You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@helix.apache.org by jx...@apache.org on 2017/06/22 23:15:59 UTC

[16/28] helix git commit: Move latest website back to master branch

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.5/src/site/xdoc/download.xml.vm
----------------------------------------------------------------------
diff --git a/website/0.6.5/src/site/xdoc/download.xml.vm b/website/0.6.5/src/site/xdoc/download.xml.vm
new file mode 100644
index 0000000..c1dbc87
--- /dev/null
+++ b/website/0.6.5/src/site/xdoc/download.xml.vm
@@ -0,0 +1,214 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!--
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+
+-->
+#set( $releaseName = "0.6.5" )
+#set( $releaseDate = "09/03/2014" )
+<document xmlns="http://maven.apache.org/XDOC/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+          xsi:schemaLocation="http://maven.apache.org/XDOC/2.0 http://maven.apache.org/xsd/xdoc-2.0.xsd">
+
+  <properties>
+    <title>Apache Helix Downloads</title>
+    <author email="dev@helix.apache.org">Apache Helix Documentation Team</author>
+  </properties>
+
+  <body>
+    <div class="toc_container">
+      <macro name="toc">
+        <param name="class" value="toc"/>
+      </macro>
+    </div>
+
+    <section name="Introduction">
+      <p>Apache Helix artifacts are distributed in source and binary form under the terms of the
+        <a href="http://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>.
+        See the included <tt>LICENSE</tt> and <tt>NOTICE</tt> files included in each artifact for additional license
+        information.
+      </p>
+      <p>Use the links below to download a source distribution of Apache Helix.
+      It is good practice to <a href="#Verifying_Releases">verify the integrity</a> of the distribution files.</p>
+    </section>
+
+    <section name="Release">
+      <p>Release date: ${releaseDate} </p>
+      <p><a href="releasenotes/release-${releaseName}.html">${releaseName} Release notes</a></p>
+      <a name="mirror"/>
+      <subsection name="Mirror">
+
+        <p>
+          [if-any logo]
+          <a href="[link]">
+            <img align="right" src="[logo]" border="0"
+                 alt="logo"/>
+          </a>
+          [end]
+          The currently selected mirror is
+          <b>[preferred]</b>.
+          If you encounter a problem with this mirror,
+          please select another mirror.
+          If all mirrors are failing, there are
+          <i>backup</i>
+          mirrors
+          (at the end of the mirrors list) that should be available.
+        </p>
+
+        <form action="[location]" method="get" id="SelectMirror" class="form-inline">
+          Other mirrors:
+          <select name="Preferred" class="input-xlarge">
+            [if-any http]
+            [for http]
+            <option value="[http]">[http]</option>
+            [end]
+            [end]
+            [if-any ftp]
+            [for ftp]
+            <option value="[ftp]">[ftp]</option>
+            [end]
+            [end]
+            [if-any backup]
+            [for backup]
+            <option value="[backup]">[backup] (backup)</option>
+            [end]
+            [end]
+          </select>
+          <input type="submit" value="Change" class="btn"/>
+        </form>
+
+        <p>
+          You may also consult the
+          <a href="http://www.apache.org/mirrors/">complete list of mirrors.</a>
+        </p>
+
+      </subsection>
+      <subsection name="${releaseName} Sources">
+        <table>
+          <thead>
+            <tr>
+              <th>Artifact</th>
+              <th>Signatures</th>
+              <th>Hashes</th>
+            </tr>
+          </thead>
+          <tbody>
+            <tr>
+              <td>
+                <a href="[preferred]helix/${releaseName}/src/helix-${releaseName}-src.zip">helix-${releaseName}-src.zip</a>
+              </td>
+              <td>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/src/helix-${releaseName}-src.zip.asc">asc</a>
+              </td>
+              <td>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/src/helix-${releaseName}-src.zip.md5">md5</a>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/src/helix-${releaseName}-src.zip.sha1">sha1</a>
+              </td>
+            </tr>
+          </tbody>
+        </table>
+      </subsection>
+      <subsection name="${releaseName} Binaries">
+        <table>
+          <thead>
+            <tr>
+              <th>Artifact</th>
+              <th>Signatures</th>
+              <th>Hashes</th>
+            </tr>
+          </thead>
+          <tbody>
+            <tr>
+              <td>
+                <a href="[preferred]helix/${releaseName}/binaries/helix-core-${releaseName}-pkg.tar">helix-core-${releaseName}-pkg.tar</a>
+              </td>
+              <td>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-core-${releaseName}-pkg.tar.asc">asc</a>
+              </td>
+              <td>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-core-${releaseName}-pkg.tar.md5">md5</a>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-core-${releaseName}-pkg.tar.sha1">sha1</a>
+              </td>
+            </tr>
+            <tr>
+              <td>
+                <a href="[preferred]helix/${releaseName}/binaries/helix-admin-webapp-${releaseName}-pkg.tar">helix-admin-webapp-${releaseName}-pkg.tar</a>
+              </td>
+              <td>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-admin-webapp-${releaseName}-pkg.tar.asc">asc</a>
+              </td>
+              <td>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-admin-webapp-${releaseName}-pkg.tar.md5">md5</a>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-admin-webapp-${releaseName}-pkg.tar.sha1">sha1</a>
+              </td>
+            </tr>
+            <tr>
+              <td>
+                <a href="[preferred]helix/${releaseName}/binaries/helix-agent-${releaseName}-pkg.tar">helix-agent-${releaseName}-pkg.tar</a>
+              </td>
+              <td>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-agent-${releaseName}-pkg.tar.asc">asc</a>
+              </td>
+              <td>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-agent-${releaseName}-pkg.tar.md5">md5</a>
+                <a href="http://www.apache.org/dist/helix/${releaseName}/binaries/helix-agent-${releaseName}-pkg.tar.sha1">sha1</a>
+              </td>
+            </tr>
+          </tbody>
+        </table>
+      </subsection>
+    </section>
+
+<!--    <section name="Older Releases">
+    </section>-->
+
+    <section name="Verifying Releases">
+      <p>It is essential that you verify the integrity of the downloaded file using the PGP signature (<tt>.asc</tt> file) or a hash (<tt>.md5</tt> or <tt>.sha1</tt> file). Please read <a href="http://www.apache.org/info/verification.html">Verifying Apache Software Foundation Releases</a> for more information on why you should verify our releases.</p>
+      <p>The PGP signature can be verified using <a href="http://www.pgpi.org/">PGP</a> or <a href="http://www.gnupg.org/">GPG</a>. First download the <a href="http://www.apache.org/dist/helix/KEYS">KEYS</a> as well as the <tt>*.asc</tt> signature files for the relevant distribution. Make sure you get these files from the main distribution site, rather than from a mirror. Then verify the signatures using one of the following sets of commands:
+
+        <source>% pgpk -a KEYS
+% pgpv downloaded_file.asc</source>
+
+      or<br/>
+
+        <source>% pgp -ka KEYS
+% pgp downloaded_file.asc</source>
+
+      or<br/>
+
+        <source>% gpg --import KEYS
+% gpg --verify downloaded_file.asc</source>
+       </p>
+    <p>Alternatively, you can verify the MD5 signature on the files. A Unix/Linux program called
+      <code>md5</code> or
+      <code>md5sum</code> is included in most distributions.  It is also available as part of
+      <a href="http://www.gnu.org/software/textutils/textutils.html">GNU Textutils</a>.
+      Windows users can get binary md5 programs from these (and likely other) places:
+      <ul>
+        <li>
+          <a href="http://www.md5summer.org/">http://www.md5summer.org/</a>
+        </li>
+        <li>
+          <a href="http://www.fourmilab.ch/md5/">http://www.fourmilab.ch/md5/</a>
+        </li>
+        <li>
+          <a href="http://www.pc-tools.net/win32/md5sums/">http://www.pc-tools.net/win32/md5sums/</a>
+        </li>
+      </ul>
+    </p>
+    </section>
+  </body>
+</document>

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.5/src/test/conf/testng.xml
----------------------------------------------------------------------
diff --git a/website/0.6.5/src/test/conf/testng.xml b/website/0.6.5/src/test/conf/testng.xml
new file mode 100644
index 0000000..58f0803
--- /dev/null
+++ b/website/0.6.5/src/test/conf/testng.xml
@@ -0,0 +1,27 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!--
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">
+<suite name="Suite" parallel="none">
+  <test name="Test" preserve-order="false">
+    <packages>
+      <package name="org.apache.helix"/>
+    </packages>
+  </test>
+</suite>

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/pom.xml
----------------------------------------------------------------------
diff --git a/website/0.6.6/pom.xml b/website/0.6.6/pom.xml
new file mode 100644
index 0000000..d6be30b
--- /dev/null
+++ b/website/0.6.6/pom.xml
@@ -0,0 +1,51 @@
+<?xml version="1.0" encoding="UTF-8" ?>
+<!--
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
+  <modelVersion>4.0.0</modelVersion>
+
+  <parent>
+    <groupId>org.apache.helix</groupId>
+    <artifactId>website</artifactId>
+    <version>0.7.2-SNAPSHOT</version>
+  </parent>
+
+  <artifactId>0.6.6-docs</artifactId>
+  <packaging>bundle</packaging>
+  <name>Apache Helix :: Website :: 0.6.6</name>
+
+  <properties>
+  </properties>
+
+  <dependencies>
+    <dependency>
+      <groupId>org.testng</groupId>
+      <artifactId>testng</artifactId>
+      <version>6.0.1</version>
+    </dependency>
+  </dependencies>
+  <build>
+    <pluginManagement>
+      <plugins>
+      </plugins>
+    </pluginManagement>
+    <plugins>
+    </plugins>
+  </build>
+</project>

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/src/site/apt/privacy-policy.apt
----------------------------------------------------------------------
diff --git a/website/0.6.6/src/site/apt/privacy-policy.apt b/website/0.6.6/src/site/apt/privacy-policy.apt
new file mode 100644
index 0000000..ada9363
--- /dev/null
+++ b/website/0.6.6/src/site/apt/privacy-policy.apt
@@ -0,0 +1,52 @@
+ ----
+ Privacy Policy
+ -----
+ Olivier Lamy
+ -----
+ 2013-02-04
+ -----
+
+~~ Licensed to the Apache Software Foundation (ASF) under one
+~~ or more contributor license agreements.  See the NOTICE file
+~~ distributed with this work for additional information
+~~ regarding copyright ownership.  The ASF licenses this file
+~~ to you under the Apache License, Version 2.0 (the
+~~ "License"); you may not use this file except in compliance
+~~ with the License.  You may obtain a copy of the License at
+~~
+~~   http://www.apache.org/licenses/LICENSE-2.0
+~~
+~~ Unless required by applicable law or agreed to in writing,
+~~ software distributed under the License is distributed on an
+~~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+~~ KIND, either express or implied.  See the License for the
+~~ specific language governing permissions and limitations
+~~ under the License.
+
+Privacy Policy
+
+  Information about your use of this website is collected using server access logs and a tracking cookie. The 
+  collected information consists of the following:
+
+  [[1]] The IP address from which you access the website;
+  
+  [[2]] The type of browser and operating system you use to access our site;
+  
+  [[3]] The date and time you access our site;
+  
+  [[4]] The pages you visit; and
+  
+  [[5]] The addresses of pages from where you followed a link to our site.
+
+  []
+
+  Part of this information is gathered using a tracking cookie set by the 
+  {{{http://www.google.com/analytics/}Google Analytics}} service and handled by Google as described in their 
+  {{{http://www.google.com/privacy.html}privacy policy}}. See your browser documentation for instructions on how to 
+  disable the cookie if you prefer not to share this data with Google.
+
+  We use the gathered information to help us make our site more useful to visitors and to better understand how and 
+  when our site is used. We do not track or collect personally identifiable information or associate gathered data 
+  with any personally identifying information from other sources.
+
+  By using this website, you consent to the collection of this data in the manner and for the purpose described above.

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/src/site/apt/releasenotes/release-0.6.6.apt
----------------------------------------------------------------------
diff --git a/website/0.6.6/src/site/apt/releasenotes/release-0.6.6.apt b/website/0.6.6/src/site/apt/releasenotes/release-0.6.6.apt
new file mode 100644
index 0000000..b500dcb
--- /dev/null
+++ b/website/0.6.6/src/site/apt/releasenotes/release-0.6.6.apt
@@ -0,0 +1,280 @@
+ -----
+ Release Notes for Apache Helix 0.6.6
+ -----
+
+~~ Licensed to the Apache Software Foundation (ASF) under one
+~~ or more contributor license agreements.  See the NOTICE file
+~~ distributed with this work for additional information
+~~ regarding copyright ownership.  The ASF licenses this file
+~~ to you under the Apache License, Version 2.0 (the
+~~ "License"); you may not use this file except in compliance
+~~ with the License.  You may obtain a copy of the License at
+~~
+~~   http://www.apache.org/licenses/LICENSE-2.0
+~~
+~~ Unless required by applicable law or agreed to in writing,
+~~ software distributed under the License is distributed on an
+~~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+~~ KIND, either express or implied.  See the License for the
+~~ specific language governing permissions and limitations
+~~ under the License.
+
+~~ NOTE: For help with the syntax of this file, see:
+~~ http://maven.apache.org/guides/mini/guide-apt-format.html
+
+Release Notes for Apache Helix 0.6.6
+
+  The Apache Helix team would like to announce the release of Apache Helix 0.6.6.
+
+  This is the ninth release under the Apache umbrella, and the fifth as a top-level project.
+
+  Helix is a generic cluster management framework used for the automatic management of partitioned, replicated and distributed resources hosted on a cluster of nodes. Helix provides the following features:
+
+  * Automatic assignment of resource/partition to nodes
+
+  * Node failure detection and recovery
+
+  * Dynamic addition of Resources
+
+  * Dynamic addition of nodes to the cluster
+
+  * Pluggable distributed state machine to manage the state of a resource via state transitions
+
+  * Automatic load balancing and throttling of transitions
+
+  []
+
+
+* What is new in Helix 0.6.6
+
+** Task Framework Features and Improvements
+
+*** Performance/Stability Improvements. 
+    
+    We have made several major changes on existing task framework to improve its performance and stability, two of the major improvements are:
+
+    * Dramatically reduced the number of IdealState and ExternalView. In the new release, the IdealState of a job will be generated only when it is scheduled to run, and will be removed immediately once the job is completed. In addition, ExternalView for a job is not persisted by default since Job's external view neither useful nor interested by any clients. This change has dramatically reduced the amounts of znodes and traffic to our Zookeeper servers.
+
+    * Unstable scheduling of recurrent jobs. We have seen that the scheduling of recurrent queues and jobs were not stable in old releases.  We have reworked on the timer management in Helix task framework to make it more reliable during many error cases in the new release. 
+
+*** Features
+
+    A major set of new features has also been introduced into the task framework, some of them:
+
+    * Generic Job Support. Besides the Targeted Resource Job, which requires a target resource (database) be associated with a job, now Helix also supports to create a Generic Job, which a job can be created without being associated with any existing resource. 
+
+    * Persistence and Sharing of Contents across Tasks and Jobs.  This new task API allows user's task to persist simple key-value pairs during run-time.  This key-value pairs are visible and shared across other tasks within one job, or across jobs within the same workflow, depends on the scope of the key-value pair. 
+
+    * Conditional Task Retry.  Previously, if a task is failed (timeout-ed, task returned FAILED, or throws any exceptions), the task will be always retried until it reaches the specified max retry count.  However, there are many scenarios in which if certain errors happen, retrying the task will not help. In new release,  Helix provides client a new option to tell Helix whether it should retry or abort the task upon a failure.
+
+    * Running Jobs on Specific Instance Group. Now, when you create a job, you have an option to specify an instance (node) group that you would like this job to be scheduled and run on. Helix will guarantee to not run the job on any nodes that do not belong to the instance group.
+
+    * Persist Task Error Message in Helix. In this release, Helix provides a channel to persist a simple failure messages from each task and provides a set of API for clients to retrieve these messages programmatically. 
+
+
+** Topology-aware (Rack-aware) Auto Rebalancer
+
+    The topology-aware placement strategy provides common strategies for dynamic allocation of partitions within failure zones for these systems administered by Helix. In this release, Helix has shipped two new topology-aware placement strategies along with its full-auto rebalancer.  The new placement strategies allow users to specify a flexible representation of a cluster topology and fault zones. Helix will perform replica placement in a topology-aware way such that the replicas for a partition will not reside in the same failure zone, which essentially avoids service disruption upon the loss of a single fault zone.
+
+** Client Side Thread-pool
+
+    The new release has improved the way how Helix manages its client side threadpools, which includes:
+
+    * Support of client's customized threadpool for state-transition message handling. In old releases, Helix uses a fix-sized thread pool to handle all state transitions in each instance.  The new feature allows client to specify a thread pool, which gives clients more flexibility over thread pool type (fixed or dynamic) and size.
+
+    * Fix thread leaking problem in TaskStateModel. We found a thread-leaking issue because a new thread was always initiated to run client's task.  We have fixed this issue by using shared thread pool for all users' tasks.
+
+
+** New APIs for Monitoring and Operating Job Workflows and Queues
+
+    For Helix client to better retrieve and monitor workflow and job status, a set of methods are added into TaskDriver, which include:
+
+    * PollForJobState and PollForWorkflowState for client to synchronously waiting on a status change.
+    * Retrieving job and workflow configurations and contexts.
+    * Listing all workflows from a cluster.
+    * New Builder class for Workflow, Queue, Job and TaskConfig
+
+** Zookeeper Re-connect Failures after ZK Server Bounce
+
+    We have seen many time that Helix controller fails to reconnect to Zookeeper after one or more of ZK servers experiences long GC or restart. The problem was actually caused by a ZooKeeper bug (ZOOKEEPER-706).  We have bumped our ZK dependency to the fixed version. Please refer to the detailed discussion on this jira.
+
+** Partitions Not Moving Away from Disabled Instances in FULL_AUTO Mode. 
+
+    We saw the problem that when an instance is disabled, Helix still tries to put partitions on the instance.  This issue has been fixed in this new release.
+
+** New Set of Monitoring Metrics for Workflows and Jobs 
+
+    As more and more features are added in Task Framework, monitoring workflows and jobs takes a vital part of stabilizing Helix for long run.  A new set of metrics has been added to better monitor all workflows and jobs. More information on what metrics are exposed for your workflows and jobs, please refer here.
+
+
+
+
+
+* Detailed Changes
+
+** Bug
+
+    * [HELIX-543] Avoid moving partitions unnecessarily when auto-rebalancing.
+
+    * Check Workflow is JobQueue before doing parallel jobs logics.
+    
+    * [HELIX-631] AutoRebalanceStrategy does not work correctly all the time.
+    
+    * Fix NPE when first time call WorkflowRebalancer.
+    
+    * Fix Workflow and Job metrics Counters.
+    
+    * [HELIX-633] AutoRebalancer should ignore disabled instance and all partitions on disabled instances should be dropped in 
+    FULL_AUTO rebalance mode.
+    
+    * Fix task assignment in instance group tag check.
+    
+    * Fix missing workflowtype assign in builder.
+    
+    * TaskUtil.getWorkflowCfg throws NPE if workflow doesn't exist.
+    
+    * Fix the statemodelFactories in Example Process.
+    
+    * [HELIX-618]  Job hung if the target resource does not exist anymore at the time when it is scheduled.
+    
+    * [Helix-624] Fix NPE in TestMessageService.TestMultiMessageCriteria.
+    
+    * [HELIX-615] Naming problem of scheduled jobs from recurrent queue.
+    
+    * [HELIX-613] Fix thread leaking problems in TaskStateModel by sharing one thread pool among all tasks and timeout tasks from TaskStateModels created from the same TaskStateModelFactory.
+    
+    * [Helix-612] Bump up the version of zkClient and zookeeper to avoid NPE.
+    
+    * [HELIX-600] Task scheduler fails to schedule a recurring workflow if the startTime is set to a future timestamp.
+    
+    * [HELIX-592] addCluster should respect overwriteExisitng when adding stateModel Definations.
+    
+    * [HELIX-589] Delete job API throws NPE if the job does not exist in last scheduled workflow.
+    
+    * [HELIX-587] Fix NPE in ClusterStateVerifier.
+    
+    * [HELIX-584] SimpleDateFormat should not be used as singleton due to its race conditions.
+    
+    * [HELIX-578] NPE while deleting a job from a recurrent job queue.
+
+
+** Improvement
+
+    * Add AbortedJobCount in JobMonior.
+
+    * Job Config and logic refactoring with 1)Support identical task initialization with job command and number of tasks, 2)Remove unused MaxForcedReassignmentPerTask field and 3)Refactor logics of failure.
+    
+    * [HELIX-635] GenericTaskAssignmentCalculator rebalance with consistent hashing. 1) Implement consistent hashing mapping calculation, 2) Remove reassign logics and applied in consistent hashing.
+    
+    * Refactor TaskAssignmentCalculator API.
+    
+    * Monitors for Task framework. 1) Add workflow and job monitor MBeans and implementations, and 2) Add tests for MBean existing checking.
+    
+    * Check whether instance is disable when assigning tasks to instances in TaskRebalancer.
+    
+    * Add Partition task start time.
+    
+    * Add WorkflowType and JobType in WorkflowConfig and JobConfig.
+    
+    * Added method to TaskDriver to get all workflows from a cluster. Added methods to convert HelixProperty to WorkflowConfig and JobConfig.
+    
+    * More cleanup on workflow and workflowConfig builders.
+    
+    * Add Builder class for TaskConfig, and add unit test for testing generic jobs.
+    
+    * Add static methods into TaskDriver for getting configuration/context for jobs and workflows.
+    
+    * Refactor Workflow and Jobqueue builders to make the builder API more clean.
+    
+    * Add methods in TaskDriver for getting Workflow/Job configuration and context. External users should call these methods instead of TaskUtil.
+    
+    * [HELIX-623] Do not expose internal configuration field name. Client should use JobConfig.Builder to create jobConfig.
+    
+    * [HELIX-617] Job IdealState is generated even the job is not running and not removed when it is completed.
+    
+    * [HELIX-616] Change JobQueue to be subclass of Workflow instead of WorkflowConfig.
+    
+    * [HELIX-614] Fix the bug when job expiry time is shorter than job schedule interval in recurring job queue.
+    
+    * [Helix-606] Add an option in IdealState to allow a resource to disable showing external view.
+
+
+** New Feature
+
+    * [HELIX-636] Add Java API and REST API for clean up JobQueue.
+    
+    * Add ABORT state in TaskState and set tasks IN_PROGRESS to ABORT when workflow fails.
+    
+    * [HELIX-568] Add new topology aware (rack-aware) rebalance strategy based on CRUSH algorithm. Design doc is available at: https://cwiki.apache.org/confluence/display/HELIX/Helix+Topology-aware+Rebalance+Strategy.
+    
+    * [HELIX-634] Refactor AutoRebalancer to allow configuable placement strategy.
+    
+    * Support user defined content store per workflow/job/task layer, 1) Add feature to support workflow/job/task layer key value user defined content store, and 2) Add test case for workflow/job/task layer key-value pair store and verify.
+    
+    * Allow an instance group tag to be configured for a job, so all tasks of the job can only be running on the instances containing the tag. 1) Add instance group tag for jobs, and 2) Add a test for job assignment when the only instance can be assigned instance is disabled.
+    
+    * Add pollForJobState and pollForWorkflowState function in TaskDriver.
+    
+    * Populate Error message from running client's task and persist it into JobContext for better error reporting.
+    
+    * Add a new task state (TASK_ABORTED) to TaskResult. This allows client to abort a task and let Helix not retry it even Task RetryCount is bigger than 1.
+    
+    * Add new job option to allow contining a job even its direct dependent job fails.
+    
+    * Support changes of workflow configuration.
+    
+    * [HELIX-622] Add new resource configuration option to allow resource to disable emmiting monitoring bean.
+    
+    * [HELIX-599] Support creating/maintaining/routing resources with same names in different instance groups.
+    
+    * [HELIX-601] Allow workflow to schedule dependency jobs in parallel.
+    
+    * [HELIX-591] Provide getResourcesWithTag in HelixAdmin to retrieve all resources with a group tag.
+    
+    * [HELIX-583] support deleting recurring job queue.
+
+
+** Task
+
+    * Upgrade maven release plugin version.
+    
+    * Update Apache POM version.
+    
+    * Make sure all dependant service using zookeeper 3.4.9 version.
+    
+    * Bump Zookeeper client version to 3.4.9 to catch the fix of session reestablish failure due to large set of watches.
+
+
+** Test
+
+    * Add integration test for running task with unregistered command.
+    
+    * Refactor redundant code TestTaskRebalancerRetryLimit.
+    
+    * Add test to test task retry with and without delay.
+    
+    * Add unit tests to retrieve all workflows and job info from a cluster.
+    
+    * Add unit test to retrieve workflow and job configurations.
+    
+    * Add job dependency workflow test.
+    
+    * Refactor tests with TaskTestBase and remove duplicated code.
+    
+    * Add TaskTestBase and refactor 2 tests.
+    
+    * Fix task framework unit test failure.
+    
+    * Refactor TaskUtil class to move as many as methods out of the class, and make other methods in it as internal API as possible. Expose necessary APIs in TaskDriver instead.
+    
+    * More fixes and cleanup on task unit tests.
+    
+    * Fix task framework unit tests.
+    
+    * Clean up unit tests for task framework.
+
+[]
+
+Cheers,
+--
+The Apache Helix Team

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/src/site/markdown/Building.md
----------------------------------------------------------------------
diff --git a/website/0.6.6/src/site/markdown/Building.md b/website/0.6.6/src/site/markdown/Building.md
new file mode 100644
index 0000000..e8c2df3
--- /dev/null
+++ b/website/0.6.6/src/site/markdown/Building.md
@@ -0,0 +1,42 @@
+<!---
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+
+Build Instructions
+------------------
+
+### From Source
+
+Requirements: JDK 1.6+, Maven 2.0.8+
+
+```
+git clone https://git-wip-us.apache.org/repos/asf/helix.git
+cd helix
+git checkout tags/helix-0.6.6
+mvn install package -DskipTests
+```
+
+### Maven Dependency
+
+```
+<dependency>
+  <groupId>org.apache.helix</groupId>
+  <artifactId>helix-core</artifactId>
+  <version>0.6.6</version>
+</dependency>
+```

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/src/site/markdown/Features.md
----------------------------------------------------------------------
diff --git a/website/0.6.6/src/site/markdown/Features.md b/website/0.6.6/src/site/markdown/Features.md
new file mode 100644
index 0000000..ba9d0e7
--- /dev/null
+++ b/website/0.6.6/src/site/markdown/Features.md
@@ -0,0 +1,313 @@
+<!---
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+
+<head>
+  <title>Features</title>
+</head>
+
+Features
+----------------------------
+
+
+### CONFIGURING IDEALSTATE
+
+
+Read concepts page for definition of Idealstate.
+
+The placement of partitions in a DDS is very critical for reliability and scalability of the system. 
+For example, when a node fails, it is important that the partitions hosted on that node are reallocated evenly among the remaining nodes. Consistent hashing is one such algorithm that can guarantee this.
+Helix by default comes with a variant of consistent hashing based of the RUSH algorithm. 
+
+This means given a number of partitions, replicas and number of nodes Helix does the automatic assignment of partition to nodes such that
+
+* Each node has the same number of partitions and replicas of the same partition do not stay on the same node.
+* When a node fails, the partitions will be equally distributed among the remaining nodes
+* When new nodes are added, the number of partitions moved will be minimized along with satisfying the above two criteria.
+
+
+Helix provides multiple ways to control the placement and state of a replica. 
+
+```
+
+            |AUTO REBALANCE|   AUTO     |   CUSTOM  |       
+            -----------------------------------------
+   LOCATION | HELIX        |  APP       |  APP      |
+            -----------------------------------------
+      STATE | HELIX        |  HELIX     |  APP      |
+            -----------------------------------------
+```
+
+#### HELIX EXECUTION MODE 
+
+
+Idealstate is defined as the state of the DDS when all nodes are up and running and healthy. 
+Helix uses this as the target state of the system and computes the appropriate transitions needed in the system to bring it to a stable state. 
+
+Helix supports 3 different execution modes which allows application to explicitly control the placement and state of the replica.
+
+##### AUTO_REBALANCE
+
+When the idealstate mode is set to AUTO_REBALANCE, Helix controls both the location of the replica along with the state. This option is useful for applications where creation of a replica is not expensive. Example
+
+```
+{
+  "id" : "MyResource",
+  "simpleFields" : {
+    "IDEAL_STATE_MODE" : "AUTO_REBALANCE",
+    "NUM_PARTITIONS" : "3",
+    "REPLICAS" : "2",
+    "STATE_MODEL_DEF_REF" : "MasterSlave",
+  }
+  "listFields" : {
+    "MyResource_0" : [],
+    "MyResource_1" : [],
+    "MyResource_2" : []
+  },
+  "mapFields" : {
+  }
+}
+```
+
+If there are 3 nodes in the cluster, then Helix will internally compute the ideal state as 
+
+```
+{
+  "id" : "MyResource",
+  "simpleFields" : {
+    "NUM_PARTITIONS" : "3",
+    "REPLICAS" : "2",
+    "STATE_MODEL_DEF_REF" : "MasterSlave",
+  },
+  "mapFields" : {
+    "MyResource_0" : {
+      "N1" : "MASTER",
+      "N2" : "SLAVE",
+    },
+    "MyResource_1" : {
+      "N2" : "MASTER",
+      "N3" : "SLAVE",
+    },
+    "MyResource_2" : {
+      "N3" : "MASTER",
+      "N1" : "SLAVE",
+    }
+  }
+}
+```
+
+Another typical example is evenly distributing a group of tasks among the currently alive processes. For example, if there are 60 tasks and 4 nodes, Helix assigns 15 tasks to each node. 
+When one node fails Helix redistributes its 15 tasks to the remaining 3 nodes. Similarly, if a node is added, Helix re-allocates 3 tasks from each of the 4 nodes to the 5th node. 
+
+#### AUTO
+
+When the idealstate mode is set to AUTO, Helix only controls STATE of the replicas where as the location of the partition is controlled by application. Example: The below idealstate indicates thats 'MyResource_0' must be only on node1 and node2.  But gives the control of assigning the STATE to Helix.
+
+```
+{
+  "id" : "MyResource",
+  "simpleFields" : {
+    "IDEAL_STATE_MODE" : "AUTO",
+    "NUM_PARTITIONS" : "3",
+    "REPLICAS" : "2",
+    "STATE_MODEL_DEF_REF" : "MasterSlave",
+  }
+  "listFields" : {
+    "MyResource_0" : [node1, node2],
+    "MyResource_1" : [node2, node3],
+    "MyResource_2" : [node3, node1]
+  },
+  "mapFields" : {
+  }
+}
+```
+In this mode when node1 fails, unlike in AUTO-REBALANCE mode the partition is not moved from node1 to others nodes in the cluster. Instead, Helix will decide to change the state of MyResource_0 in N2 based on the system constraints. For example, if a system constraint specified that there should be 1 Master and if the Master failed, then node2 will be made the new master. 
+
+#### CUSTOM
+
+Helix offers a third mode called CUSTOM, in which application can completely control the placement and state of each replica. Applications will have to implement an interface that Helix will invoke when the cluster state changes. 
+Within this callback, the application can recompute the idealstate. Helix will then issue appropriate transitions such that Idealstate and Currentstate converges.
+
+```
+{
+  "id" : "MyResource",
+  "simpleFields" : {
+      "IDEAL_STATE_MODE" : "CUSTOM",
+    "NUM_PARTITIONS" : "3",
+    "REPLICAS" : "2",
+    "STATE_MODEL_DEF_REF" : "MasterSlave",
+  },
+  "mapFields" : {
+    "MyResource_0" : {
+      "N1" : "MASTER",
+      "N2" : "SLAVE",
+    },
+    "MyResource_1" : {
+      "N2" : "MASTER",
+      "N3" : "SLAVE",
+    },
+    "MyResource_2" : {
+      "N3" : "MASTER",
+      "N1" : "SLAVE",
+    }
+  }
+}
+```
+
+For example, the current state of the system might be 'MyResource_0' -> {N1:MASTER,N2:SLAVE} and the application changes the ideal state to 'MyResource_0' -> {N1:SLAVE,N2:MASTER}. Helix will not blindly issue MASTER-->SLAVE to N1 and SLAVE-->MASTER to N2 in parallel since it might result in a transient state where both N1 and N2 are masters.
+Helix will first issue MASTER-->SLAVE to N1 and after its completed it will issue SLAVE-->MASTER to N2. 
+ 
+
+### State Machine Configuration
+
+Helix comes with 3 default state models that are most commonly used. Its possible to have multiple state models in a cluster. 
+Every resource that is added should have a reference to the state model. 
+
+* MASTER-SLAVE: Has 3 states OFFLINE,SLAVE,MASTER. Max masters is 1. Slaves will be based on the replication factor. Replication factor can be specified while adding the resource
+* ONLINE-OFFLINE: Has 2 states OFFLINE and ONLINE. Very simple state model and most applications start off with this state model.
+* LEADER-STANDBY:1 Leader and many stand bys. In general the standby's are idle.
+
+Apart from providing the state machine configuration, one can specify the constraints of states and transitions.
+
+For example one can say
+Master:1. Max number of replicas in Master state at any time is 1.
+OFFLINE-SLAVE:5 Max number of Offline-Slave transitions that can happen concurrently in the system
+
+STATE PRIORITY
+Helix uses greedy approach to satisfy the state constraints. For example if the state machine configuration says it needs 1 master and 2 slaves but only 1 node is active, Helix must promote it to master. This behavior is achieved by providing the state priority list as MASTER,SLAVE.
+
+STATE TRANSITION PRIORITY
+Helix tries to fire as many transitions as possible in parallel to reach the stable state without violating constraints. By default Helix simply sorts the transitions alphabetically and fires as many as it can without violating the constraints. 
+One can control this by overriding the priority order.
+ 
+### Config management
+
+Helix allows applications to store application specific properties. The configuration can have different scopes.
+
+* Cluster
+* Node specific
+* Resource specific
+* Partition specific
+
+Helix also provides notifications when any configs are changed. This allows applications to support dynamic configuration changes.
+
+See HelixManager.getConfigAccessor for more info
+
+### Intra cluster messaging api
+
+This is an interesting feature which is quite useful in practice. Often times, nodes in DDS requires a mechanism to interact with each other. One such requirement is a process of bootstrapping a replica.
+
+Consider a search system use case where the index replica starts up and it does not have an index. One of the commonly used solutions is to get the index from a common location or to copy the index from another replica.
+Helix provides a messaging api, that can be used to talk to other nodes in the system. The value added that Helix provides here is, message recipient can be specified in terms of resource, 
+partition, state and Helix ensures that the message is delivered to all of the required recipients. In this particular use case, the instance can specify the recipient criteria as all replicas of P1. 
+Since Helix is aware of the global state of the system, it can send the message to appropriate nodes. Once the nodes respond Helix provides the bootstrapping replica with all the responses.
+
+This is a very generic api and can also be used to schedule various periodic tasks in the cluster like data backups etc. 
+System Admins can also perform adhoc tasks like on demand backup or execute a system command(like rm -rf ;-)) across all nodes.
+
+```
+      ClusterMessagingService messagingService = manager.getMessagingService();
+      //CONSTRUCT THE MESSAGE
+      Message requestBackupUriRequest = new Message(
+          MessageType.USER_DEFINE_MSG, UUID.randomUUID().toString());
+      requestBackupUriRequest
+          .setMsgSubType(BootstrapProcess.REQUEST_BOOTSTRAP_URL);
+      requestBackupUriRequest.setMsgState(MessageState.NEW);
+      //SET THE RECIPIENT CRITERIA, All nodes that satisfy the criteria will receive the message
+      Criteria recipientCriteria = new Criteria();
+      recipientCriteria.setInstanceName("%");
+      recipientCriteria.setRecipientInstanceType(InstanceType.PARTICIPANT);
+      recipientCriteria.setResource("MyDB");
+      recipientCriteria.setPartition("");
+      //Should be processed only the process that is active at the time of sending the message. 
+      //This means if the recipient is restarted after message is sent, it will not be processed.
+      recipientCriteria.setSessionSpecific(true);
+      // wait for 30 seconds
+      int timeout = 30000;
+      //The handler that will be invoked when any recipient responds to the message.
+      BootstrapReplyHandler responseHandler = new BootstrapReplyHandler();
+      //This will return only after all recipients respond or after timeout.
+      int sentMessageCount = messagingService.sendAndWait(recipientCriteria,
+          requestBackupUriRequest, responseHandler, timeout);
+```
+
+See HelixManager.getMessagingService for more info.
+
+
+### Application specific property storage
+
+There are several usecases where applications needs support for distributed data structures. Helix uses Zookeeper to store the application data and hence provides notifications when the data changes. 
+One value add Helix provides is the ability to specify cache the data and also write through cache. This is more efficient than reading from ZK every time.
+
+See HelixManager.getHelixPropertyStore
+
+### Throttling
+
+Since all state changes in the system are triggered through transitions, Helix can control the number of transitions that can happen in parallel. Some of the transitions may be light weight but some might involve moving data around which is quite expensive.
+Helix allows applications to set threshold on transitions. The threshold can be set at the multiple scopes.
+
+* MessageType e.g STATE_TRANSITION
+* TransitionType e.g SLAVE-MASTER
+* Resource e.g database
+* Node i.e per node max transitions in parallel.
+
+See HelixManager.getHelixAdmin.addMessageConstraint() 
+
+### Health monitoring and alerting
+
+This in currently in development mode, not yet productionized.
+
+Helix provides ability for each node in the system to report health metrics on a periodic basis. 
+Helix supports multiple ways to aggregate these metrics like simple SUM, AVG, EXPONENTIAL DECAY, WINDOW. Helix will only persist the aggregated value.
+Applications can define threshold on the aggregate values according to the SLA's and when the SLA is violated Helix will fire an alert. 
+Currently Helix only fires an alert but eventually we plan to use this metrics to either mark the node dead or load balance the partitions. 
+This feature will be valuable in for distributed systems that support multi-tenancy and have huge variation in work load patterns. Another place this can be used is to detect skewed partitions and rebalance the cluster.
+
+This feature is not yet stable and do not recommend to be used in production.
+
+
+### Controller deployment modes
+
+Read Architecture wiki for more details on the Role of a controller. In simple words, it basically controls the participants in the cluster by issuing transitions.
+
+Helix provides multiple options to deploy the controller.
+
+#### STANDALONE
+
+Controller can be started as a separate process to manage a cluster. This is the recommended approach. How ever since one controller can be a single point of failure, multiple controller processes are required for reliability.
+Even if multiple controllers are running only one will be actively managing the cluster at any time and is decided by a leader election process. If the leader fails, another leader will resume managing the cluster.
+
+Even though we recommend this method of deployment, it has the drawback of having to manage an additional service for each cluster. See Controller As a Service option.
+
+#### EMBEDDED
+
+If setting up a separate controller process is not viable, then it is possible to embed the controller as a library in each of the participant. 
+
+#### CONTROLLER AS A SERVICE
+
+One of the cool feature we added in helix was use a set of controllers to manage a large number of clusters. 
+For example if you have X clusters to be managed, instead of deploying X*3(3 controllers for fault tolerance) controllers for each cluster, one can deploy only 3 controllers. Each controller can manage X/3 clusters. 
+If any controller fails the remaining two will manage X/2 clusters. At LinkedIn, we always deploy controllers in this mode. 
+
+
+
+
+
+
+
+ 

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/src/site/markdown/Quickstart.md
----------------------------------------------------------------------
diff --git a/website/0.6.6/src/site/markdown/Quickstart.md b/website/0.6.6/src/site/markdown/Quickstart.md
new file mode 100644
index 0000000..738503b
--- /dev/null
+++ b/website/0.6.6/src/site/markdown/Quickstart.md
@@ -0,0 +1,663 @@
+<!---
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+
+<head>
+  <title>Quickstart</title>
+</head>
+
+Quickstart
+---------
+
+Get Helix
+---------
+
+First, let\'s get Helix. Either build it, or download it.
+
+### Build
+
+```
+git clone https://git-wip-us.apache.org/repos/asf/helix.git
+cd helix
+git checkout tags/helix-0.6.6
+mvn install package -DskipTests
+cd helix-core/target/helix-core-pkg/bin # This folder contains all the scripts used in following sections
+chmod +x *
+```
+
+### Download
+
+Download the 0.6.6 release package [here](./download.html)
+
+Overview
+--------
+
+In this Quickstart, we\'ll set up a master-slave replicated, partitioned system.  Then we\'ll demonstrate how to add a node, rebalance the partitions, and show how Helix manages failover.
+
+
+Let\'s Do It
+------------
+
+Helix provides command line interfaces to set up the cluster and view the cluster state. The best way to understand how Helix views a cluster is to build a cluster.
+
+### Get to the Tools Directory
+
+If you built the code:
+
+```
+cd helix/helix/helix-core/target/helix-core-pkg/bin
+```
+
+If you downloaded the release package, extract it.
+
+
+Short Version
+-------------
+You can observe the components working together in this demo, which does the following:
+
+* Create a cluster
+* Add 2 nodes (participants) to the cluster
+* Set up a resource with 6 partitions and 2 replicas: 1 Master, and 1 Slave per partition
+* Show the cluster state after Helix balances the partitions
+* Add a third node
+* Show the cluster state.  Note that the third node has taken mastership of 2 partitions.
+* Kill the third node (Helix takes care of failover)
+* Show the cluster state.  Note that the two surviving nodes take over mastership of the partitions from the failed node
+
+### Run the Demo
+
+```
+cd helix/helix/helix-core/target/helix-core-pkg/bin
+./quickstart.sh
+```
+
+#### The Initial Setup
+
+2 nodes are set up and the partitions are rebalanced.
+
+The cluster state is as follows:
+
+```
+CLUSTER STATE: After starting 2 nodes
+                localhost_12000    localhost_12001
+MyResource_0           M                  S
+MyResource_1           S                  M
+MyResource_2           M                  S
+MyResource_3           M                  S
+MyResource_4           S                  M
+MyResource_5           S                  M
+```
+
+Note there is one master and one slave per partition.
+
+#### Add a Node
+
+A third node is added and the cluster is rebalanced.
+
+The cluster state changes to:
+
+```
+CLUSTER STATE: After adding a third node
+               localhost_12000    localhost_12001    localhost_12002
+MyResource_0          S                  M                  S
+MyResource_1          S                  S                  M
+MyResource_2          M                  S                  S
+MyResource_3          S                  S                  M
+MyResource_4          M                  S                  S
+MyResource_5          S                  M                  S
+```
+
+Note there is one master and _two_ slaves per partition.  This is expected because there are three nodes.
+
+#### Kill a Node
+
+Finally, a node is killed to simulate a failure
+
+Helix makes sure each partition has a master.  The cluster state changes to:
+
+```
+CLUSTER STATE: After the 3rd node stops/crashes
+               localhost_12000    localhost_12001    localhost_12002
+MyResource_0          S                  M                  -
+MyResource_1          S                  M                  -
+MyResource_2          M                  S                  -
+MyResource_3          M                  S                  -
+MyResource_4          M                  S                  -
+MyResource_5          S                  M                  -
+```
+
+
+Long Version
+------------
+Now you can run the same steps by hand.  In this detailed version, we\'ll do the following:
+
+* Define a cluster
+* Add two nodes to the cluster
+* Add a 6-partition resource with 1 master and 2 slave replicas per partition
+* Verify that the cluster is healthy and inspect the Helix view
+* Expand the cluster: add a few nodes and rebalance the partitions
+* Failover: stop a node and verify the mastership transfer
+
+### Install and Start ZooKeeper
+
+Zookeeper can be started in standalone mode or replicated mode.
+
+More information is available at
+
+* http://zookeeper.apache.org/doc/r3.3.3/zookeeperStarted.html
+* http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html#sc_zkMulitServerSetup
+
+In this example, let\'s start zookeeper in local mode.
+
+#### Start ZooKeeper Locally on Port 2199
+
+```
+./start-standalone-zookeeper.sh 2199 &
+```
+
+### Define the Cluster
+
+The helix-admin tool is used for cluster administration tasks. In the Quickstart, we\'ll use the command line interface. Helix supports a REST interface as well.
+
+zookeeper_address is of the format host:port e.g localhost:2199 for standalone or host1:port,host2:port for multi-node.
+
+Next, we\'ll set up a cluster MYCLUSTER cluster with these attributes:
+
+* 3 instances running on localhost at ports 12913,12914,12915
+* One database named myDB with 6 partitions
+* Each partition will have 3 replicas with 1 master, 2 slaves
+* ZooKeeper running locally at localhost:2199
+
+#### Create the Cluster MYCLUSTER
+
+```
+# ./helix-admin.sh --zkSvr <zk_address> --addCluster <clustername>
+./helix-admin.sh --zkSvr localhost:2199 --addCluster MYCLUSTER
+```
+
+### Add Nodes to the Cluster
+
+In this case we\'ll add three nodes: localhost:12913, localhost:12914, localhost:12915
+
+```
+# helix-admin.sh --zkSvr <zk_address>  --addNode <clustername> <host:port>
+./helix-admin.sh --zkSvr localhost:2199  --addNode MYCLUSTER localhost:12913
+./helix-admin.sh --zkSvr localhost:2199  --addNode MYCLUSTER localhost:12914
+./helix-admin.sh --zkSvr localhost:2199  --addNode MYCLUSTER localhost:12915
+```
+
+### Define the Resource and Partitioning
+
+In this example, the resource is a database, partitioned 6 ways. Note that in a production system, it\'s common to over-partition for better load balancing.  Helix has been used in production to manage hundreds of databases each with 10s or 100s of partitions running on 10s of physical nodes.
+
+#### Create a Database with 6 Partitions using the MasterSlave State Model
+
+Helix ensures there will be exactly one master for each partition.
+
+```
+# helix-admin.sh --zkSvr <zk_address> --addResource <clustername> <resourceName> <numPartitions> <StateModelName>
+./helix-admin.sh --zkSvr localhost:2199 --addResource MYCLUSTER myDB 6 MasterSlave
+```
+
+#### Let Helix Assign Partitions to Nodes
+
+This command will distribute the partitions amongst all the nodes in the cluster. In this example, each partition has 3 replicas.
+
+```
+# helix-admin.sh --zkSvr <zk_address> --rebalance <clustername> <resourceName> <replication factor>
+./helix-admin.sh --zkSvr localhost:2199 --rebalance MYCLUSTER myDB 3
+```
+
+Now the cluster is defined in ZooKeeper.  The nodes (localhost:12913, localhost:12914, localhost:12915) and resource (myDB, with 6 partitions using the MasterSlave model) are all properly configured.  And the _IdealState_ has been calculated, assuming a replication factor of 3.
+
+### Start the Helix Controller
+
+Now that the cluster is defined in ZooKeeper, the Helix controller can manage the cluster.
+
+```
+# Start the cluster manager, which will manage MYCLUSTER
+./run-helix-controller.sh --zkSvr localhost:2199 --cluster MYCLUSTER 2>&1 > /tmp/controller.log &
+```
+
+### Start up the Cluster to be Managed
+
+We\'ve started up ZooKeeper, defined the cluster, the resources, the partitioning, and started up the Helix controller.  Next, we\'ll start up the nodes of the system to be managed.  Each node is a Participant, which is an instance of the system component to be managed.  Helix assigns work to Participants, keeps track of their roles and health, and takes action when a node fails.
+
+```
+# start up each instance.  These are mock implementations that are actively managed by Helix
+./start-helix-participant.sh --zkSvr localhost:2199 --cluster MYCLUSTER --host localhost --port 12913 --stateModelType MasterSlave 2>&1 > /tmp/participant_12913.log
+./start-helix-participant.sh --zkSvr localhost:2199 --cluster MYCLUSTER --host localhost --port 12914 --stateModelType MasterSlave 2>&1 > /tmp/participant_12914.log
+./start-helix-participant.sh --zkSvr localhost:2199 --cluster MYCLUSTER --host localhost --port 12915 --stateModelType MasterSlave 2>&1 > /tmp/participant_12915.log
+```
+
+### Inspect the Cluster
+
+Now, let\'s see the Helix view of our cluster.  We\'ll work our way down as follows:
+
+```
+Clusters -> MYCLUSTER -> instances -> instance detail
+                      -> resources -> resource detail
+                      -> partitions
+```
+
+A single Helix controller can manage multiple clusters, though so far, we\'ve only defined one cluster.  Let\'s see:
+
+```
+# List existing clusters
+./helix-admin.sh --zkSvr localhost:2199 --listClusters
+
+Existing clusters:
+MYCLUSTER
+```
+
+Now, let\'s see the Helix view of MYCLUSTER:
+
+```
+# helix-admin.sh --zkSvr <zk_address> --listClusterInfo <clusterName>
+./helix-admin.sh --zkSvr localhost:2199 --listClusterInfo MYCLUSTER
+
+Existing resources in cluster MYCLUSTER:
+myDB
+Instances in cluster MYCLUSTER:
+localhost_12915
+localhost_12914
+localhost_12913
+```
+
+Let\'s look at the details of an instance:
+
+```
+# ./helix-admin.sh --zkSvr <zk_address> --listInstanceInfo <clusterName> <InstanceName>
+./helix-admin.sh --zkSvr localhost:2199 --listInstanceInfo MYCLUSTER localhost_12913
+
+InstanceConfig: {
+  "id" : "localhost_12913",
+  "mapFields" : {
+  },
+  "listFields" : {
+  },
+  "simpleFields" : {
+    "HELIX_ENABLED" : "true",
+    "HELIX_HOST" : "localhost",
+    "HELIX_PORT" : "12913"
+  }
+}
+```
+
+
+#### Query Information about a Resource
+
+```
+# helix-admin.sh --zkSvr <zk_address> --listResourceInfo <clusterName> <resourceName>
+./helix-admin.sh --zkSvr localhost:2199 --listResourceInfo MYCLUSTER myDB
+
+IdealState for myDB:
+{
+  "id" : "myDB",
+  "mapFields" : {
+    "myDB_0" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "MASTER",
+      "localhost_12915" : "SLAVE"
+    },
+    "myDB_1" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "SLAVE",
+      "localhost_12915" : "MASTER"
+    },
+    "myDB_2" : {
+      "localhost_12913" : "MASTER",
+      "localhost_12914" : "SLAVE",
+      "localhost_12915" : "SLAVE"
+    },
+    "myDB_3" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "SLAVE",
+      "localhost_12915" : "MASTER"
+    },
+    "myDB_4" : {
+      "localhost_12913" : "MASTER",
+      "localhost_12914" : "SLAVE",
+      "localhost_12915" : "SLAVE"
+    },
+    "myDB_5" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "MASTER",
+      "localhost_12915" : "SLAVE"
+    }
+  },
+  "listFields" : {
+    "myDB_0" : [ "localhost_12914", "localhost_12913", "localhost_12915" ],
+    "myDB_1" : [ "localhost_12915", "localhost_12913", "localhost_12914" ],
+    "myDB_2" : [ "localhost_12913", "localhost_12915", "localhost_12914" ],
+    "myDB_3" : [ "localhost_12915", "localhost_12913", "localhost_12914" ],
+    "myDB_4" : [ "localhost_12913", "localhost_12914", "localhost_12915" ],
+    "myDB_5" : [ "localhost_12914", "localhost_12915", "localhost_12913" ]
+  },
+  "simpleFields" : {
+    "IDEAL_STATE_MODE" : "AUTO",
+    "REBALANCE_MODE" : "SEMI_AUTO",
+    "NUM_PARTITIONS" : "6",
+    "REPLICAS" : "3",
+    "STATE_MODEL_DEF_REF" : "MasterSlave",
+    "STATE_MODEL_FACTORY_NAME" : "DEFAULT"
+  }
+}
+
+ExternalView for myDB:
+{
+  "id" : "myDB",
+  "mapFields" : {
+    "myDB_0" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "MASTER",
+      "localhost_12915" : "SLAVE"
+    },
+    "myDB_1" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "SLAVE",
+      "localhost_12915" : "MASTER"
+    },
+    "myDB_2" : {
+      "localhost_12913" : "MASTER",
+      "localhost_12914" : "SLAVE",
+      "localhost_12915" : "SLAVE"
+    },
+    "myDB_3" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "SLAVE",
+      "localhost_12915" : "MASTER"
+    },
+    "myDB_4" : {
+      "localhost_12913" : "MASTER",
+      "localhost_12914" : "SLAVE",
+      "localhost_12915" : "SLAVE"
+    },
+    "myDB_5" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "MASTER",
+      "localhost_12915" : "SLAVE"
+    }
+  },
+  "listFields" : {
+  },
+  "simpleFields" : {
+    "BUCKET_SIZE" : "0"
+  }
+}
+```
+
+Now, let\'s look at one of the partitions:
+
+```
+# helix-admin.sh --zkSvr <zk_address> --listResourceInfo <clusterName> <partition>
+./helix-admin.sh --zkSvr localhost:2199 --listResourceInfo mycluster myDB_0
+```
+
+### Expand the Cluster
+
+Next, we\'ll show how Helix does the work that you\'d otherwise have to build into your system.  When you add capacity to your cluster, you want the work to be evenly distributed.  In this example, we started with 3 nodes, with 6 partitions.  The partitions were evenly balanced, 2 masters and 4 slaves per node. Let\'s add 3 more nodes: localhost:12916, localhost:12917, localhost:12918
+
+```
+./helix-admin.sh --zkSvr localhost:2199  --addNode MYCLUSTER localhost:12916
+./helix-admin.sh --zkSvr localhost:2199  --addNode MYCLUSTER localhost:12917
+./helix-admin.sh --zkSvr localhost:2199  --addNode MYCLUSTER localhost:12918
+```
+
+And start up these instances:
+
+```
+# start up each instance.  These are mock implementations that are actively managed by Helix
+./start-helix-participant.sh --zkSvr localhost:2199 --cluster MYCLUSTER --host localhost --port 12916 --stateModelType MasterSlave 2>&1 > /tmp/participant_12916.log
+./start-helix-participant.sh --zkSvr localhost:2199 --cluster MYCLUSTER --host localhost --port 12917 --stateModelType MasterSlave 2>&1 > /tmp/participant_12917.log
+./start-helix-participant.sh --zkSvr localhost:2199 --cluster MYCLUSTER --host localhost --port 12918 --stateModelType MasterSlave 2>&1 > /tmp/participant_12918.log
+```
+
+
+And now, let Helix do the work for you.  To shift the work, simply rebalance.  After the rebalance, each node will have one master and two slaves.
+
+```
+./helix-admin.sh --zkSvr localhost:2199 --rebalance MYCLUSTER myDB 3
+```
+
+### View the Cluster
+
+OK, let\'s see how it looks:
+
+
+```
+./helix-admin.sh --zkSvr localhost:2199 --listResourceInfo MYCLUSTER myDB
+
+IdealState for myDB:
+{
+  "id" : "myDB",
+  "mapFields" : {
+    "myDB_0" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "SLAVE",
+      "localhost_12917" : "MASTER"
+    },
+    "myDB_1" : {
+      "localhost_12916" : "SLAVE",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "MASTER"
+    },
+    "myDB_2" : {
+      "localhost_12913" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_3" : {
+      "localhost_12915" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_4" : {
+      "localhost_12916" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_5" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "MASTER",
+      "localhost_12915" : "SLAVE"
+    }
+  },
+  "listFields" : {
+    "myDB_0" : [ "localhost_12917", "localhost_12913", "localhost_12914" ],
+    "myDB_1" : [ "localhost_12918", "localhost_12917", "localhost_12916" ],
+    "myDB_2" : [ "localhost_12913", "localhost_12917", "localhost_12918" ],
+    "myDB_3" : [ "localhost_12915", "localhost_12917", "localhost_12918" ],
+    "myDB_4" : [ "localhost_12916", "localhost_12917", "localhost_12918" ],
+    "myDB_5" : [ "localhost_12914", "localhost_12915", "localhost_12913" ]
+  },
+  "simpleFields" : {
+    "IDEAL_STATE_MODE" : "AUTO",
+    "REBALANCE_MODE" : "SEMI_AUTO",
+    "NUM_PARTITIONS" : "6",
+    "REPLICAS" : "3",
+    "STATE_MODEL_DEF_REF" : "MasterSlave",
+    "STATE_MODEL_FACTORY_NAME" : "DEFAULT"
+  }
+}
+
+ExternalView for myDB:
+{
+  "id" : "myDB",
+  "mapFields" : {
+    "myDB_0" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "SLAVE",
+      "localhost_12917" : "MASTER"
+    },
+    "myDB_1" : {
+      "localhost_12916" : "SLAVE",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "MASTER"
+    },
+    "myDB_2" : {
+      "localhost_12913" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_3" : {
+      "localhost_12915" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_4" : {
+      "localhost_12916" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_5" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "MASTER",
+      "localhost_12915" : "SLAVE"
+    }
+  },
+  "listFields" : {
+  },
+  "simpleFields" : {
+    "BUCKET_SIZE" : "0"
+  }
+}
+```
+
+Mission accomplished.  The partitions are nicely balanced.
+
+### How about Failover?
+
+Building a fault tolerant system isn\'t trivial, but with Helix, it\'s easy.  Helix detects a failed instance, and triggers mastership transfer automatically.
+
+First, let's fail an instance.  In this example, we\'ll kill localhost:12918 to simulate a failure.
+
+We lost localhost:12918, so myDB_1 lost its MASTER.  Helix can fix that, it will transfer mastership to a healthy node that is currently a SLAVE, say localhost:12197.  Helix balances the load as best as it can, given there are 6 partitions on 5 nodes.  Let\'s see:
+
+
+```
+./helix-admin.sh --zkSvr localhost:2199 --listResourceInfo MYCLUSTER myDB
+
+IdealState for myDB:
+{
+  "id" : "myDB",
+  "mapFields" : {
+    "myDB_0" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "SLAVE",
+      "localhost_12917" : "MASTER"
+    },
+    "myDB_1" : {
+      "localhost_12916" : "SLAVE",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "MASTER"
+    },
+    "myDB_2" : {
+      "localhost_12913" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_3" : {
+      "localhost_12915" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_4" : {
+      "localhost_12916" : "MASTER",
+      "localhost_12917" : "SLAVE",
+      "localhost_12918" : "SLAVE"
+    },
+    "myDB_5" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "MASTER",
+      "localhost_12915" : "SLAVE"
+    }
+  },
+  "listFields" : {
+    "myDB_0" : [ "localhost_12917", "localhost_12913", "localhost_12914" ],
+    "myDB_1" : [ "localhost_12918", "localhost_12917", "localhost_12916" ],
+    "myDB_2" : [ "localhost_12913", "localhost_12918", "localhost_12917" ],
+    "myDB_3" : [ "localhost_12915", "localhost_12918", "localhost_12917" ],
+    "myDB_4" : [ "localhost_12916", "localhost_12917", "localhost_12918" ],
+    "myDB_5" : [ "localhost_12914", "localhost_12915", "localhost_12913" ]
+  },
+  "simpleFields" : {
+    "IDEAL_STATE_MODE" : "AUTO",
+    "REBALANCE_MODE" : "SEMI_AUTO",
+    "NUM_PARTITIONS" : "6",
+    "REPLICAS" : "3",
+    "STATE_MODEL_DEF_REF" : "MasterSlave",
+    "STATE_MODEL_FACTORY_NAME" : "DEFAULT"
+  }
+}
+
+ExternalView for myDB:
+{
+  "id" : "myDB",
+  "mapFields" : {
+    "myDB_0" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "SLAVE",
+      "localhost_12917" : "MASTER"
+    },
+    "myDB_1" : {
+      "localhost_12916" : "SLAVE",
+      "localhost_12917" : "MASTER"
+    },
+    "myDB_2" : {
+      "localhost_12913" : "MASTER",
+      "localhost_12917" : "SLAVE"
+    },
+    "myDB_3" : {
+      "localhost_12915" : "MASTER",
+      "localhost_12917" : "SLAVE"
+    },
+    "myDB_4" : {
+      "localhost_12916" : "MASTER",
+      "localhost_12917" : "SLAVE"
+    },
+    "myDB_5" : {
+      "localhost_12913" : "SLAVE",
+      "localhost_12914" : "MASTER",
+      "localhost_12915" : "SLAVE"
+    }
+  },
+  "listFields" : {
+  },
+  "simpleFields" : {
+    "BUCKET_SIZE" : "0"
+  }
+}
+```
+
+As we\'ve seen in this Quickstart, Helix takes care of partitioning, load balancing, elasticity, failure detection and recovery.
+
+### ZooInspector
+
+You can view all of the underlying data by going direct to zookeeper.  Use ZooInspector that comes with zookeeper to browse the data. This is a java applet (make sure you have X windows)
+
+To start zooinspector run the following command from <zk_install_directory>/contrib/ZooInspector
+
+```
+java -cp zookeeper-3.3.3-ZooInspector.jar:lib/jtoaster-1.0.4.jar:../../lib/log4j-1.2.15.jar:../../zookeeper-3.3.3.jar org.apache.zookeeper.inspector.ZooInspector
+```
+
+### Next
+
+Now that you understand the idea of Helix, read the [tutorial](./Tutorial.html) to learn how to choose the right state model and constraints for your system, and how to implement it.  In many cases, the built-in features meet your requirements.  And best of all, Helix is a customizable framework, so you can plug in your own behavior, while retaining the automation provided by Helix.
+

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/src/site/markdown/Tutorial.md
----------------------------------------------------------------------
diff --git a/website/0.6.6/src/site/markdown/Tutorial.md b/website/0.6.6/src/site/markdown/Tutorial.md
new file mode 100644
index 0000000..22e7f8a
--- /dev/null
+++ b/website/0.6.6/src/site/markdown/Tutorial.md
@@ -0,0 +1,203 @@
+<!---
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+
+<head>
+  <title>Tutorial</title>
+</head>
+
+# Helix Tutorial
+
+In this tutorial, we will cover the roles of a Helix-managed cluster, and show the code you need to write to integrate with it.  In many cases, there is a simple default behavior that is often appropriate, but you can also customize the behavior.
+
+Convention: we first cover the _basic_ approach, which is the easiest to implement.  Then, we'll describe _advanced_ options, which give you more control over the system behavior, but require you to write more code.
+
+
+### Prerequisites
+
+1. Read [Concepts/Terminology](../Concepts.html) and [Architecture](../Architecture.html)
+2. Read the [Quickstart guide](./Quickstart.html) to learn how Helix models and manages a cluster
+3. Install Helix source.  See: [Quickstart](./Quickstart.html) for the steps.
+
+### Tutorial Outline
+
+1. [Participant](./tutorial_participant.html)
+2. [Spectator](./tutorial_spectator.html)
+3. [Controller](./tutorial_controller.html)
+4. [Rebalancing Algorithms](./tutorial_rebalance.html)
+5. [User-Defined Rebalancing](./tutorial_user_def_rebalancer.html)
+6. [State Machines](./tutorial_state.html)
+7. [Messaging](./tutorial_messaging.html)
+8. [Customized health check](./tutorial_health.html)
+9. [Throttling](./tutorial_throttling.html)
+10. [Application Property Store](./tutorial_propstore.html)
+11. [Admin Interface](./tutorial_admin.html)
+12. [YAML Cluster Setup](./tutorial_yaml.html)
+13. [Helix Agent (for non-JVM systems)](./tutorial_agent.html)
+14. [Task Framework](./tutorial_task_framework.html)
+
+### Preliminaries
+
+First, we need to set up the system.  Let\'s walk through the steps in building a distributed system using Helix.
+
+#### Start ZooKeeper
+
+This starts a zookeeper in standalone mode. For production deployment, see [Apache ZooKeeper](http://zookeeper.apache.org) for instructions.
+
+```
+./start-standalone-zookeeper.sh 2199 &
+```
+
+#### Create a Cluster
+
+Creating a cluster will define the cluster in appropriate znodes on ZooKeeper.
+
+Using the Java API:
+
+```
+// Create setup tool instance
+// Note: ZK_ADDRESS is the host:port of Zookeeper
+String ZK_ADDRESS = "localhost:2199";
+admin = new ZKHelixAdmin(ZK_ADDRESS);
+
+String CLUSTER_NAME = "helix-demo";
+//Create cluster namespace in zookeeper
+admin.addCluster(CLUSTER_NAME);
+```
+
+OR
+
+Using the command-line interface:
+
+```
+./helix-admin.sh --zkSvr localhost:2199 --addCluster helix-demo
+```
+
+
+#### Configure the Nodes of the Cluster
+
+First we\'ll add new nodes to the cluster, then configure the nodes in the cluster. Each node in the cluster must be uniquely identifiable.
+The most commonly used convention is hostname:port.
+
+```
+String CLUSTER_NAME = "helix-demo";
+int NUM_NODES = 2;
+String hosts[] = new String[]{"localhost","localhost"};
+String ports[] = new String[]{7000,7001};
+for (int i = 0; i < NUM_NODES; i++)
+{
+  InstanceConfig instanceConfig = new InstanceConfig(hosts[i]+ "_" + ports[i]);
+  instanceConfig.setHostName(hosts[i]);
+  instanceConfig.setPort(ports[i]);
+  instanceConfig.setInstanceEnabled(true);
+
+  //Add additional system specific configuration if needed. These can be accessed during the node start up.
+  instanceConfig.getRecord().setSimpleField("key", "value");
+  admin.addInstance(CLUSTER_NAME, instanceConfig);
+}
+```
+
+#### Configure the Resource
+
+A __resource__ represents the actual task performed by the nodes. It can be a database, index, topic, queue or any other processing entity.
+A resource can be divided into many sub-parts known as __partitions__.
+
+
+##### Define the State Model and Constraints
+
+For scalability and fault tolerance, each partition can have one or more replicas.
+The __state model__ allows one to declare the system behavior by first enumerating the various STATES, and the TRANSITIONS between them.
+A simple model is ONLINE-OFFLINE where ONLINE means the task is active and OFFLINE means it\'s not active.
+You can also specify how many replicas must be in each state, these are known as __constraints__.
+For example, in a search system, one might need more than one node serving the same index to handle the load.
+
+The allowed states:
+
+* MASTER
+* SLAVE
+* OFFLINE
+
+The allowed transitions:
+
+* OFFLINE to SLAVE
+* SLAVE to OFFLINE
+* SLAVE to MASTER
+* MASTER to SLAVE
+
+The constraints:
+
+* no more than 1 MASTER per partition
+* the rest of the replicas should be slaves
+
+The following snippet shows how to declare the state model and constraints for the MASTER-SLAVE model.
+
+```
+StateModelDefinition.Builder builder = new StateModelDefinition.Builder(STATE_MODEL_NAME);
+
+// Add states and their rank to indicate priority. A lower rank corresponds to a higher priority
+builder.addState(MASTER, 1);
+builder.addState(SLAVE, 2);
+builder.addState(OFFLINE);
+
+// Set the initial state when the node starts
+builder.initialState(OFFLINE);
+
+// Add transitions between the states.
+builder.addTransition(OFFLINE, SLAVE);
+builder.addTransition(SLAVE, OFFLINE);
+builder.addTransition(SLAVE, MASTER);
+builder.addTransition(MASTER, SLAVE);
+
+// set constraints on states
+
+// static constraint: upper bound of 1 MASTER
+builder.upperBound(MASTER, 1);
+
+// dynamic constraint: R means it should be derived based on the replication factor for the cluster
+// this allows a different replication factor for each resource without
+// having to define a new state model
+
+builder.dynamicUpperBound(SLAVE, "R");
+
+StateModelDefinition statemodelDefinition = builder.build();
+admin.addStateModelDef(CLUSTER_NAME, STATE_MODEL_NAME, myStateModel);
+```
+
+##### Assigning Partitions to Nodes
+
+The final goal of Helix is to ensure that the constraints on the state model are satisfied.
+Helix does this by assigning a __state__ to a partition (such as MASTER, SLAVE), and placing it on a particular node.
+
+There are 3 assignment modes Helix can operate in:
+
+* FULL_AUTO: Helix decides the placement and state of a partition.
+* SEMI_AUTO: Application decides the placement but Helix decides the state of a partition.
+* CUSTOMIZED: Application controls the placement and state of a partition.
+
+For more information on the assignment modes, see the [Rebalancing Algorithms](./tutorial_rebalance.html) section of this tutorial.
+
+```
+String RESOURCE_NAME = "MyDB";
+int NUM_PARTITIONS = 6;
+STATE_MODEL_NAME = "MasterSlave";
+String MODE = "SEMI_AUTO";
+int NUM_REPLICAS = 2;
+
+admin.addResource(CLUSTER_NAME, RESOURCE_NAME, NUM_PARTITIONS, STATE_MODEL_NAME, MODE);
+admin.rebalance(CLUSTER_NAME, RESOURCE_NAME, NUM_REPLICAS);
+```

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/src/site/markdown/index.md
----------------------------------------------------------------------
diff --git a/website/0.6.6/src/site/markdown/index.md b/website/0.6.6/src/site/markdown/index.md
new file mode 100644
index 0000000..e21f0cc
--- /dev/null
+++ b/website/0.6.6/src/site/markdown/index.md
@@ -0,0 +1,51 @@
+<!---
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+
+<head>
+  <title>Helix 0.6.6 Documentation</title>
+</head>
+
+### Get Helix
+
+[Download](./download.html)
+
+[Building](./Building.html)
+
+[Release Notes](./releasenotes/release-0.6.6.html)
+
+### Hands-On
+
+[Quickstart](./Quickstart.html)
+
+[Tutorial](./Tutorial.html)
+
+[Javadocs](http://helix.apache.org/javadocs/0.6.6/index.html)
+
+### Recipes
+
+[Distributed lock manager](./recipes/lock_manager.html)
+
+[Rabbit MQ consumer group](./recipes/rabbitmq_consumer_group.html)
+
+[Rsync replicated file store](./recipes/rsync_replicated_file_store.html)
+
+[Service discovery](./recipes/service_discovery.html)
+
+[Distributed task DAG execution](./recipes/task_dag_execution.html)
+

http://git-wip-us.apache.org/repos/asf/helix/blob/39e0d3fb/website/0.6.6/src/site/markdown/recipes/lock_manager.md
----------------------------------------------------------------------
diff --git a/website/0.6.6/src/site/markdown/recipes/lock_manager.md b/website/0.6.6/src/site/markdown/recipes/lock_manager.md
new file mode 100644
index 0000000..b873bfd
--- /dev/null
+++ b/website/0.6.6/src/site/markdown/recipes/lock_manager.md
@@ -0,0 +1,236 @@
+<!---
+Licensed to the Apache Software Foundation (ASF) under one
+or more contributor license agreements.  See the NOTICE file
+distributed with this work for additional information
+regarding copyright ownership.  The ASF licenses this file
+to you under the Apache License, Version 2.0 (the
+"License"); you may not use this file except in compliance
+with the License.  You may obtain a copy of the License at
+
+  http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing,
+software distributed under the License is distributed on an
+"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, either express or implied.  See the License for the
+specific language governing permissions and limitations
+under the License.
+-->
+Distributed Lock Manager
+------------------------
+Distributed locks are used to synchronize accesses shared resources. Most applications today use ZooKeeper to model distributed locks.
+
+The simplest way to model a lock using ZooKeeper is (See ZooKeeper leader recipe for an exact and more advanced solution)
+
+* Each process tries to create an emphemeral node
+* If the node is successfully created, the process acquires the lock
+* Otherwise, it will watch the ZNode and try to acquire the lock again if the current lock holder disappears
+
+This is good enough if there is only one lock. But in practice, an application will need many such locks. Distributing and managing the locks among difference process becomes challenging. Extending such a solution to many locks will result in:
+
+* Uneven distribution of locks among nodes; the node that starts first will acquire all the locks. Nodes that start later will be idle.
+* When a node fails, how the locks will be distributed among remaining nodes is not predicable.
+* When new nodes are added the current nodes don\'t relinquish the locks so that new nodes can acquire some locks
+
+In other words we want a system to satisfy the following requirements.
+
+* Distribute locks evenly among all nodes to get better hardware utilization
+* If a node fails, the locks that were acquired by that node should be evenly distributed among other nodes
+* If nodes are added, locks must be evenly re-distributed among nodes.
+
+Helix provides a simple and elegant solution to this problem. Simply specify the number of locks and Helix will ensure that above constraints are satisfied.
+
+To quickly see this working run the `lock-manager-demo` script where 12 locks are evenly distributed among three nodes, and when a node fails, the locks get re-distributed among remaining two nodes. Note that Helix does not re-shuffle the locks completely, instead it simply distributes the locks relinquished by dead node among 2 remaining nodes evenly.
+
+----------------------------------------------------------------------------------------
+
+### Short Version
+This version starts multiple threads within the same process to simulate a multi node deployment. Try the long version to get a better idea of how it works.
+
+```
+git clone https://git-wip-us.apache.org/repos/asf/helix.git
+cd helix
+git checkout tags/helix-0.6.6
+mvn clean install package -DskipTests
+cd recipes/distributed-lock-manager/target/distributed-lock-manager-pkg/bin
+chmod +x *
+./lock-manager-demo
+```
+
+#### Output
+
+```
+./lock-manager-demo
+STARTING localhost_12000
+STARTING localhost_12002
+STARTING localhost_12001
+STARTED localhost_12000
+STARTED localhost_12002
+STARTED localhost_12001
+localhost_12001 acquired lock:lock-group_3
+localhost_12000 acquired lock:lock-group_8
+localhost_12001 acquired lock:lock-group_2
+localhost_12001 acquired lock:lock-group_4
+localhost_12002 acquired lock:lock-group_1
+localhost_12002 acquired lock:lock-group_10
+localhost_12000 acquired lock:lock-group_7
+localhost_12001 acquired lock:lock-group_5
+localhost_12002 acquired lock:lock-group_11
+localhost_12000 acquired lock:lock-group_6
+localhost_12002 acquired lock:lock-group_0
+localhost_12000 acquired lock:lock-group_9
+lockName    acquired By
+======================================
+lock-group_0    localhost_12002
+lock-group_1    localhost_12002
+lock-group_10    localhost_12002
+lock-group_11    localhost_12002
+lock-group_2    localhost_12001
+lock-group_3    localhost_12001
+lock-group_4    localhost_12001
+lock-group_5    localhost_12001
+lock-group_6    localhost_12000
+lock-group_7    localhost_12000
+lock-group_8    localhost_12000
+lock-group_9    localhost_12000
+Stopping localhost_12000
+localhost_12000 Interrupted
+localhost_12001 acquired lock:lock-group_9
+localhost_12001 acquired lock:lock-group_8
+localhost_12002 acquired lock:lock-group_6
+localhost_12002 acquired lock:lock-group_7
+lockName    acquired By
+======================================
+lock-group_0    localhost_12002
+lock-group_1    localhost_12002
+lock-group_10    localhost_12002
+lock-group_11    localhost_12002
+lock-group_2    localhost_12001
+lock-group_3    localhost_12001
+lock-group_4    localhost_12001
+lock-group_5    localhost_12001
+lock-group_6    localhost_12002
+lock-group_7    localhost_12002
+lock-group_8    localhost_12001
+lock-group_9    localhost_12001
+
+```
+
+----------------------------------------------------------------------------------------
+
+### Long version
+This provides more details on how to setup the cluster and where to plugin application code.
+
+#### Start ZooKeeper
+
+```
+./start-standalone-zookeeper 2199
+```
+
+#### Create a Cluster
+
+```
+./helix-admin --zkSvr localhost:2199 --addCluster lock-manager-demo
+```
+
+#### Create a Lock Group
+
+Create a lock group and specify the number of locks in the lock group.
+
+```
+./helix-admin --zkSvr localhost:2199  --addResource lock-manager-demo lock-group 6 OnlineOffline --mode AUTO_REBALANCE
+```
+
+#### Start the Nodes
+
+Create a Lock class that handles the callbacks.
+
+```
+public class Lock extends StateModel {
+  private String lockName;
+
+  public Lock(String lockName) {
+    this.lockName = lockName;
+  }
+
+  public void lock(Message m, NotificationContext context) {
+    System.out.println(" acquired lock:"+ lockName );
+  }
+
+  public void release(Message m, NotificationContext context) {
+    System.out.println(" releasing lock:"+ lockName );
+  }
+
+}
+```
+
+and a LockFactory that creates Locks
+
+```
+public class LockFactory extends StateModelFactory<Lock> {
+    /* Instantiates the lock handler, one per lockName */
+    public Lock create(String lockName) {
+        return new Lock(lockName);
+    }
+}
+```
+
+At node start up, simply join the cluster and Helix will invoke the appropriate callbacks on the appropriate Lock instance. One can start any number of nodes and Helix detects that a new node has joined the cluster and re-distributes the locks automatically.
+
+```
+public class LockProcess {
+  public static void main(String args) {
+    String zkAddress= "localhost:2199";
+    String clusterName = "lock-manager-demo";
+    //Give a unique id to each process, most commonly used format hostname_port
+    String instanceName ="localhost_12000";
+    ZKHelixAdmin helixAdmin = new ZKHelixAdmin(zkAddress);
+    //configure the instance and provide some metadata
+    InstanceConfig config = new InstanceConfig(instanceName);
+    config.setHostName("localhost");
+    config.setPort("12000");
+    admin.addInstance(clusterName, config);
+    //join the cluster
+    HelixManager manager;
+    manager = HelixManagerFactory.getHelixManager(clusterName,
+                                                  instanceName,
+                                                  InstanceType.PARTICIPANT,
+                                                  zkAddress);
+    manager.getStateMachineEngine().registerStateModelFactory("OnlineOffline", modelFactory);
+    manager.connect();
+    Thread.currentThread.join();
+  }
+}
+```
+
+#### Start the Controller
+
+The controller can be started either as a separate process or can be embedded within each node process
+
+##### Separate Process
+This is recommended when number of nodes in the cluster \> 100. For fault tolerance, you can run multiple controllers on different boxes.
+
+```
+./run-helix-controller --zkSvr localhost:2199 --cluster lock-manager-demo 2>&1 > /tmp/controller.log &
+```
+
+##### Embedded Within the Node Process
+This is recommended when the number of nodes in the cluster is less than 100. To start a controller from each process, simply add the following lines to MyClass
+
+```
+public class LockProcess {
+  public static void main(String args) {
+    String zkAddress= "localhost:2199";
+    String clusterName = "lock-manager-demo";
+    // .
+    // .
+    manager.connect();
+    HelixManager controller;
+    controller = HelixControllerMain.startHelixController(zkAddress,
+                                                          clusterName,
+                                                          "controller",
+                                                          HelixControllerMain.STANDALONE);
+    Thread.currentThread.join();
+  }
+}
+```