You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@mxnet.apache.org by GitBox <gi...@apache.org> on 2018/05/13 12:21:10 UTC

[GitHub] juliusshufan closed pull request #10796: [WIP]Test cases improvement for MKLDNN on Gluon

juliusshufan closed pull request #10796: [WIP]Test cases improvement for MKLDNN on Gluon
URL: https://github.com/apache/incubator-mxnet/pull/10796
 
 
   

This is a PR merged from a forked repository.
As GitHub hides the original diff on merge, it is displayed below for
the sake of provenance:

As this is a foreign pull request (from a fork), the diff is supplied
below (as it won't show otherwise due to GitHub magic):

diff --git a/tests/python/mkl/test_mkldnn.py b/tests/python/mkl/test_mkldnn.py
old mode 100644
new mode 100755
index dc9e9141a35..91c8cee2006
--- a/tests/python/mkl/test_mkldnn.py
+++ b/tests/python/mkl/test_mkldnn.py
@@ -22,6 +22,7 @@
 import mxnet as mx
 import numpy as np
 import sys,os,logging
+import random
 from mxnet import gluon
 from mxnet.gluon import nn
 curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
@@ -96,6 +97,7 @@ def get_tensors(args, shapes, ctx):
     except:  # pylint: disable=bare-except
         assert 0, "test_mkldnn_model exception in bind and execution"
 
+
 def test_mkldnn_engine_threading():
     """
     This test will trigger mkldnn engine on different thread of execution.
@@ -131,6 +133,7 @@ def __getitem__(self, key):
         assert_almost_equal(y[0, 0, 0, 0], 0.3376348)
         break
 
+
 def test_mkldnn_ndarray_slice():
     """
     This test will trigger gluon computation on mkldnn with ndarray slice
@@ -149,76 +152,120 @@ def test_mkldnn_ndarray_slice():
         # trigger computation on ndarray slice
         assert_almost_equal(y[0].asnumpy()[0, 0, 0], 0.3376348)
 
+
+def check_layer_forward(net, x):
+    x_hybrid = x.copy()
+    x.attach_grad()
+    x_hybrid.attach_grad()
+    net.collect_params().initialize()
+    with mx.autograd.record():
+        out1 = net(x)
+    out1.backward()
+    net.hybridize()
+    with mx.autograd.record():
+        out2 = net(x_hybrid)
+    out2.backward()
+    mx.test_utils.assert_almost_equal(x.grad.asnumpy(), x_hybrid.grad.asnumpy(), rtol=1e-5, atol=1e-6)
+    mx.test_utils.assert_almost_equal(out1.asnumpy(), out2.asnumpy(), rtol=1e-5, atol=1e-6)
+
+
 @with_seed()
-def test_reshape_before_conv():
-    """
-    This test will test gluon Conv2d computation on mkldnn with ndarray reshape
-    """
+def test_reshape_conv():
+    class Net(gluon.HybridBlock):
+        def __init__(self, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(64, (3, 3))
+
+        def hybrid_forward(self, F, x):
+            x_reshape = x.reshape((0, 0, 448, 112))
+            out = self.conv0(x_reshape)
+            return out
+    x = mx.nd.random.uniform(shape=(32, 3, 224, 224))
+    net = Net()
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_reshape_conv_reshape_conv():
     class Net(gluon.HybridBlock):
         def __init__(self, **kwargs):
             super(Net, self).__init__(**kwargs)
             with self.name_scope():
-                self.conv0 = nn.Conv2D(10, (3, 3))
-                self.conv1 = nn.Conv2D(5, (3, 3))
+                self.conv0 = nn.Conv2D(64, (3, 3))
+                self.conv1 = nn.Conv2D(256, (3, 3))
 
         def hybrid_forward(self, F, x):
-            x_reshape = x.reshape((0, 0, 20, 5))
+            x_reshape = x.reshape((0, 0, 448, 112))
             y = self.conv0(x_reshape)
-            y_reshape = y.reshape((0, 0, 9, 6))
+            y_reshape = y.reshape((0, 0, 223, 220))
             out = self.conv1(y_reshape)
             return out
-    x = mx.nd.random.uniform(shape=(2, 4, 10, 10))
-    x.attach_grad()
+    x = mx.nd.random.uniform(shape=(32, 3, 224, 224))
     net = Net()
-    net.collect_params().initialize()
-    with mx.autograd.record():
-        out1 = net(x)
-    out1.backward()
-    dx1 = x.grad
-    net.hybridize()
-    with mx.autograd.record():
-        out2 = net(x)
-    out2.backward()
-    mx.test_utils.assert_almost_equal(dx1.asnumpy(), x.grad.asnumpy(), rtol=1e-5, atol=1e-6)
-    mx.test_utils.assert_almost_equal(out1.asnumpy(), out2.asnumpy(), rtol=1e-5, atol=1e-6)
+    check_layer_forward(net, x)
 
 
 @with_seed()
-def test_slice_before_conv():
-    """
-    This test will test gluon Conv2d computation on mkldnn with ndarray slice
-    """
+def test_slice_conv():
+    class Net(gluon.HybridBlock):
+        def __init__(self, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(64, (3, 3))
+
+        def hybrid_forward(self, F, x):
+            x_slice = x.slice(begin=(0, 2, 0, 0), end=(32, 5, 224, 224))
+            out = self.conv0(x_slice)
+            return out
+    x = mx.nd.random.uniform(shape=(32, 6, 224, 224))
+    net = Net()
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_slice_conv_slice_conv():
     class Net(gluon.HybridBlock):
         def __init__(self, **kwargs):
             super(Net, self).__init__(**kwargs)
             with self.name_scope():
-                self.conv0 = nn.Conv2D(4, (3, 3))
-                self.conv1 = nn.Conv2D(4, (3, 3))
+                self.conv0 = nn.Conv2D(64, (3, 3))
+                self.conv1 = nn.Conv2D(256, (3, 3))
 
         def hybrid_forward(self, F, x):
-            x_slice = x.slice(begin=(0, 0, 0, 0), end=(2, 4, 10, 10))
+            x_slice = x.slice(begin=(0, 2, 0, 0), end=(32, 5, 224, 224))
             y = self.conv0(x_slice)
-            y_slice = y.slice(begin=(1, 0, 2, 2), end=(2, 1, 7, 7))
+            y_slice = y.slice(begin=(0, 32, 0, 0), end=(32, 64, 222, 222))
             out = self.conv1(y_slice)
             return out
-    x = mx.nd.random.uniform(shape=(2, 10, 10, 10))
-    x.attach_grad()
+    x = mx.nd.random.uniform(shape=(32, 6, 224, 224))
     net = Net()
-    net.collect_params().initialize()
-    with mx.autograd.record():
-        out1 = net(x)
-    out1.backward()
-    dx1 = x.grad
-    net.hybridize()
-    with mx.autograd.record():
-        out2 = net(x)
-    out2.backward()
-    mx.test_utils.assert_almost_equal(dx1.asnumpy(), x.grad.asnumpy(), rtol=1e-5, atol=1e-6)
-    mx.test_utils.assert_almost_equal(out1.asnumpy(), out2.asnumpy(), rtol=1e-5, atol=1e-6)
+    check_layer_forward(net, x)
 
 
 @with_seed()
-def test_slice_reshape_before_conv():
+def test_slice_conv_reshape_conv():
+    class Net(gluon.HybridBlock):
+        def __init__(self, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(64, (3, 3))
+                self.conv1 = nn.Conv2D(256, (3, 3))
+
+        def hybrid_forward(self, F, x):
+            x_slice = x.slice(begin=(0, 0, 1, 1), end=(32, 3, 225, 225))
+            y = self.conv0(x_slice)
+            y_reshape = y.reshape((0, 0, 444, 111))
+            out = self.conv1(y_reshape)
+            return out
+
+    x = mx.nd.random.uniform(shape=(32, 3, 299, 299))
+    net = Net()
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_reshape_conv_slice_conv():
     """
     This test will test gluon Conv2d computation on mkldnn with ndarray reshape and slice
     """
@@ -226,29 +273,304 @@ class Net(gluon.HybridBlock):
         def __init__(self, **kwargs):
             super(Net, self).__init__(**kwargs)
             with self.name_scope():
-                self.conv0 = nn.Conv2D(4, (3, 3))
-                self.conv1 = nn.Conv2D(4, (3, 3))
+                self.conv0 = nn.Conv2D(64, (3, 3))
+                self.conv1 = nn.Conv2D(256, (3, 3))
 
         def hybrid_forward(self, F, x):
-            x_slice = x.slice(begin=(0, 0, 0, 0), end=(2, 4, 8, 9))
-            y = self.conv0(x_slice)
-            y_reshape = y.reshape((0, 0, 14, 3))
-            out = self.conv1(y_reshape)
+            x_reshape = x.reshape((0, 0, 448, 112))
+            y = self.conv0(x_reshape)
+            y_slice = y.slice(begin=(0, 32, 0, 0), end=(32, 64, 446, 110))
+            out = self.conv1(y_slice)
             return out
-    x = mx.nd.random.uniform(shape=(2, 10, 10, 10))
-    x.attach_grad()
+    x = mx.nd.random.uniform(shape=(32, 6, 224, 224))
     net = Net()
-    net.collect_params().initialize()
-    with mx.autograd.record():
-        out1 = net(x)
-    out1.backward()
-    dx1 = x.grad
-    net.hybridize()
-    with mx.autograd.record():
-        out2 = net(x)
-    out2.backward()
-    mx.test_utils.assert_almost_equal(dx1.asnumpy(), x.grad.asnumpy(), rtol=1e-5, atol=1e-6)
-    mx.test_utils.assert_almost_equal(out1.asnumpy(), out2.asnumpy(), rtol=1e-5, atol=1e-6)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_reshape_dense():
+    class Net(gluon.HybridBlock):
+        def __init__(self, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                channel0 = random.randint(1, 1000)
+                self.dense0 = nn.Dense(channel0)
+
+        def hybrid_forward(self, F, x):
+            x_reshape = x.reshape((8, 64, 600, -1))
+            out = self.dense0(x_reshape)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 300, 300))
+    net = Net()
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_slice_dense():
+    class Net(gluon.HybridBlock):
+        def __init__(self, slice, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                channel0 = random.randint(1, 1000)
+                self.dense0 = nn.Dense(channel0)
+                self.slice = slice
+
+        def hybrid_forward(self, F, x):
+            x_slice = x.slice(begin=tuple(self.slice[0]),
+                              end=tuple(self.slice[1]))
+            out = self.dense0(x_slice)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 300, 300))
+    slice = [[0, 64, 50, 0], [8, 128, 300, 300]]
+    net = Net(slice)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_slice_dense_slice_dense():
+    class Net(gluon.HybridBlock):
+        def __init__(self, slice, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                channel0 = 50
+                channel1 = random.randint(1, 1000)
+                self.dense0 = nn.Dense(channel0)
+                self.dense1 = nn.Dense(channel1)
+                self.slice = slice
+
+        def hybrid_forward(self, F, x):
+            x_slice = x.slice(begin=tuple(self.slice[0]), end=tuple(self.slice[1]))
+            y = self.dense0(x_slice)
+            y_slice = y.slice(begin=(4, 0), end=(-1, 10))
+            out = self.dense1(y_slice)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 300, 300))
+    slice = [[0, 64, 50, 0], [8, 128, 300, 300]]
+    net = Net(slice)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_reshape_dense_reshape_dense():
+    class Net(gluon.HybridBlock):
+        def __init__(self, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                channel0 = random.randint(1, 1000)
+                channel1 = random.randint(1, 1000)
+                self.dense0 = nn.Dense(channel0)
+                self.dense1 = nn.Dense(channel1)
+
+        def hybrid_forward(self, F, x):
+            x_reshape = x.reshape((8, 64, 600, -1))
+            y = self.dense0(x_reshape)
+            y_reshape = y.reshape((1, -1))
+            out = self.dense1(y_reshape)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 300, 300))
+    net = Net()
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_slice_dense_reshape_dense():
+    class Net(gluon.HybridBlock):
+        def __init__(self, slice, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                channel0 = random.randint(1, 1000)
+                channel1 = random.randint(1, 1000)
+                self.dense0 = nn.Dense(channel0)
+                self.dense1 = nn.Dense(channel1)
+                self.slice = slice
+
+        def hybrid_forward(self, F, x):
+            x_slice = x.slice(begin=tuple(self.slice[0]), end=tuple(self.slice[1]))
+            y = self.dense0(x_slice)
+            y_reshape = y.reshape((1, -1))
+            out = self.dense1(y_reshape)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 300, 300))
+    slice = [[0, 64, 50, 0], [8, 128, 300, 300]]
+    net = Net(slice)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_reshape_dense_slice_dense():
+    class Net(gluon.HybridBlock):
+        def __init__(self, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                channel0 = 800
+                channel1 = random.randint(1, 1000)
+                self.dense0 = nn.Dense(channel0)
+                self.dense1 = nn.Dense(channel1)
+
+        def hybrid_forward(self, F, x):
+            x_reshape = x.reshape((8, 64, 600, -1))
+            y = self.dense0(x_reshape)
+            y_slice = y.slice(begin=(0, 500), end=(8, 628))
+            out = self.dense1(y_slice)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 300, 300))
+    net = Net()
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_reshape_batchnorm():
+    class Net(gluon.HybridBlock):
+        def __init__(self, shape, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(128, (1, 1))
+                self.bn0 = nn.BatchNorm()
+                self.reshape = shape
+
+        def hybrid_forward(self, F, x):
+            x_in = self.conv0(x)
+            x_reshape = x_in.reshape(self.reshape)
+            out = self.bn0(x_reshape)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 256, 256))
+    shape = (32, 512, 128, -1)
+    net = Net(shape)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_slice_batchnorm():
+    class Net(gluon.HybridBlock):
+        def __init__(self, slice, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(128, (1, 1))
+                self.bn0 = nn.BatchNorm(3)
+                self.slice = slice
+
+        def hybrid_forward(self, F, x):
+            x_in = self.conv0(x)
+            x_slice = x_in.slice(begin=tuple(self.slice[0]),
+                              end=tuple(self.slice[1]))
+            out = self.bn0(x_slice)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 256, 256))
+    slice = [[0, 64, 50, 0], [8, 128, 256, 256]]
+    net = Net(slice)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_slice_batchnorm_slice_batchnorm():
+    class Net(gluon.HybridBlock):
+        def __init__(self, slice, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(128, (1, 1))
+                self.bn0 = nn.BatchNorm(3)
+                self.bn1 = nn.BatchNorm(1)
+                self.slice = slice
+
+        def hybrid_forward(self, F, x):
+            x_in = self.conv0(x)
+            x_slice = x_in.slice(begin=tuple(self.slice[0][0]), end=tuple(self.slice[0][1]))
+            y = self.bn0(x_slice)
+            y_slice = y.slice(begin=tuple(self.slice[1][0]), end=tuple(self.slice[1][1]))
+            out = self.bn1(y_slice)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 256, 256))
+    slice = [[[0, 64, 50, 0], [8, 128, 200, 256]], [[4, 50, 0, 128], [7, -1, -1, -1]]]
+    net = Net(slice)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_reshape_batchnorm_reshape_batchnorm():
+    class Net(gluon.HybridBlock):
+        def __init__(self, shape, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(128, (1, 1))
+                self.bn0 = nn.BatchNorm(0)
+                self.bn1 = nn.BatchNorm(2)
+                self.reshape = shape
+
+        def hybrid_forward(self, F, x):
+            x_in = self.conv0(x)
+            x_reshape = x_in.reshape(self.reshape[0])
+            y = self.bn0(x_reshape)
+            y_reshape = y.reshape(self.reshape[1])
+            out = self.bn1(y_reshape)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 256, 512))
+    shape = [(8, 256, 128, -1), (32, 128, 512, -1)]
+    net = Net(shape)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_slice_batchnorm_reshape_batchnorm():
+    class Net(gluon.HybridBlock):
+        def __init__(self, shape, slice, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(128, (1, 1))
+                self.bn0 = nn.BatchNorm(0)
+                self.bn1 = nn.BatchNorm(2)
+                self.reshape = shape
+                self.slice = slice
+
+        def hybrid_forward(self, F, x):
+            x_in = self.conv0(x)
+            x_slice = x_in.slice(begin=tuple(self.slice[0]), end=tuple(self.slice[1]))
+            y = self.bn0(x_slice)
+            y_reshape = y.reshape(self.reshape)
+            out = self.bn1(y_reshape)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 256, 256))
+    slice = [[0, 64, 50, 0], [8, 128, 200, 256]]
+    shape = (1, 128, 256, -1)
+    net = Net(shape, slice)
+    check_layer_forward(net, x)
+
+
+@with_seed()
+def test_reshape_batchnorm_slice_batchnorm():
+    class Net(gluon.HybridBlock):
+        def __init__(self, shape, slice, **kwargs):
+            super(Net, self).__init__(**kwargs)
+            with self.name_scope():
+                self.conv0 = nn.Conv2D(128, (1, 1))
+                self.bn0 = nn.BatchNorm(2)
+                self.bn1 = nn.BatchNorm(0)
+                self.reshape = shape
+                self.slice = slice
+
+        def hybrid_forward(self, F, x):
+            x_in = self.conv0(x)
+            x_reshape = x_in.reshape(self.reshape)
+            y = self.bn0(x_reshape)
+            y_slice = y.slice(begin=tuple(self.slice[0]), end=tuple(self.slice[1]))
+            out = self.bn1(y_slice)
+            return out
+
+    x = mx.nd.random.uniform(shape=(16, 128, 256, 256))
+    slice = [[0, 0, 50, 0], [8, 1, -1, 100]]
+    shape = (128, 1, 256, -1)
+    net = Net(shape, slice)
+    check_layer_forward(net, x)
 
 
 if __name__ == '__main__':


 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


With regards,
Apache Git Services