    }
-
-    /** Add an observed (x,y) point to the sample with unit weight.
-     * <p>Calling this method is equivalent to call
-     * {@code addObservedPoint(1.0, x, y)}.</p>
-     * @param x abscissa of the point
-     * @param y observed value of the point at x, after fitting we should
-     * have f(x) as close as possible to this value
-     * @see #addObservedPoint(double, double, double)
-     * @see #addObservedPoint(WeightedObservedPoint)
-     * @see #getObservations()
-     */
-    public void addObservedPoint(double x, double y) {
-        addObservedPoint(1.0, x, y);
-    }
-
-    /** Add an observed weighted (x,y) point to the sample.
-     * @param weight weight of the observed point in the fit
-     * @param x abscissa of the point
-     * @param y observed value of the point at x, after fitting we should
-     * have f(x) as close as possible to this value
-     * @see #addObservedPoint(double, double)
-     * @see #addObservedPoint(WeightedObservedPoint)
-     * @see #getObservations()
-     */
-    public void addObservedPoint(double weight, double x, double y) {
-        observations.add(new WeightedObservedPoint(weight, x, y));
-    }
-
-    /** Add an observed weighted (x,y) point to the sample.
-     * @param observed observed point to add
-     * @see #addObservedPoint(double, double)
-     * @see #addObservedPoint(double, double, double)
-     * @see #getObservations()
-     */
-    public void addObservedPoint(WeightedObservedPoint observed) {
-        observations.add(observed);
-    }
-
-    /** Get the observed points.
-     * @return observed points
-     * @see #addObservedPoint(double, double)
-     * @see #addObservedPoint(double, double, double)
-     * @see #addObservedPoint(WeightedObservedPoint)
-     */
-    public WeightedObservedPoint[] getObservations() {
-        return observations.toArray(new WeightedObservedPoint[observations.size()]);
-    }
-
-    /**
-     * Remove all observations.
-     */
-    public void clearObservations() {
-        observations.clear();
-    }
-
-    /**
-     * Fit a curve.
-     * This method compute the coefficients of the curve that best
-     * fit the sample of observed points previously given through calls
-     * to the {@link #addObservedPoint(WeightedObservedPoint)
-     * addObservedPoint} method.
-     *
-     * @param f parametric function to fit.
-     * @param initialGuess first guess of the function parameters.
-     * @return the fitted parameters.
-     * @throws org.apache.commons.math4.exception.DimensionMismatchException
-     * if the start point dimension is wrong.
-     */
-    public double[] fit(T f, final double[] initialGuess) {
-        return fit(Integer.MAX_VALUE, f, initialGuess);
-    }
-
-    /**
-     * Fit a curve.
-     * This method compute the coefficients of the curve that best
-     * fit the sample of observed points previously given through calls
-     * to the {@link #addObservedPoint(WeightedObservedPoint)
-     * addObservedPoint} method.
-     *
-     * @param f parametric function to fit.
-     * @param initialGuess first guess of the function parameters.
-     * @param maxEval Maximum number of function evaluations.
-     * @return the fitted parameters.
-     * @throws org.apache.commons.math4.exception.TooManyEvaluationsException
-     * if the number of allowed evaluations is exceeded.
-     * @throws org.apache.commons.math4.exception.DimensionMismatchException
-     * if the start point dimension is wrong.
-     * @since 3.0
-     */
-    public double[] fit(int maxEval, T f,
-                        final double[] initialGuess) {
-        // Prepare least squares problem.
-        double[] target  = new double[observations.size()];
-        double[] weights = new double[observations.size()];
-        int i = 0;
-        for (WeightedObservedPoint point : observations) {
-            target[i]  = point.getY();
-            weights[i] = point.getWeight();
-            ++i;
-        }
-
-        // Input to the optimizer: the model and its Jacobian.
-        final TheoreticalValuesFunction model = new TheoreticalValuesFunction(f);
-
-        // Perform the fit.
-        final PointVectorValuePair optimum
-            = optimizer.optimize(new MaxEval(maxEval),
-                                 model.getModelFunction(),
-                                 model.getModelFunctionJacobian(),
-                                 new Target(target),
-                                 new Weight(weights),
-                                 new InitialGuess(initialGuess));
-        // Extract the coefficients.
-        return optimum.getPointRef();
-    }
-
-    /** Vectorial function computing function theoretical values. */
-    private class TheoreticalValuesFunction {
-        /** Function to fit. */
-        private final ParametricUnivariateFunction f;
-
-        /**
-         * @param f function to fit.
-         */
-        public TheoreticalValuesFunction(final ParametricUnivariateFunction f) {
-            this.f = f;
-        }
-
-        /**
-         * @return the model function values.
-         */
-        public ModelFunction getModelFunction() {
-            return new ModelFunction(new MultivariateVectorFunction() {
-                    /** {@inheritDoc} */
-                    public double[] value(double[] point) {
-                        // compute the residuals
-                        final double[] values = new double[observations.size()];
-                        int i = 0;
-                        for (WeightedObservedPoint observed : observations) {
-                            values[i++] = f.value(observed.getX(), point);
-                        }
-
-                        return values;
-                    }
-                });
-        }
-
-        /**
-         * @return the model function Jacobian.
-         */
-        public ModelFunctionJacobian getModelFunctionJacobian() {
-            return new ModelFunctionJacobian(new MultivariateMatrixFunction() {
-                    public double[][] value(double[] point) {
-                        final double[][] jacobian = new double[observations.size()][];
-                        int i = 0;
-                        for (WeightedObservedPoint observed : observations) {
-                            jacobian[i++] = f.gradient(observed.getX(), point);
-                        }
-                        return jacobian;
-                    }
-                });
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/0a5cd113/src/main/java/org/apache/commons/math4/fitting/GaussianFitter.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/fitting/GaussianFitter.java b/src/main/java/org/apache/commons/math4/fitting/GaussianFitter.java
deleted file mode 100644
index 285a467..0000000
--- a/src/main/java/org/apache/commons/math4/fitting/GaussianFitter.java
+++ /dev/null
@@ -1,365 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.fitting;
-
-import java.util.Arrays;
-import java.util.Comparator;
-
-import org.apache.commons.math4.analysis.function.Gaussian;
-import org.apache.commons.math4.exception.NotStrictlyPositiveException;
-import org.apache.commons.math4.exception.NullArgumentException;
-import org.apache.commons.math4.exception.NumberIsTooSmallException;
-import org.apache.commons.math4.exception.OutOfRangeException;
-import org.apache.commons.math4.exception.ZeroException;
-import org.apache.commons.math4.exception.util.LocalizedFormats;
-import org.apache.commons.math4.optim.nonlinear.vector.MultivariateVectorOptimizer;
-import org.apache.commons.math4.util.FastMath;
-
-/**
- * Fits points to a {@link
- * org.apache.commons.math4.analysis.function.Gaussian.Parametric Gaussian} function.
- * <p>
- * Usage example:
- * <pre>
- *   GaussianFitter fitter = new GaussianFitter(
- *     new LevenbergMarquardtOptimizer());
- *   fitter.addObservedPoint(4.0254623,  531026.0);
- *   fitter.addObservedPoint(4.03128248, 984167.0);
- *   fitter.addObservedPoint(4.03839603, 1887233.0);
- *   fitter.addObservedPoint(4.04421621, 2687152.0);
- *   fitter.addObservedPoint(4.05132976, 3461228.0);
- *   fitter.addObservedPoint(4.05326982, 3580526.0);
- *   fitter.addObservedPoint(4.05779662, 3439750.0);
- *   fitter.addObservedPoint(4.0636168,  2877648.0);
- *   fitter.addObservedPoint(4.06943698, 2175960.0);
- *   fitter.addObservedPoint(4.07525716, 1447024.0);
- *   fitter.addObservedPoint(4.08237071, 717104.0);
- *   fitter.addObservedPoint(4.08366408, 620014.0);
- *   double[] parameters = fitter.fit();
- * </pre>
- *
- * @since 2.2
- * @deprecated As of 3.3. Please use {@link GaussianCurveFitter} and
- * {@link WeightedObservedPoints} instead.
- */
-@Deprecated
-public class GaussianFitter extends CurveFitter<Gaussian.Parametric> {
-    /**
-     * Constructs an instance using the specified optimizer.
-     *
-     * @param optimizer Optimizer to use for the fitting.
-     */
-    public GaussianFitter(MultivariateVectorOptimizer optimizer) {
-        super(optimizer);
-    }
-
-    /**
-     * Fits a Gaussian function to the observed points.
-     *
-     * @param initialGuess First guess values in the following order:
-     * <ul>
-     *  <li>Norm</li>
-     *  <li>Mean</li>
-     *  <li>Sigma</li>
-     * </ul>
-     * @return the parameters of the Gaussian function that best fits the
-     * observed points (in the same order as above).
-     * @since 3.0
-     */
-    public double[] fit(double[] initialGuess) {
-        final Gaussian.Parametric f = new Gaussian.Parametric() {
-                @Override
-                public double value(double x, double ... p) {
-                    double v = Double.POSITIVE_INFINITY;
-                    try {
-                        v = super.value(x, p);
-                    } catch (NotStrictlyPositiveException e) { // NOPMD
-                        // Do nothing.
-                    }
-                    return v;
-                }
-
-                @Override
-                public double[] gradient(double x, double ... p) {
-                    double[] v = { Double.POSITIVE_INFINITY,
-                                   Double.POSITIVE_INFINITY,
-                                   Double.POSITIVE_INFINITY };
-                    try {
-                        v = super.gradient(x, p);
-                    } catch (NotStrictlyPositiveException e) { // NOPMD
-                        // Do nothing.
-                    }
-                    return v;
-                }
-            };
-
-        return fit(f, initialGuess);
-    }
-
-    /**
-     * Fits a Gaussian function to the observed points.
-     *
-     * @return the parameters of the Gaussian function that best fits the
-     * observed points (in the same order as above).
-     */
-    public double[] fit() {
-        final double[] guess = (new ParameterGuesser(getObservations())).guess();
-        return fit(guess);
-    }
-
-    /**
-     * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
-     * of a {@link org.apache.commons.math4.analysis.function.Gaussian.Parametric}
-     * based on the specified observed points.
-     */
-    public static class ParameterGuesser {
-        /** Normalization factor. */
-        private final double norm;
-        /** Mean. */
-        private final double mean;
-        /** Standard deviation. */
-        private final double sigma;
-
-        /**
-         * Constructs instance with the specified observed points.
-         *
-         * @param observations Observed points from which to guess the
-         * parameters of the Gaussian.
-         * @throws NullArgumentException if {@code observations} is
-         * {@code null}.
-         * @throws NumberIsTooSmallException if there are less than 3
-         * observations.
-         */
-        public ParameterGuesser(WeightedObservedPoint[] observations) {
-            if (observations == null) {
-                throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
-            }
-            if (observations.length < 3) {
-                throw new NumberIsTooSmallException(observations.length, 3, true);
-            }
-
-            final WeightedObservedPoint[] sorted = sortObservations(observations);
-            final double[] params = basicGuess(sorted);
-
-            norm = params[0];
-            mean = params[1];
-            sigma = params[2];
-        }
-
-        /**
-         * Gets an estimation of the parameters.
-         *
-         * @return the guessed parameters, in the following order:
-         * <ul>
-         *  <li>Normalization factor</li>
-         *  <li>Mean</li>
-         *  <li>Standard deviation</li>
-         * </ul>
-         */
-        public double[] guess() {
-            return new double[] { norm, mean, sigma };
-        }
-
-        /**
-         * Sort the observations.
-         *
-         * @param unsorted Input observations.
-         * @return the input observations, sorted.
-         */
-        private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
-            final WeightedObservedPoint[] observations = unsorted.clone();
-            final Comparator<WeightedObservedPoint> cmp
-                = new Comparator<WeightedObservedPoint>() {
-                public int compare(WeightedObservedPoint p1,
-                                   WeightedObservedPoint p2) {
-                    if (p1 == null && p2 == null) {
-                        return 0;
-                    }
-                    if (p1 == null) {
-                        return -1;
-                    }
-                    if (p2 == null) {
-                        return 1;
-                    }
-                    if (p1.getX() < p2.getX()) {
-                        return -1;
-                    }
-                    if (p1.getX() > p2.getX()) {
-                        return 1;
-                    }
-                    if (p1.getY() < p2.getY()) {
-                        return -1;
-                    }
-                    if (p1.getY() > p2.getY()) {
-                        return 1;
-                    }
-                    if (p1.getWeight() < p2.getWeight()) {
-                        return -1;
-                    }
-                    if (p1.getWeight() > p2.getWeight()) {
-                        return 1;
-                    }
-                    return 0;
-                }
-            };
-
-            Arrays.sort(observations, cmp);
-            return observations;
-        }
-
-        /**
-         * Guesses the parameters based on the specified observed points.
-         *
-         * @param points Observed points, sorted.
-         * @return the guessed parameters (normalization factor, mean and
-         * sigma).
-         */
-        private double[] basicGuess(WeightedObservedPoint[] points) {
-            final int maxYIdx = findMaxY(points);
-            final double n = points[maxYIdx].getY();
-            final double m = points[maxYIdx].getX();
-
-            double fwhmApprox;
-            try {
-                final double halfY = n + ((m - n) / 2);
-                final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY);
-                final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY);
-                fwhmApprox = fwhmX2 - fwhmX1;
-            } catch (OutOfRangeException e) {
-                // TODO: Exceptions should not be used for flow control.
-                fwhmApprox = points[points.length - 1].getX() - points[0].getX();
-            }
-            final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2)));
-
-            return new double[] { n, m, s };
-        }
-
-        /**
-         * Finds index of point in specified points with the largest Y.
-         *
-         * @param points Points to search.
-         * @return the index in specified points array.
-         */
-        private int findMaxY(WeightedObservedPoint[] points) {
-            int maxYIdx = 0;
-            for (int i = 1; i < points.length; i++) {
-                if (points[i].getY() > points[maxYIdx].getY()) {
-                    maxYIdx = i;
-                }
-            }
-            return maxYIdx;
-        }
-
-        /**
-         * Interpolates using the specified points to determine X at the
-         * specified Y.
-         *
-         * @param points Points to use for interpolation.
-         * @param startIdx Index within points from which to start the search for
-         * interpolation bounds points.
-         * @param idxStep Index step for searching interpolation bounds points.
-         * @param y Y value for which X should be determined.
-         * @return the value of X for the specified Y.
-         * @throws ZeroException if {@code idxStep} is 0.
-         * @throws OutOfRangeException if specified {@code y} is not within the
-         * range of the specified {@code points}.
-         */
-        private double interpolateXAtY(WeightedObservedPoint[] points,
-                                       int startIdx,
-                                       int idxStep,
-                                       double y)
-            throws OutOfRangeException {
-            if (idxStep == 0) {
-                throw new ZeroException();
-            }
-            final WeightedObservedPoint[] twoPoints
-                = getInterpolationPointsForY(points, startIdx, idxStep, y);
-            final WeightedObservedPoint p1 = twoPoints[0];
-            final WeightedObservedPoint p2 = twoPoints[1];
-            if (p1.getY() == y) {
-                return p1.getX();
-            }
-            if (p2.getY() == y) {
-                return p2.getX();
-            }
-            return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
-                                (p2.getY() - p1.getY()));
-        }
-
-        /**
-         * Gets the two bounding interpolation points from the specified points
-         * suitable for determining X at the specified Y.
-         *
-         * @param points Points to use for interpolation.
-         * @param startIdx Index within points from which to start search for
-         * interpolation bounds points.
-         * @param idxStep Index step for search for interpolation bounds points.
-         * @param y Y value for which X should be determined.
-         * @return the array containing two points suitable for determining X at
-         * the specified Y.
-         * @throws ZeroException if {@code idxStep} is 0.
-         * @throws OutOfRangeException if specified {@code y} is not within the
-         * range of the specified {@code points}.
-         */
-        private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
-                                                                   int startIdx,
-                                                                   int idxStep,
-                                                                   double y)
-            throws OutOfRangeException {
-            if (idxStep == 0) {
-                throw new ZeroException();
-            }
-            for (int i = startIdx;
-                 idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
-                 i += idxStep) {
-                final WeightedObservedPoint p1 = points[i];
-                final WeightedObservedPoint p2 = points[i + idxStep];
-                if (isBetween(y, p1.getY(), p2.getY())) {
-                    if (idxStep < 0) {
-                        return new WeightedObservedPoint[] { p2, p1 };
-                    } else {
-                        return new WeightedObservedPoint[] { p1, p2 };
-                    }
-                }
-            }
-
-            // Boundaries are replaced by dummy values because the raised
-            // exception is caught and the message never displayed.
-            // TODO: Exceptions should not be used for flow control.
-            throw new OutOfRangeException(y,
-                                          Double.NEGATIVE_INFINITY,
-                                          Double.POSITIVE_INFINITY);
-        }
-
-        /**
-         * Determines whether a value is between two other values.
-         *
-         * @param value Value to test whether it is between {@code boundary1}
-         * and {@code boundary2}.
-         * @param boundary1 One end of the range.
-         * @param boundary2 Other end of the range.
-         * @return {@code true} if {@code value} is between {@code boundary1} and
-         * {@code boundary2} (inclusive), {@code false} otherwise.
-         */
-        private boolean isBetween(double value,
-                                  double boundary1,
-                                  double boundary2) {
-            return (value >= boundary1 && value <= boundary2) ||
-                (value >= boundary2 && value <= boundary1);
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/0a5cd113/src/main/java/org/apache/commons/math4/fitting/HarmonicFitter.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/fitting/HarmonicFitter.java b/src/main/java/org/apache/commons/math4/fitting/HarmonicFitter.java
deleted file mode 100644
index e74d0ac..0000000
--- a/src/main/java/org/apache/commons/math4/fitting/HarmonicFitter.java
+++ /dev/null
@@ -1,384 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.fitting;
-
-import org.apache.commons.math4.analysis.function.HarmonicOscillator;
-import org.apache.commons.math4.exception.MathIllegalStateException;
-import org.apache.commons.math4.exception.NumberIsTooSmallException;
-import org.apache.commons.math4.exception.ZeroException;
-import org.apache.commons.math4.exception.util.LocalizedFormats;
-import org.apache.commons.math4.optim.nonlinear.vector.MultivariateVectorOptimizer;
-import org.apache.commons.math4.util.FastMath;
-
-/**
- * Class that implements a curve fitting specialized for sinusoids.
- *
- * Harmonic fitting is a very simple case of curve fitting. The
- * estimated coefficients are the amplitude a, the pulsation &omega; and
- * the phase &phi;: <code>f (t) = a cos (&omega; t + &phi;)</code>. They are
- * searched by a least square estimator initialized with a rough guess
- * based on integrals.
- *
- * @since 2.0
- * @deprecated As of 3.3. Please use {@link HarmonicCurveFitter} and
- * {@link WeightedObservedPoints} instead.
- */
-@Deprecated
-public class HarmonicFitter extends CurveFitter<HarmonicOscillator.Parametric> {
-    /**
-     * Simple constructor.
-     * @param optimizer Optimizer to use for the fitting.
-     */
-    public HarmonicFitter(final MultivariateVectorOptimizer optimizer) {
-        super(optimizer);
-    }
-
-    /**
-     * Fit an harmonic function to the observed points.
-     *
-     * @param initialGuess First guess values in the following order:
-     * <ul>
-     *  <li>Amplitude</li>
-     *  <li>Angular frequency</li>
-     *  <li>Phase</li>
-     * </ul>
-     * @return the parameters of the harmonic function that best fits the
-     * observed points (in the same order as above).
-     */
-    public double[] fit(double[] initialGuess) {
-        return fit(new HarmonicOscillator.Parametric(), initialGuess);
-    }
-
-    /**
-     * Fit an harmonic function to the observed points.
-     * An initial guess will be automatically computed.
-     *
-     * @return the parameters of the harmonic function that best fits the
-     * observed points (see the other {@link #fit(double[]) fit} method.
-     * @throws NumberIsTooSmallException if the sample is too short for the
-     * the first guess to be computed.
-     * @throws ZeroException if the first guess cannot be computed because
-     * the abscissa range is zero.
-     */
-    public double[] fit() {
-        return fit((new ParameterGuesser(getObservations())).guess());
-    }
-
-    /**
-     * This class guesses harmonic coefficients from a sample.
-     * <p>The algorithm used to guess the coefficients is as follows:</p>
-     *
-     * <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a,
-     * &omega; and &phi; such that f (t) = a cos (&omega; t + &phi;).
-     * </p>
-     *
-     * <p>From the analytical expression, we can compute two primitives :
-     * <pre>
-     *     If2  (t) = &int; f<sup>2</sup>  = a<sup>2</sup> &times; [t + S (t)] / 2
-     *     If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2
-     *     where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;)
-     * </pre>
-     * </p>
-     *
-     * <p>We can remove S between these expressions :
-     * <pre>
-     *     If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t)
-     * </pre>
-     * </p>
-     *
-     * <p>The preceding expression shows that If'2 (t) is a linear
-     * combination of both t and If2 (t): If'2 (t) = A &times; t + B &times; If2 (t)
-     * </p>
-     *
-     * <p>From the primitive, we can deduce the same form for definite
-     * integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
-     * <pre>
-     *   If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
-     * </pre>
-     * </p>
-     *
-     * <p>We can find the coefficients A and B that best fit the sample
-     * to this linear expression by computing the definite integrals for
-     * each sample points.
-     * </p>
-     *
-     * <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B &times; y<sub>i</sub>, the
-     * coefficients A and B that minimize a least square criterion
-     * &sum; (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p>
-     * <pre>
-     *
-     *         &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
-     *     A = ------------------------
-     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
-     *
-     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub>
-     *     B = ------------------------
-     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
-     * </pre>
-     * </p>
-     *
-     *
-     * <p>In fact, we can assume both a and &omega; are positive and
-     * compute them directly, knowing that A = a<sup>2</sup> &omega;<sup>2</sup> and that
-     * B = - &omega;<sup>2</sup>. The complete algorithm is therefore:</p>
-     * <pre>
-     *
-     * for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
-     *   f  (t<sub>i</sub>)
-     *   f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
-     *   x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
-     *   y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
-     *   z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
-     *   update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
-     * end for
-     *
-     *            |--------------------------
-     *         \  | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
-     * a     =  \ | ------------------------
-     *           \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
-     *
-     *
-     *            |--------------------------
-     *         \  | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
-     * &omega;     =  \ | ------------------------
-     *           \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
-     *
-     * </pre>
-     * </p>
-     *
-     * <p>Once we know &omega;, we can compute:
-     * <pre>
-     *    fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
-     *    fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
-     * </pre>
-     * </p>
-     *
-     * <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and
-     * <code>fs = -a &omega; sin (&phi;)</code>, so we can use these
-     * expressions to compute &phi;. The best estimate over the sample is
-     * given by averaging these expressions.
-     * </p>
-     *
-     * <p>Since integrals and means are involved in the preceding
-     * estimations, these operations run in O(n) time, where n is the
-     * number of measurements.</p>
-     */
-    public static class ParameterGuesser {
-        /** Amplitude. */
-        private final double a;
-        /** Angular frequency. */
-        private final double omega;
-        /** Phase. */
-        private final double phi;
-
-        /**
-         * Simple constructor.
-         *
-         * @param observations Sampled observations.
-         * @throws NumberIsTooSmallException if the sample is too short.
-         * @throws ZeroException if the abscissa range is zero.
-         * @throws MathIllegalStateException when the guessing procedure cannot
-         * produce sensible results.
-         */
-        public ParameterGuesser(WeightedObservedPoint[] observations) {
-            if (observations.length < 4) {
-                throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
-                                                    observations.length, 4, true);
-            }
-
-            final WeightedObservedPoint[] sorted = sortObservations(observations);
-
-            final double aOmega[] = guessAOmega(sorted);
-            a = aOmega[0];
-            omega = aOmega[1];
-
-            phi = guessPhi(sorted);
-        }
-
-        /**
-         * Gets an estimation of the parameters.
-         *
-         * @return the guessed parameters, in the following order:
-         * <ul>
-         *  <li>Amplitude</li>
-         *  <li>Angular frequency</li>
-         *  <li>Phase</li>
-         * </ul>
-         */
-        public double[] guess() {
-            return new double[] { a, omega, phi };
-        }
-
-        /**
-         * Sort the observations with respect to the abscissa.
-         *
-         * @param unsorted Input observations.
-         * @return the input observations, sorted.
-         */
-        private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
-            final WeightedObservedPoint[] observations = unsorted.clone();
-
-            // Since the samples are almost always already sorted, this
-            // method is implemented as an insertion sort that reorders the
-            // elements in place. Insertion sort is very efficient in this case.
-            WeightedObservedPoint curr = observations[0];
-            for (int j = 1; j < observations.length; ++j) {
-                WeightedObservedPoint prec = curr;
-                curr = observations[j];
-                if (curr.getX() < prec.getX()) {
-                    // the current element should be inserted closer to the beginning
-                    int i = j - 1;
-                    WeightedObservedPoint mI = observations[i];
-                    while ((i >= 0) && (curr.getX() < mI.getX())) {
-                        observations[i + 1] = mI;
-                        if (i-- != 0) {
-                            mI = observations[i];
-                        }
-                    }
-                    observations[i + 1] = curr;
-                    curr = observations[j];
-                }
-            }
-
-            return observations;
-        }
-
-        /**
-         * Estimate a first guess of the amplitude and angular frequency.
-         * This method assumes that the {@link #sortObservations(WeightedObservedPoint[])} method
-         * has been called previously.
-         *
-         * @param observations Observations, sorted w.r.t. abscissa.
-         * @throws ZeroException if the abscissa range is zero.
-         * @throws MathIllegalStateException when the guessing procedure cannot
-         * produce sensible results.
-         * @return the guessed amplitude (at index 0) and circular frequency
-         * (at index 1).
-         */
-        private double[] guessAOmega(WeightedObservedPoint[] observations) {
-            final double[] aOmega = new double[2];
-
-            // initialize the sums for the linear model between the two integrals
-            double sx2 = 0;
-            double sy2 = 0;
-            double sxy = 0;
-            double sxz = 0;
-            double syz = 0;
-
-            double currentX = observations[0].getX();
-            double currentY = observations[0].getY();
-            double f2Integral = 0;
-            double fPrime2Integral = 0;
-            final double startX = currentX;
-            for (int i = 1; i < observations.length; ++i) {
-                // one step forward
-                final double previousX = currentX;
-                final double previousY = currentY;
-                currentX = observations[i].getX();
-                currentY = observations[i].getY();
-
-                // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
-                // considering a linear model for f (and therefore constant f')
-                final double dx = currentX - previousX;
-                final double dy = currentY - previousY;
-                final double f2StepIntegral =
-                    dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
-                final double fPrime2StepIntegral = dy * dy / dx;
-
-                final double x = currentX - startX;
-                f2Integral += f2StepIntegral;
-                fPrime2Integral += fPrime2StepIntegral;
-
-                sx2 += x * x;
-                sy2 += f2Integral * f2Integral;
-                sxy += x * f2Integral;
-                sxz += x * fPrime2Integral;
-                syz += f2Integral * fPrime2Integral;
-            }
-
-            // compute the amplitude and pulsation coefficients
-            double c1 = sy2 * sxz - sxy * syz;
-            double c2 = sxy * sxz - sx2 * syz;
-            double c3 = sx2 * sy2 - sxy * sxy;
-            if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
-                final int last = observations.length - 1;
-                // Range of the observations, assuming that the
-                // observations are sorted.
-                final double xRange = observations[last].getX() - observations[0].getX();
-                if (xRange == 0) {
-                    throw new ZeroException();
-                }
-                aOmega[1] = 2 * Math.PI / xRange;
-
-                double yMin = Double.POSITIVE_INFINITY;
-                double yMax = Double.NEGATIVE_INFINITY;
-                for (int i = 1; i < observations.length; ++i) {
-                    final double y = observations[i].getY();
-                    if (y < yMin) {
-                        yMin = y;
-                    }
-                    if (y > yMax) {
-                        yMax = y;
-                    }
-                }
-                aOmega[0] = 0.5 * (yMax - yMin);
-            } else {
-                if (c2 == 0) {
-                    // In some ill-conditioned cases (cf. MATH-844), the guesser
-                    // procedure cannot produce sensible results.
-                    throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR);
-                }
-
-                aOmega[0] = FastMath.sqrt(c1 / c2);
-                aOmega[1] = FastMath.sqrt(c2 / c3);
-            }
-
-            return aOmega;
-        }
-
-        /**
-         * Estimate a first guess of the phase.
-         *
-         * @param observations Observations, sorted w.r.t. abscissa.
-         * @return the guessed phase.
-         */
-        private double guessPhi(WeightedObservedPoint[] observations) {
-            // initialize the means
-            double fcMean = 0;
-            double fsMean = 0;
-
-            double currentX = observations[0].getX();
-            double currentY = observations[0].getY();
-            for (int i = 1; i < observations.length; ++i) {
-                // one step forward
-                final double previousX = currentX;
-                final double previousY = currentY;
-                currentX = observations[i].getX();
-                currentY = observations[i].getY();
-                final double currentYPrime = (currentY - previousY) / (currentX - previousX);
-
-                double omegaX = omega * currentX;
-                double cosine = FastMath.cos(omegaX);
-                double sine = FastMath.sin(omegaX);
-                fcMean += omega * currentY * cosine - currentYPrime * sine;
-                fsMean += omega * currentY * sine + currentYPrime * cosine;
-            }
-
-            return FastMath.atan2(-fsMean, fcMean);
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/0a5cd113/src/main/java/org/apache/commons/math4/fitting/PolynomialFitter.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/fitting/PolynomialFitter.java b/src/main/java/org/apache/commons/math4/fitting/PolynomialFitter.java
deleted file mode 100644
index 38ebe91..0000000
--- a/src/main/java/org/apache/commons/math4/fitting/PolynomialFitter.java
+++ /dev/null
@@ -1,72 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.fitting;
-
-import org.apache.commons.math4.analysis.polynomials.PolynomialFunction;
-import org.apache.commons.math4.optim.nonlinear.vector.MultivariateVectorOptimizer;
-
-/**
- * Polynomial fitting is a very simple case of {@link CurveFitter curve fitting}.
- * The estimated coefficients are the polynomial coefficients (see the
- * {@link #fit(double[]) fit} method).
- *
- * @since 2.0
- * @deprecated As of 3.3. Please use {@link PolynomialCurveFitter} and
- * {@link WeightedObservedPoints} instead.
- */
-@Deprecated
-public class PolynomialFitter extends CurveFitter<PolynomialFunction.Parametric> {
-    /**
-     * Simple constructor.
-     *
-     * @param optimizer Optimizer to use for the fitting.
-     */
-    public PolynomialFitter(MultivariateVectorOptimizer optimizer) {
-        super(optimizer);
-    }
-
-    /**
-     * Get the coefficients of the polynomial fitting the weighted data points.
-     * The degree of the fitting polynomial is {@code guess.length - 1}.
-     *
-     * @param guess First guess for the coefficients. They must be sorted in
-     * increasing order of the polynomial's degree.
-     * @param maxEval Maximum number of evaluations of the polynomial.
-     * @return the coefficients of the polynomial that best fits the observed points.
-     * @throws org.apache.commons.math4.exception.TooManyEvaluationsException if
-     * the number of evaluations exceeds {@code maxEval}.
-     * @throws org.apache.commons.math4.exception.ConvergenceException
-     * if the algorithm failed to converge.
-     */
-    public double[] fit(int maxEval, double[] guess) {
-        return fit(maxEval, new PolynomialFunction.Parametric(), guess);
-    }
-
-    /**
-     * Get the coefficients of the polynomial fitting the weighted data points.
-     * The degree of the fitting polynomial is {@code guess.length - 1}.
-     *
-     * @param guess First guess for the coefficients. They must be sorted in
-     * increasing order of the polynomial's degree.
-     * @return the coefficients of the polynomial that best fits the observed points.
-     * @throws org.apache.commons.math4.exception.ConvergenceException
-     * if the algorithm failed to converge.
-     */
-    public double[] fit(double[] guess) {
-        return fit(new PolynomialFunction.Parametric(), guess);
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/0a5cd113/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatingFunctionTest.java
----------------------------------------------------------------------
diff --git a/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatingFunctionTest.java b/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatingFunctionTest.java
deleted file mode 100644
index 92bf82b..0000000
--- a/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatingFunctionTest.java
+++ /dev/null
@@ -1,670 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.interpolation;
-
-import org.apache.commons.math4.analysis.BivariateFunction;
-import org.apache.commons.math4.analysis.interpolation.BicubicSplineFunction;
-import org.apache.commons.math4.analysis.interpolation.BicubicSplineInterpolatingFunction;
-import org.apache.commons.math4.distribution.UniformRealDistribution;
-import org.apache.commons.math4.exception.DimensionMismatchException;
-import org.apache.commons.math4.exception.MathIllegalArgumentException;
-import org.apache.commons.math4.exception.OutOfRangeException;
-import org.apache.commons.math4.random.RandomGenerator;
-import org.apache.commons.math4.random.Well19937c;
-import org.junit.Assert;
-import org.junit.Test;
-import org.junit.Ignore;
-
-/**
- * Test case for the bicubic function.
- * 
- */
-public final class BicubicSplineInterpolatingFunctionTest {
-    /**
-     * Test preconditions.
-     */
-    @Test
-    public void testPreconditions() {
-        double[] xval = new double[] {3, 4, 5, 6.5};
-        double[] yval = new double[] {-4, -3, -1, 2.5};
-        double[][] zval = new double[xval.length][yval.length];
-
-        @SuppressWarnings("unused")
-        BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
-                                                                           zval, zval, zval);
-        
-        double[] wxval = new double[] {3, 2, 5, 6.5};
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(wxval, yval, zval, zval, zval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (MathIllegalArgumentException e) {
-            // Expected
-        }
-        double[] wyval = new double[] {-4, -1, -1, 2.5};
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, wyval, zval, zval, zval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (MathIllegalArgumentException e) {
-            // Expected
-        }
-        double[][] wzval = new double[xval.length][yval.length - 1];
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, yval, wzval, zval, zval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, wzval, zval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, wzval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, wzval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-
-        wzval = new double[xval.length - 1][yval.length];
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, yval, wzval, zval, zval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, wzval, zval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, wzval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        try {
-            bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, wzval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-    }
-
-    /**
-     * Test for a plane.
-     * <p>
-     * z = 2 x - 3 y + 5
-     */
-    @Ignore@Test
-    public void testPlane() {
-        double[] xval = new double[] {3, 4, 5, 6.5};
-        double[] yval = new double[] {-4, -3, -1, 2, 2.5};
-        // Function values
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 2 * x - 3 * y + 5;
-                }
-            };
-        double[][] zval = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                zval[i][j] = f.value(xval[i], yval[j]);
-            }
-        }
-        // Partial derivatives with respect to x
-        double[][] dZdX = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdX[i][j] = 2;
-            }
-        }
-        // Partial derivatives with respect to y
-        double[][] dZdY = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdY[i][j] = -3;
-            }
-        }
-        // Partial cross-derivatives
-        double[][] dZdXdY = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdXdY[i][j] = 0;
-            }
-        }
-
-        BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
-                                                                           dZdX, dZdY, dZdXdY);
-        double x, y;
-        double expected, result;
-
-        x = 4;
-        y = -3;
-        expected = f.value(x, y);
-        result = bcf.value(x, y);
-        Assert.assertEquals("On sample point",
-                            expected, result, 1e-15);
-
-        x = 4.5;
-        y = -1.5;
-        expected = f.value(x, y);
-        result = bcf.value(x, y);
-        Assert.assertEquals("Half-way between sample points (middle of the patch)",
-                            expected, result, 0.3);
-
-        x = 3.5;
-        y = -3.5;
-        expected = f.value(x, y);
-        result = bcf.value(x, y);
-        Assert.assertEquals("Half-way between sample points (border of the patch)",
-                            expected, result, 0.3);
-    }
-
-    /**
-     * Test for a paraboloid.
-     * <p>
-     * z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
-     */
-    @Ignore@Test
-    public void testParaboloid() {
-        double[] xval = new double[] {3, 4, 5, 6.5};
-        double[] yval = new double[] {-4, -3, -1, 2, 2.5};
-        // Function values
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 2 * x * x - 3 * y * y + 4 * x * y - 5;
-                }
-            };
-        double[][] zval = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                zval[i][j] = f.value(xval[i], yval[j]);
-            }
-        }
-        // Partial derivatives with respect to x
-        double[][] dZdX = new double[xval.length][yval.length];
-        BivariateFunction dfdX = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 4 * (x + y);
-                }
-            };
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdX[i][j] = dfdX.value(xval[i], yval[j]);
-            }
-        }
-        // Partial derivatives with respect to y
-        double[][] dZdY = new double[xval.length][yval.length];
-        BivariateFunction dfdY = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 4 * x - 6 * y;
-                }
-            };
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdY[i][j] = dfdY.value(xval[i], yval[j]);
-            }
-        }
-        // Partial cross-derivatives
-        double[][] dZdXdY = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdXdY[i][j] = 4;
-            }
-        }
-
-        BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
-                                                                           dZdX, dZdY, dZdXdY);
-        double x, y;
-        double expected, result;
-        
-        x = 4;
-        y = -3;
-        expected = f.value(x, y);
-        result = bcf.value(x, y);
-        Assert.assertEquals("On sample point",
-                            expected, result, 1e-15);
-
-        x = 4.5;
-        y = -1.5;
-        expected = f.value(x, y);
-        result = bcf.value(x, y);
-        Assert.assertEquals("Half-way between sample points (middle of the patch)",
-                            expected, result, 2);
-
-        x = 3.5;
-        y = -3.5;
-        expected = f.value(x, y);
-        result = bcf.value(x, y);
-        Assert.assertEquals("Half-way between sample points (border of the patch)",
-                            expected, result, 2);
-    }
-
-    /**
-     * Test for partial derivatives of {@link BicubicSplineFunction}.
-     * <p>
-     * f(x, y) = &Sigma;<sub>i</sub>&Sigma;<sub>j</sub> (i+1) (j+2) x<sup>i</sup> y<sup>j</sup>
-     */
-    @Ignore@Test
-    public void testSplinePartialDerivatives() {
-        final int N = 4;
-        final double[] coeff = new double[16];
-
-        for (int i = 0; i < N; i++) {
-            for (int j = 0; j < N; j++) {
-                coeff[i + N * j] = (i + 1) * (j + 2);
-            }
-        }
-
-        final BicubicSplineFunction f = new BicubicSplineFunction(coeff);
-        BivariateFunction derivative;
-        final double x = 0.435;
-        final double y = 0.776;
-        final double tol = 1e-13;
-
-        derivative = new BivariateFunction() {
-                public double value(double x, double y) {
-                    final double x2 = x * x;
-                    final double y2 = y * y;
-                    final double y3 = y2 * y;
-                    final double yFactor = 2 + 3 * y + 4 * y2 + 5 * y3;
-                    return yFactor * (2 + 6 * x + 12 * x2);
-                }
-            };
-        Assert.assertEquals("dFdX", derivative.value(x, y),
-                            f.partialDerivativeX().value(x, y), tol);
-        
-        derivative = new BivariateFunction() {
-                public double value(double x, double y) {
-                    final double x2 = x * x;
-                    final double x3 = x2 * x;
-                    final double y2 = y * y;
-                    final double xFactor = 1 + 2 * x + 3 * x2 + 4 * x3;
-                    return xFactor * (3 + 8 * y + 15 * y2);
-                }
-            };
-        Assert.assertEquals("dFdY", derivative.value(x, y),
-                            f.partialDerivativeY().value(x, y), tol);
-
-        derivative = new BivariateFunction() {
-                public double value(double x, double y) {
-                    final double y2 = y * y;
-                    final double y3 = y2 * y;
-                    final double yFactor = 2 + 3 * y + 4 * y2 + 5 * y3;
-                    return yFactor * (6 + 24 * x);
-                }
-            };
-        Assert.assertEquals("d2FdX2", derivative.value(x, y),
-                            f.partialDerivativeXX().value(x, y), tol);
-
-        derivative = new BivariateFunction() {
-                public double value(double x, double y) {
-                    final double x2 = x * x;
-                    final double x3 = x2 * x;
-                    final double xFactor = 1 + 2 * x + 3 * x2 + 4 * x3;
-                    return xFactor * (8 + 30 * y);
-                }
-            };
-        Assert.assertEquals("d2FdY2", derivative.value(x, y),
-                            f.partialDerivativeYY().value(x, y), tol);
-
-        derivative = new BivariateFunction() {
-                public double value(double x, double y) {
-                    final double x2 = x * x;
-                    final double y2 = y * y;
-                    final double yFactor = 3 + 8 * y + 15 * y2;
-                    return yFactor * (2 + 6 * x + 12 * x2);
-                }
-            };
-        Assert.assertEquals("d2FdXdY", derivative.value(x, y),
-                            f.partialDerivativeXY().value(x, y), tol);
-    }
-
-    /**
-     * Test that the partial derivatives computed from a
-     * {@link BicubicSplineInterpolatingFunction} match the input data.
-     * <p>
-     * f(x, y) = 5
-     *           - 3 x + 2 y
-     *           - x y + 2 x<sup>2</sup> - 3 y<sup>2</sup>
-     *           + 4 x<sup>2</sup> y - x y<sup>2</sup> - 3 x<sup>3</sup> + y<sup>3</sup>
-     */
-    @Ignore@Test
-    public void testMatchingPartialDerivatives() {
-        final int sz = 21;
-        double[] val = new double[sz];
-        // Coordinate values
-        final double delta = 1d / (sz - 1);
-        for (int i = 0; i < sz; i++) {
-            val[i] = i * delta;
-        }
-        // Function values
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    final double x2 = x * x;
-                    final double x3 = x2 * x;
-                    final double y2 = y * y;
-                    final double y3 = y2 * y;
-
-                    return 5
-                        - 3 * x + 2 * y
-                        - x * y + 2 * x2 - 3 * y2
-                        + 4 * x2 * y - x * y2 - 3 * x3 + y3;
-                }
-            };
-        double[][] fval = new double[sz][sz];
-        for (int i = 0; i < sz; i++) {
-            for (int j = 0; j < sz; j++) {
-                fval[i][j] = f.value(val[i], val[j]);
-            }
-        }
-        // Partial derivatives with respect to x
-        double[][] dFdX = new double[sz][sz];
-        BivariateFunction dfdX = new BivariateFunction() {
-                public double value(double x, double y) {
-                    final double x2 = x * x;
-                    final double y2 = y * y;                    
-                    return - 3 - y + 4 * x + 8 * x * y - y2 - 9 * x2;
-                }
-            };
-        for (int i = 0; i < sz; i++) {
-            for (int j = 0; j < sz; j++) {
-                dFdX[i][j] = dfdX.value(val[i], val[j]);
-            }
-        }
-        // Partial derivatives with respect to y
-        double[][] dFdY = new double[sz][sz];
-        BivariateFunction dfdY = new BivariateFunction() {
-                public double value(double x, double y) {
-                    final double x2 = x * x;
-                    final double y2 = y * y;                    
-                    return 2 - x - 6 * y + 4 * x2 - 2 * x * y + 3 * y2;
-                }
-            };
-        for (int i = 0; i < sz; i++) {
-            for (int j = 0; j < sz; j++) {
-                dFdY[i][j] = dfdY.value(val[i], val[j]);
-            }
-        }
-        // Partial cross-derivatives
-        double[][] d2FdXdY = new double[sz][sz];
-        BivariateFunction d2fdXdY = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return -1 + 8 * x - 2 * y;
-                }
-            };
-        for (int i = 0; i < sz; i++) {
-            for (int j = 0; j < sz; j++) {
-                d2FdXdY[i][j] = d2fdXdY.value(val[i], val[j]);
-            }
-        }
-
-        BicubicSplineInterpolatingFunction bcf
-            = new BicubicSplineInterpolatingFunction(val, val, fval, dFdX, dFdY, d2FdXdY);
-
-        double x, y;
-        double expected, result;
-
-        final double tol = 1e-12;
-        for (int i = 0; i < sz; i++) {
-            x = val[i];
-            for (int j = 0; j < sz; j++) {
-                y = val[j];
-                
-                expected = dfdX.value(x, y);
-                result = bcf.partialDerivativeX(x, y);
-                Assert.assertEquals(x + " " + y + " dFdX", expected, result, tol);
-
-                expected = dfdY.value(x, y);
-                result = bcf.partialDerivativeY(x, y);
-                Assert.assertEquals(x + " " + y + " dFdY", expected, result, tol);
-                
-                expected = d2fdXdY.value(x, y);
-                result = bcf.partialDerivativeXY(x, y);
-                Assert.assertEquals(x + " " + y + " d2FdXdY", expected, result, tol);
-            }
-        }
-    }
-
-    /**
-     * Interpolating a plane.
-     * <p>
-     * z = 2 x - 3 y + 5
-     */
-    @Test
-    public void testInterpolation1() {
-        final int sz = 21;
-        double[] xval = new double[sz];
-        double[] yval = new double[sz];
-        // Coordinate values
-        final double delta = 1d / (sz - 1);
-        for (int i = 0; i < sz; i++) {
-            xval[i] = -1 + 15 * i * delta;
-            yval[i] = -20 + 30 * i * delta;
-        }
-
-        // Function values
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 2 * x - 3 * y + 5;
-                }
-            };
-        double[][] zval = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                zval[i][j] = f.value(xval[i], yval[j]);
-            }
-        }
-        // Partial derivatives with respect to x
-        double[][] dZdX = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdX[i][j] = 2;
-            }
-        }
-        // Partial derivatives with respect to y
-        double[][] dZdY = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdY[i][j] = -3;
-            }
-        }
-        // Partial cross-derivatives
-        double[][] dZdXdY = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdXdY[i][j] = 0;
-            }
-        }
-
-        final BivariateFunction bcf
-            = new BicubicSplineInterpolatingFunction(xval, yval, zval,
-                                                     dZdX, dZdY, dZdXdY);
-        double x, y;
-
-        final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
-        final UniformRealDistribution distX
-            = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
-        final UniformRealDistribution distY
-            = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
-
-        final int numSamples = 50;
-        final double tol = 6;
-        for (int i = 0; i < numSamples; i++) {
-            x = distX.sample();
-            for (int j = 0; j < numSamples; j++) {
-                y = distY.sample();
-//                 System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y));
-                Assert.assertEquals(f.value(x, y),  bcf.value(x, y), tol);
-            }
-//             System.out.println();
-        }
-    }
-
-    /**
-     * Interpolating a paraboloid.
-     * <p>
-     * z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
-     */
-    @Test
-    public void testInterpolation2() {
-        final int sz = 21;
-        double[] xval = new double[sz];
-        double[] yval = new double[sz];
-        // Coordinate values
-        final double delta = 1d / (sz - 1);
-        for (int i = 0; i < sz; i++) {
-            xval[i] = -1 + 15 * i * delta;
-            yval[i] = -20 + 30 * i * delta;
-        }
-
-        // Function values
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 2 * x * x - 3 * y * y + 4 * x * y - 5;
-                }
-            };
-        double[][] zval = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                zval[i][j] = f.value(xval[i], yval[j]);
-            }
-        }
-        // Partial derivatives with respect to x
-        double[][] dZdX = new double[xval.length][yval.length];
-        BivariateFunction dfdX = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 4 * (x + y);
-                }
-            };
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdX[i][j] = dfdX.value(xval[i], yval[j]);
-            }
-        }
-        // Partial derivatives with respect to y
-        double[][] dZdY = new double[xval.length][yval.length];
-        BivariateFunction dfdY = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 4 * x - 6 * y;
-                }
-            };
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdY[i][j] = dfdY.value(xval[i], yval[j]);
-            }
-        }
-        // Partial cross-derivatives
-        double[][] dZdXdY = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                dZdXdY[i][j] = 4;
-            }
-        }
-
-        BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
-                                                                       dZdX, dZdY, dZdXdY);
-        double x, y;
-
-        final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
-        final UniformRealDistribution distX
-            = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
-        final UniformRealDistribution distY
-            = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
-
-        final double tol = 224;
-        for (int i = 0; i < sz; i++) {
-            x = distX.sample();
-            for (int j = 0; j < sz; j++) {
-                y = distY.sample();
-//                 System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y));
-                Assert.assertEquals(f.value(x, y),  bcf.value(x, y), tol);
-            }
-//             System.out.println();
-        }
-    }
-
-    @Test
-    public void testIsValidPoint() {
-        final double xMin = -12;
-        final double xMax = 34;
-        final double yMin = 5;
-        final double yMax = 67;
-        final double[] xval = new double[] { xMin, xMax };
-        final double[] yval = new double[] { yMin, yMax };
-        final double[][] f = new double[][] { { 1, 2 },
-                                              { 3, 4 } };
-        final double[][] dFdX = f;
-        final double[][] dFdY = f;
-        final double[][] dFdXdY = f;
-
-        final BicubicSplineInterpolatingFunction bcf
-            = new BicubicSplineInterpolatingFunction(xval, yval, f,
-                                                     dFdX, dFdY, dFdXdY);
-
-        double x, y;
-
-        x = xMin;
-        y = yMin;
-        Assert.assertTrue(bcf.isValidPoint(x, y));
-        // Ensure that no exception is thrown.
-        bcf.value(x, y);
-
-        x = xMax;
-        y = yMax;
-        Assert.assertTrue(bcf.isValidPoint(x, y));
-        // Ensure that no exception is thrown.
-        bcf.value(x, y);
- 
-        final double xRange = xMax - xMin;
-        final double yRange = yMax - yMin;
-        x = xMin + xRange / 3.4;
-        y = yMin + yRange / 1.2;
-        Assert.assertTrue(bcf.isValidPoint(x, y));
-        // Ensure that no exception is thrown.
-        bcf.value(x, y);
-
-        final double small = 1e-8;
-        x = xMin - small;
-        y = yMax;
-        Assert.assertFalse(bcf.isValidPoint(x, y));
-        // Ensure that an exception would have been thrown.
-        try {
-            bcf.value(x, y);
-            Assert.fail("OutOfRangeException expected");
-        } catch (OutOfRangeException expected) {}
-
-        x = xMin;
-        y = yMax + small;
-        Assert.assertFalse(bcf.isValidPoint(x, y));
-        // Ensure that an exception would have been thrown.
-        try {
-            bcf.value(x, y);
-            Assert.fail("OutOfRangeException expected");
-        } catch (OutOfRangeException expected) {}
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/0a5cd113/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatorTest.java
----------------------------------------------------------------------
diff --git a/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatorTest.java b/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatorTest.java
deleted file mode 100644
index 91f1f66..0000000
--- a/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatorTest.java
+++ /dev/null
@@ -1,186 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.interpolation;
-
-import org.apache.commons.math4.analysis.BivariateFunction;
-import org.apache.commons.math4.analysis.interpolation.BicubicSplineInterpolator;
-import org.apache.commons.math4.analysis.interpolation.BivariateGridInterpolator;
-import org.apache.commons.math4.distribution.UniformRealDistribution;
-import org.apache.commons.math4.exception.DimensionMismatchException;
-import org.apache.commons.math4.exception.MathIllegalArgumentException;
-import org.apache.commons.math4.random.RandomGenerator;
-import org.apache.commons.math4.random.Well19937c;
-import org.junit.Assert;
-import org.junit.Test;
-
-/**
- * Test case for the bicubic interpolator.
- * 
- */
-public final class BicubicSplineInterpolatorTest {
-    /**
-     * Test preconditions.
-     */
-    @Test
-    public void testPreconditions() {
-        double[] xval = new double[] {3, 4, 5, 6.5};
-        double[] yval = new double[] {-4, -3, -1, 2.5};
-        double[][] zval = new double[xval.length][yval.length];
-
-        BivariateGridInterpolator interpolator = new BicubicSplineInterpolator();
-        
-        @SuppressWarnings("unused")
-        BivariateFunction p = interpolator.interpolate(xval, yval, zval);
-        
-        double[] wxval = new double[] {3, 2, 5, 6.5};
-        try {
-            p = interpolator.interpolate(wxval, yval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (MathIllegalArgumentException e) {
-            // Expected
-        }
-
-        double[] wyval = new double[] {-4, -3, -1, -1};
-        try {
-            p = interpolator.interpolate(xval, wyval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (MathIllegalArgumentException e) {
-            // Expected
-        }
-
-        double[][] wzval = new double[xval.length][yval.length + 1];
-        try {
-            p = interpolator.interpolate(xval, yval, wzval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        wzval = new double[xval.length - 1][yval.length];
-        try {
-            p = interpolator.interpolate(xval, yval, wzval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-    }
-
-    /**
-     * Interpolating a plane.
-     * <p>
-     * z = 2 x - 3 y + 5
-     */
-    @Test
-    public void testInterpolation1() {
-        final int sz = 21;
-        double[] xval = new double[sz];
-        double[] yval = new double[sz];
-        // Coordinate values
-        final double delta = 1d / (sz - 1);
-        for (int i = 0; i < sz; i++) {
-            xval[i] = -1 + 15 * i * delta;
-            yval[i] = -20 + 30 * i * delta;
-        }
-
-        // Function values
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 2 * x - 3 * y + 5;
-                }
-            };
-        double[][] zval = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                zval[i][j] = f.value(xval[i], yval[j]);
-            }
-        }
-
-        BivariateGridInterpolator interpolator = new BicubicSplineInterpolator();
-        BivariateFunction p = interpolator.interpolate(xval, yval, zval);
-        double x, y;
-
-        final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
-        final UniformRealDistribution distX
-            = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
-        final UniformRealDistribution distY
-            = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
-
-        final int numSamples = 50;
-        final double tol = 6;
-        for (int i = 0; i < numSamples; i++) {
-            x = distX.sample();
-            for (int j = 0; j < numSamples; j++) {
-                y = distY.sample();
-//                 System.out.println(x + " " + y + " " + f.value(x, y) + " " + p.value(x, y));
-                Assert.assertEquals(f.value(x, y),  p.value(x, y), tol);
-            }
-//             System.out.println();
-        }
-    }
-
-    /**
-     * Interpolating a paraboloid.
-     * <p>
-     * z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
-     */
-    @Test
-    public void testInterpolation2() {
-        final int sz = 21;
-        double[] xval = new double[sz];
-        double[] yval = new double[sz];
-        // Coordinate values
-        final double delta = 1d / (sz - 1);
-        for (int i = 0; i < sz; i++) {
-            xval[i] = -1 + 15 * i * delta;
-            yval[i] = -20 + 30 * i * delta;
-        }
-
-        // Function values
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 2 * x * x - 3 * y * y + 4 * x * y - 5;
-                }
-            };
-        double[][] zval = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                zval[i][j] = f.value(xval[i], yval[j]);
-            }
-        }
-
-        BivariateGridInterpolator interpolator = new BicubicSplineInterpolator();
-        BivariateFunction p = interpolator.interpolate(xval, yval, zval);
-        double x, y;
-
-        final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
-        final UniformRealDistribution distX
-            = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
-        final UniformRealDistribution distY
-            = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
-
-        final int numSamples = 50;
-        final double tol = 251;
-        for (int i = 0; i < numSamples; i++) {
-            x = distX.sample();
-            for (int j = 0; j < numSamples; j++) {
-                y = distY.sample();
-//                 System.out.println(x + " " + y + " " + f.value(x, y) + " " + p.value(x, y));
-                Assert.assertEquals(f.value(x, y),  p.value(x, y), tol);
-            }
-//             System.out.println();
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/0a5cd113/src/test/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolatorTest.java
----------------------------------------------------------------------
diff --git a/src/test/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolatorTest.java b/src/test/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolatorTest.java
deleted file mode 100644
index 9cdd888..0000000
--- a/src/test/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolatorTest.java
+++ /dev/null
@@ -1,181 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.interpolation;
-
-import org.apache.commons.math4.analysis.BivariateFunction;
-import org.apache.commons.math4.analysis.interpolation.BivariateGridInterpolator;
-import org.apache.commons.math4.analysis.interpolation.SmoothingPolynomialBicubicSplineInterpolator;
-import org.apache.commons.math4.exception.DimensionMismatchException;
-import org.apache.commons.math4.exception.MathIllegalArgumentException;
-import org.apache.commons.math4.util.FastMath;
-import org.junit.Assert;
-import org.junit.Test;
-
-/**
- * Test case for the smoothing bicubic interpolator.
- * 
- */
-public final class SmoothingPolynomialBicubicSplineInterpolatorTest {
-    /**
-     * Test preconditions.
-     */
-    @Test
-    public void testPreconditions() {
-        double[] xval = new double[] {3, 4, 5, 6.5, 7.5};
-        double[] yval = new double[] {-4, -3, -1, 2.5, 3};
-        double[][] zval = new double[xval.length][yval.length];
-
-        BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(0);
-        
-        @SuppressWarnings("unused")
-        BivariateFunction p = interpolator.interpolate(xval, yval, zval);
-        
-        double[] wxval = new double[] {3, 2, 5, 6.5};
-        try {
-            p = interpolator.interpolate(wxval, yval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (MathIllegalArgumentException e) {
-            // Expected
-        }
-
-        double[] wyval = new double[] {-4, -3, -1, -1};
-        try {
-            p = interpolator.interpolate(xval, wyval, zval);
-            Assert.fail("an exception should have been thrown");
-        } catch (MathIllegalArgumentException e) {
-            // Expected
-        }
-
-        double[][] wzval = new double[xval.length][yval.length + 1];
-        try {
-            p = interpolator.interpolate(xval, yval, wzval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        wzval = new double[xval.length - 1][yval.length];
-        try {
-            p = interpolator.interpolate(xval, yval, wzval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-        wzval = new double[xval.length][yval.length - 1];
-        try {
-            p = interpolator.interpolate(xval, yval, wzval);
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException e) {
-            // Expected
-        }
-    }
-
-    /**
-     * Test of interpolator for a plane.
-     * <p>
-     * z = 2 x - 3 y + 5
-     */
-    @Test
-    public void testPlane() {
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 2 * x - 3 * y + 5
-                        + ((int) (FastMath.abs(5 * x + 3 * y)) % 2 == 0 ? 1 : -1);
-                }
-            };
-
-        BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(1);
-
-        double[] xval = new double[] {3, 4, 5, 6.5, 7.5};
-        double[] yval = new double[] {-4, -3, -1, 2, 2.5, 3.5};
-        double[][] zval = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                zval[i][j] = f.value(xval[i], yval[j]);
-            }
-        }
-
-        BivariateFunction p = interpolator.interpolate(xval, yval, zval);
-        double x, y;
-        double expected, result;
-        
-        x = 4;
-        y = -3;
-        expected = f.value(x, y);
-        result = p.value(x, y);
-        Assert.assertEquals("On sample point", expected, result, 2);
-
-        x = 4.5;
-        y = -1.5;
-        expected = f.value(x, y);
-        result = p.value(x, y);
-        Assert.assertEquals("half-way between sample points (middle of the patch)", expected, result, 2);
-
-        x = 3.5;
-        y = -3.5;
-        expected = f.value(x, y);
-        result = p.value(x, y);
-        Assert.assertEquals("half-way between sample points (border of the patch)", expected, result, 2);
-    }
-
-    /**
-     * Test of interpolator for a paraboloid.
-     * <p>
-     * z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
-     */
-    @Test
-    public void testParaboloid() {
-        BivariateFunction f = new BivariateFunction() {
-                public double value(double x, double y) {
-                    return 2 * x * x - 3 * y * y + 4 * x * y - 5
-                        + ((int) (FastMath.abs(5 * x + 3 * y)) % 2 == 0 ? 1 : -1);
-                }
-            };
-
-        BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(4);
-
-        double[] xval = new double[] {3, 4, 5, 6.5, 7.5, 8};
-        double[] yval = new double[] {-4, -3, -2, -1, 0.5, 2.5};
-        double[][] zval = new double[xval.length][yval.length];
-        for (int i = 0; i < xval.length; i++) {
-            for (int j = 0; j < yval.length; j++) {
-                zval[i][j] = f.value(xval[i], yval[j]);
-            }
-        }
-
-        BivariateFunction p = interpolator.interpolate(xval, yval, zval);
-        double x, y;
-        double expected, result;
-
-        x = 5;
-        y = 0.5;
-        expected = f.value(x, y);
-        result = p.value(x, y);
-        Assert.assertEquals("On sample point", expected, result, 2);
-
-        x = 4.5;
-        y = -1.5;
-        expected = f.value(x, y);
-        result = p.value(x, y);
-        Assert.assertEquals("half-way between sample points (middle of the patch)", expected, result, 2);
-
-        x = 3.5;
-        y = -3.5;
-        expected = f.value(x, y);
-        result = p.value(x, y);
-        Assert.assertEquals("half-way between sample points (border of the patch)", expected, result, 2);
-    }
-}