You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@marmotta.apache.org by ss...@apache.org on 2018/04/29 19:35:31 UTC

[02/51] [partial] marmotta git commit: * Replace gtest with upstream version, including LICENSE header. * Include absl library for faster and safer string operations. * Update license headers where needed. * Removed custom code replaced by absl.

http://git-wip-us.apache.org/repos/asf/marmotta/blob/0eb556da/libraries/ostrich/backend/3rdparty/abseil/absl/types/variant_test.cc
----------------------------------------------------------------------
diff --git a/libraries/ostrich/backend/3rdparty/abseil/absl/types/variant_test.cc b/libraries/ostrich/backend/3rdparty/abseil/absl/types/variant_test.cc
new file mode 100644
index 0000000..262bd94
--- /dev/null
+++ b/libraries/ostrich/backend/3rdparty/abseil/absl/types/variant_test.cc
@@ -0,0 +1,2612 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Unit tests for the variant template. The 'is' and 'IsEmpty' methods
+// of variant are not explicitly tested because they are used repeatedly
+// in building other tests. All other public variant methods should have
+// explicit tests.
+
+#include "absl/types/variant.h"
+
+#include <algorithm>
+#include <cstddef>
+#include <functional>
+#include <initializer_list>
+#include <memory>
+#include <ostream>
+#include <queue>
+#include <type_traits>
+#include <unordered_set>
+#include <utility>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/config.h"
+#include "absl/base/port.h"
+#include "absl/memory/memory.h"
+#include "absl/meta/type_traits.h"
+#include "absl/strings/string_view.h"
+
+#ifdef ABSL_HAVE_EXCEPTIONS
+
+#define ABSL_VARIANT_TEST_EXPECT_FAIL(expr, exception_t, text) \
+  EXPECT_THROW(expr, exception_t)
+
+#else
+
+#define ABSL_VARIANT_TEST_EXPECT_FAIL(expr, exception_t, text) \
+  EXPECT_DEATH(expr, text)
+
+#endif  // ABSL_HAVE_EXCEPTIONS
+
+#define ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(...)                 \
+  ABSL_VARIANT_TEST_EXPECT_FAIL((__VA_ARGS__), absl::bad_variant_access, \
+                                "Bad variant access")
+
+struct Hashable {};
+
+namespace std {
+template <>
+struct hash<Hashable> {
+  size_t operator()(const Hashable&);
+};
+}  // namespace std
+
+struct NonHashable {};
+
+namespace absl {
+namespace {
+
+using ::testing::DoubleEq;
+using ::testing::Pointee;
+using ::testing::VariantWith;
+
+struct MoveCanThrow {
+  MoveCanThrow() : v(0) {}
+  MoveCanThrow(int v) : v(v) {}  // NOLINT(runtime/explicit)
+  MoveCanThrow(const MoveCanThrow& other) : v(other.v) {}
+  MoveCanThrow& operator=(const MoveCanThrow& /*other*/) { return *this; }
+  int v;
+};
+
+bool operator==(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v == rhs.v; }
+bool operator!=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v != rhs.v; }
+bool operator<(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v < rhs.v; }
+bool operator<=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v <= rhs.v; }
+bool operator>=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v >= rhs.v; }
+bool operator>(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v > rhs.v; }
+
+// This helper class allows us to determine if it was swapped with std::swap()
+// or with its friend swap() function.
+struct SpecialSwap {
+  explicit SpecialSwap(int i) : i(i) {}
+  friend void swap(SpecialSwap& a, SpecialSwap& b) {
+    a.special_swap = b.special_swap = true;
+    std::swap(a.i, b.i);
+  }
+  bool operator==(SpecialSwap other) const { return i == other.i; }
+  int i;
+  bool special_swap = false;
+};
+
+struct MoveOnlyWithListConstructor {
+  MoveOnlyWithListConstructor() = default;
+  explicit MoveOnlyWithListConstructor(std::initializer_list<int> /*ilist*/,
+                                       int value)
+      : value(value) {}
+  MoveOnlyWithListConstructor(MoveOnlyWithListConstructor&&) = default;
+  MoveOnlyWithListConstructor& operator=(MoveOnlyWithListConstructor&&) =
+      default;
+
+  int value = 0;
+};
+
+#ifdef ABSL_HAVE_EXCEPTIONS
+
+struct ConversionException {};
+
+template <class T>
+struct ExceptionOnConversion {
+  operator T() const {  // NOLINT(runtime/explicit)
+    throw ConversionException();
+  }
+};
+
+// Forces a variant into the valueless by exception state.
+template <class H, class... T>
+void ToValuelessByException(absl::variant<H, T...>& v) {  // NOLINT
+  try {
+    v.template emplace<0>(ExceptionOnConversion<H>());
+  } catch (ConversionException& /*e*/) {
+    // This space intentionally left blank.
+  }
+}
+
+#endif  // ABSL_HAVE_EXCEPTIONS
+
+// An indexed sequence of distinct structures holding a single
+// value of type T
+template<typename T, size_t N>
+struct ValueHolder {
+  explicit ValueHolder(const T& x) : value(x) {}
+  typedef T value_type;
+  value_type value;
+  static const size_t kIndex = N;
+};
+template<typename T, size_t N>
+const size_t ValueHolder<T, N>::kIndex;
+
+// The following three functions make ValueHolder compatible with
+// EXPECT_EQ and EXPECT_NE
+template<typename T, size_t N>
+inline bool operator==(const ValueHolder<T, N>& left,
+                       const ValueHolder<T, N>& right) {
+  return left.value == right.value;
+}
+
+template<typename T, size_t N>
+inline bool operator!=(const ValueHolder<T, N>& left,
+                       const ValueHolder<T, N>& right) {
+  return left.value != right.value;
+}
+
+template<typename T, size_t N>
+inline std::ostream& operator<<(
+    std::ostream& stream, const ValueHolder<T, N>& object) {
+  return stream << object.value;
+}
+
+// Makes a variant holding twelve uniquely typed T wrappers.
+template<typename T>
+struct VariantFactory {
+  typedef variant<ValueHolder<T, 1>, ValueHolder<T, 2>, ValueHolder<T, 3>,
+                  ValueHolder<T, 4>>
+      Type;
+};
+
+// A typelist in 1:1 with VariantFactory, to use type driven unit tests.
+typedef ::testing::Types<ValueHolder<size_t, 1>, ValueHolder<size_t, 2>,
+                         ValueHolder<size_t, 3>,
+                         ValueHolder<size_t, 4>> VariantTypes;
+
+// Increments the provided counter pointer in the destructor
+struct IncrementInDtor {
+  explicit IncrementInDtor(int* counter) : counter(counter) {}
+  ~IncrementInDtor() { *counter += 1; }
+  int* counter;
+};
+
+struct IncrementInDtorCopyCanThrow {
+  explicit IncrementInDtorCopyCanThrow(int* counter) : counter(counter) {}
+  IncrementInDtorCopyCanThrow(IncrementInDtorCopyCanThrow&& other) noexcept =
+      default;
+  IncrementInDtorCopyCanThrow(const IncrementInDtorCopyCanThrow& other)
+      : counter(other.counter) {}
+  IncrementInDtorCopyCanThrow& operator=(
+      IncrementInDtorCopyCanThrow&&) noexcept = default;
+  IncrementInDtorCopyCanThrow& operator=(
+      IncrementInDtorCopyCanThrow const& other) {
+    counter = other.counter;
+    return *this;
+  }
+  ~IncrementInDtorCopyCanThrow() { *counter += 1; }
+  int* counter;
+};
+
+// This is defined so operator== for ValueHolder<IncrementInDtor> will
+// return true if two IncrementInDtor objects increment the same
+// counter
+inline bool operator==(const IncrementInDtor& left,
+                       const IncrementInDtor& right) {
+  return left.counter == right.counter;
+}
+
+// This is defined so EXPECT_EQ can work with IncrementInDtor
+inline std::ostream& operator<<(
+    std::ostream& stream, const IncrementInDtor& object) {
+  return stream << object.counter;
+}
+
+// A class that can be copied, but not assigned.
+class CopyNoAssign {
+ public:
+  explicit CopyNoAssign(int value) : foo(value) {}
+  CopyNoAssign(const CopyNoAssign& other) : foo(other.foo) {}
+  int foo;
+ private:
+  const CopyNoAssign& operator=(const CopyNoAssign&);
+};
+
+// A class that can neither be copied nor assigned. We provide
+// overloads for the constructor with up to four parameters so we can
+// test the overloads of variant::emplace.
+class NonCopyable {
+ public:
+  NonCopyable()
+      : value(0) {}
+  explicit NonCopyable(int value1)
+      : value(value1) {}
+
+  NonCopyable(int value1, int value2)
+      : value(value1 + value2) {}
+
+  NonCopyable(int value1, int value2, int value3)
+      : value(value1 + value2 + value3) {}
+
+  NonCopyable(int value1, int value2, int value3, int value4)
+      : value(value1 + value2 + value3 + value4) {}
+  NonCopyable(const NonCopyable&) = delete;
+  NonCopyable& operator=(const NonCopyable&) = delete;
+  int value;
+};
+
+// A typed test and typed test case over the VariantTypes typelist,
+// from which we derive a number of tests that will execute for one of
+// each type.
+template <typename T>
+class VariantTypesTest : public ::testing::Test {};
+TYPED_TEST_CASE(VariantTypesTest, VariantTypes);
+
+////////////////////
+// [variant.ctor] //
+////////////////////
+
+struct NonNoexceptDefaultConstructible {
+  NonNoexceptDefaultConstructible() {}
+  int value = 5;
+};
+
+struct NonDefaultConstructible {
+  NonDefaultConstructible() = delete;
+};
+
+TEST(VariantTest, TestDefaultConstructor) {
+  {
+    using X = variant<int>;
+    constexpr variant<int> x{};
+    ASSERT_FALSE(x.valueless_by_exception());
+    ASSERT_EQ(0, x.index());
+    EXPECT_EQ(0, absl::get<0>(x));
+    EXPECT_TRUE(std::is_nothrow_default_constructible<X>::value);
+  }
+
+  {
+    using X = variant<NonNoexceptDefaultConstructible>;
+    X x{};
+    ASSERT_FALSE(x.valueless_by_exception());
+    ASSERT_EQ(0, x.index());
+    EXPECT_EQ(5, absl::get<0>(x).value);
+    EXPECT_FALSE(std::is_nothrow_default_constructible<X>::value);
+  }
+
+  {
+    using X = variant<int, NonNoexceptDefaultConstructible>;
+    X x{};
+    ASSERT_FALSE(x.valueless_by_exception());
+    ASSERT_EQ(0, x.index());
+    EXPECT_EQ(0, absl::get<0>(x));
+    EXPECT_TRUE(std::is_nothrow_default_constructible<X>::value);
+  }
+
+  {
+    using X = variant<NonNoexceptDefaultConstructible, int>;
+    X x{};
+    ASSERT_FALSE(x.valueless_by_exception());
+    ASSERT_EQ(0, x.index());
+    EXPECT_EQ(5, absl::get<0>(x).value);
+    EXPECT_FALSE(std::is_nothrow_default_constructible<X>::value);
+  }
+  EXPECT_FALSE(
+      std::is_default_constructible<variant<NonDefaultConstructible>>::value);
+  EXPECT_FALSE((std::is_default_constructible<
+                variant<NonDefaultConstructible, int>>::value));
+  EXPECT_TRUE((std::is_default_constructible<
+               variant<int, NonDefaultConstructible>>::value));
+}
+
+// Test that for each slot, copy constructing a variant with that type
+// produces a sensible object that correctly reports its type, and
+// that copies the provided value.
+TYPED_TEST(VariantTypesTest, TestCopyCtor) {
+  typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
+  using value_type1 = absl::variant_alternative_t<0, Variant>;
+  using value_type2 = absl::variant_alternative_t<1, Variant>;
+  using value_type3 = absl::variant_alternative_t<2, Variant>;
+  using value_type4 = absl::variant_alternative_t<3, Variant>;
+  const TypeParam value(TypeParam::kIndex);
+  Variant original(value);
+  Variant copied(original);
+  EXPECT_TRUE(absl::holds_alternative<value_type1>(copied) ||
+              TypeParam::kIndex != 1);
+  EXPECT_TRUE(absl::holds_alternative<value_type2>(copied) ||
+              TypeParam::kIndex != 2);
+  EXPECT_TRUE(absl::holds_alternative<value_type3>(copied) ||
+              TypeParam::kIndex != 3);
+  EXPECT_TRUE(absl::holds_alternative<value_type4>(copied) ||
+              TypeParam::kIndex != 4);
+  EXPECT_TRUE((absl::get_if<value_type1>(&original) ==
+               absl::get_if<value_type1>(&copied)) ||
+              TypeParam::kIndex == 1);
+  EXPECT_TRUE((absl::get_if<value_type2>(&original) ==
+               absl::get_if<value_type2>(&copied)) ||
+              TypeParam::kIndex == 2);
+  EXPECT_TRUE((absl::get_if<value_type3>(&original) ==
+               absl::get_if<value_type3>(&copied)) ||
+              TypeParam::kIndex == 3);
+  EXPECT_TRUE((absl::get_if<value_type4>(&original) ==
+               absl::get_if<value_type4>(&copied)) ||
+              TypeParam::kIndex == 4);
+  EXPECT_TRUE((absl::get_if<value_type1>(&original) ==
+               absl::get_if<value_type1>(&copied)) ||
+              TypeParam::kIndex == 1);
+  EXPECT_TRUE((absl::get_if<value_type2>(&original) ==
+               absl::get_if<value_type2>(&copied)) ||
+              TypeParam::kIndex == 2);
+  EXPECT_TRUE((absl::get_if<value_type3>(&original) ==
+               absl::get_if<value_type3>(&copied)) ||
+              TypeParam::kIndex == 3);
+  EXPECT_TRUE((absl::get_if<value_type4>(&original) ==
+               absl::get_if<value_type4>(&copied)) ||
+              TypeParam::kIndex == 4);
+  const TypeParam* ovalptr = absl::get_if<TypeParam>(&original);
+  const TypeParam* cvalptr = absl::get_if<TypeParam>(&copied);
+  ASSERT_TRUE(ovalptr != nullptr);
+  ASSERT_TRUE(cvalptr != nullptr);
+  EXPECT_EQ(*ovalptr, *cvalptr);
+  TypeParam* mutable_ovalptr = absl::get_if<TypeParam>(&original);
+  TypeParam* mutable_cvalptr = absl::get_if<TypeParam>(&copied);
+  ASSERT_TRUE(mutable_ovalptr != nullptr);
+  ASSERT_TRUE(mutable_cvalptr != nullptr);
+  EXPECT_EQ(*mutable_ovalptr, *mutable_cvalptr);
+}
+
+template <class>
+struct MoveOnly {
+  MoveOnly() = default;
+  explicit MoveOnly(int value) : value(value) {}
+  MoveOnly(MoveOnly&&) = default;
+  MoveOnly& operator=(MoveOnly&&) = default;
+  int value = 5;
+};
+
+TEST(VariantTest, TestMoveConstruct) {
+  using V = variant<MoveOnly<class A>, MoveOnly<class B>, MoveOnly<class C>>;
+
+  V v(in_place_index_t<1>{}, 10);
+  V v2 = absl::move(v);
+  EXPECT_EQ(10, absl::get<1>(v2).value);
+}
+
+// Used internally to emulate missing triviality traits for tests.
+template <class T>
+union SingleUnion {
+  T member;
+};
+
+// NOTE: These don't work with types that can't be union members.
+//       They are just for testing.
+template <class T>
+struct is_trivially_move_constructible
+    : std::is_move_constructible<SingleUnion<T>>::type {};
+
+template <class T>
+struct is_trivially_move_assignable
+    : std::is_move_assignable<SingleUnion<T>>::type {};
+
+TEST(VariantTest, NothrowMoveConstructible) {
+  // Verify that variant is nothrow move constructible iff its template
+  // arguments are.
+  using U = std::unique_ptr<int>;
+  struct E {
+    E(E&&) {}
+  };
+  static_assert(std::is_nothrow_move_constructible<variant<U>>::value, "");
+  static_assert(std::is_nothrow_move_constructible<variant<U, int>>::value, "");
+  static_assert(!std::is_nothrow_move_constructible<variant<U, E>>::value, "");
+}
+
+// Test that for each slot, constructing a variant with that type
+// produces a sensible object that correctly reports its type, and
+// that copies the provided value.
+TYPED_TEST(VariantTypesTest, TestValueCtor) {
+  typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
+  using value_type1 = absl::variant_alternative_t<0, Variant>;
+  using value_type2 = absl::variant_alternative_t<1, Variant>;
+  using value_type3 = absl::variant_alternative_t<2, Variant>;
+  using value_type4 = absl::variant_alternative_t<3, Variant>;
+  const TypeParam value(TypeParam::kIndex);
+  Variant v(value);
+  EXPECT_TRUE(absl::holds_alternative<value_type1>(v) ||
+              TypeParam::kIndex != 1);
+  EXPECT_TRUE(absl::holds_alternative<value_type2>(v) ||
+              TypeParam::kIndex != 2);
+  EXPECT_TRUE(absl::holds_alternative<value_type3>(v) ||
+              TypeParam::kIndex != 3);
+  EXPECT_TRUE(absl::holds_alternative<value_type4>(v) ||
+              TypeParam::kIndex != 4);
+  EXPECT_TRUE(nullptr != absl::get_if<value_type1>(&v) ||
+              TypeParam::kIndex != 1);
+  EXPECT_TRUE(nullptr != absl::get_if<value_type2>(&v) ||
+              TypeParam::kIndex != 2);
+  EXPECT_TRUE(nullptr != absl::get_if<value_type3>(&v) ||
+              TypeParam::kIndex != 3);
+  EXPECT_TRUE(nullptr != absl::get_if<value_type4>(&v) ||
+              TypeParam::kIndex != 4);
+  EXPECT_TRUE(nullptr != absl::get_if<value_type1>(&v) ||
+              TypeParam::kIndex != 1);
+  EXPECT_TRUE(nullptr != absl::get_if<value_type2>(&v) ||
+              TypeParam::kIndex != 2);
+  EXPECT_TRUE(nullptr != absl::get_if<value_type3>(&v) ||
+              TypeParam::kIndex != 3);
+  EXPECT_TRUE(nullptr != absl::get_if<value_type4>(&v) ||
+              TypeParam::kIndex != 4);
+  const TypeParam* valptr = absl::get_if<TypeParam>(&v);
+  ASSERT_TRUE(nullptr != valptr);
+  EXPECT_EQ(value.value, valptr->value);
+  const TypeParam* mutable_valptr = absl::get_if<TypeParam>(&v);
+  ASSERT_TRUE(nullptr != mutable_valptr);
+  EXPECT_EQ(value.value, mutable_valptr->value);
+}
+
+TEST(VariantTest, InPlaceType) {
+  using Var = variant<int, std::string, NonCopyable, std::vector<int>>;
+
+  Var v1(in_place_type_t<int>(), 7);
+  ASSERT_TRUE(absl::holds_alternative<int>(v1));
+  EXPECT_EQ(7, absl::get<int>(v1));
+
+  Var v2(in_place_type_t<std::string>(), "ABC");
+  ASSERT_TRUE(absl::holds_alternative<std::string>(v2));
+  EXPECT_EQ("ABC", absl::get<std::string>(v2));
+
+  Var v3(in_place_type_t<std::string>(), "ABC", 2);
+  ASSERT_TRUE(absl::holds_alternative<std::string>(v3));
+  EXPECT_EQ("AB", absl::get<std::string>(v3));
+
+  Var v4(in_place_type_t<NonCopyable>{});
+  ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v4));
+
+  Var v5(in_place_type_t<std::vector<int>>(), {1, 2, 3});
+  ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5));
+  EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3));
+}
+
+TEST(VariantTest, InPlaceTypeInitializerList) {
+  using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
+
+  Var v1(in_place_type_t<MoveOnlyWithListConstructor>(), {1, 2, 3, 4, 5}, 6);
+  ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
+  EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
+}
+
+TEST(VariantTest, InPlaceIndex) {
+  using Var = variant<int, std::string, NonCopyable, std::vector<int>>;
+
+  Var v1(in_place_index_t<0>(), 7);
+  ASSERT_TRUE(absl::holds_alternative<int>(v1));
+  EXPECT_EQ(7, absl::get<int>(v1));
+
+  Var v2(in_place_index_t<1>(), "ABC");
+  ASSERT_TRUE(absl::holds_alternative<std::string>(v2));
+  EXPECT_EQ("ABC", absl::get<std::string>(v2));
+
+  Var v3(in_place_index_t<1>(), "ABC", 2);
+  ASSERT_TRUE(absl::holds_alternative<std::string>(v3));
+  EXPECT_EQ("AB", absl::get<std::string>(v3));
+
+  Var v4(in_place_index_t<2>{});
+  EXPECT_TRUE(absl::holds_alternative<NonCopyable>(v4));
+
+  // Verify that a variant with only non-copyables can still be constructed.
+  EXPECT_TRUE(absl::holds_alternative<NonCopyable>(
+      variant<NonCopyable>(in_place_index_t<0>{})));
+
+  Var v5(in_place_index_t<3>(), {1, 2, 3});
+  ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5));
+  EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3));
+}
+
+TEST(VariantTest, InPlaceIndexInitializerList) {
+  using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
+
+  Var v1(in_place_index_t<3>(), {1, 2, 3, 4, 5}, 6);
+  ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
+  EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
+}
+
+////////////////////
+// [variant.dtor] //
+////////////////////
+
+// Make sure that the destructor destroys the contained value
+TEST(VariantTest, TestDtor) {
+  typedef VariantFactory<IncrementInDtor>::Type Variant;
+  using value_type1 = absl::variant_alternative_t<0, Variant>;
+  using value_type2 = absl::variant_alternative_t<1, Variant>;
+  using value_type3 = absl::variant_alternative_t<2, Variant>;
+  using value_type4 = absl::variant_alternative_t<3, Variant>;
+  int counter = 0;
+  IncrementInDtor counter_adjuster(&counter);
+  EXPECT_EQ(0, counter);
+
+  value_type1 value1(counter_adjuster);
+  { Variant object(value1); }
+  EXPECT_EQ(1, counter);
+
+  value_type2 value2(counter_adjuster);
+  { Variant object(value2); }
+  EXPECT_EQ(2, counter);
+
+  value_type3 value3(counter_adjuster);
+  { Variant object(value3); }
+  EXPECT_EQ(3, counter);
+
+  value_type4 value4(counter_adjuster);
+  { Variant object(value4); }
+  EXPECT_EQ(4, counter);
+}
+
+#ifdef ABSL_HAVE_EXCEPTIONS
+
+// Test destruction when in the valueless_by_exception state.
+TEST(VariantTest, TestDtorValuelessByException) {
+  int counter = 0;
+  IncrementInDtor counter_adjuster(&counter);
+
+  {
+    using Variant = VariantFactory<IncrementInDtor>::Type;
+
+    Variant v(in_place_index_t<0>(), counter_adjuster);
+    EXPECT_EQ(0, counter);
+
+    ToValuelessByException(v);
+    ASSERT_TRUE(v.valueless_by_exception());
+    EXPECT_EQ(1, counter);
+  }
+  EXPECT_EQ(1, counter);
+}
+
+#endif  // ABSL_HAVE_EXCEPTIONS
+
+//////////////////////
+// [variant.assign] //
+//////////////////////
+
+// Test that self-assignment doesn't destroy the current value
+TEST(VariantTest, TestSelfAssignment) {
+  typedef VariantFactory<IncrementInDtor>::Type Variant;
+  int counter = 0;
+  IncrementInDtor counter_adjuster(&counter);
+  absl::variant_alternative_t<0, Variant> value(counter_adjuster);
+  Variant object(value);
+  object.operator=(object);
+  EXPECT_EQ(0, counter);
+
+  // A std::string long enough that it's likely to defeat any inline representation
+  // optimization.
+  const std::string long_str(128, 'a');
+
+  std::string foo = long_str;
+  foo = *&foo;
+  EXPECT_EQ(long_str, foo);
+
+  variant<int, std::string> so = long_str;
+  ASSERT_EQ(1, so.index());
+  EXPECT_EQ(long_str, absl::get<1>(so));
+  so = *&so;
+
+  ASSERT_EQ(1, so.index());
+  EXPECT_EQ(long_str, absl::get<1>(so));
+}
+
+// Test that assigning a variant<..., T, ...> to a variant<..., T, ...> produces
+// a variant<..., T, ...> with the correct value.
+TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValueSameTypes) {
+  typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
+  const TypeParam value(TypeParam::kIndex);
+  const Variant source(value);
+  Variant target(TypeParam(value.value + 1));
+  ASSERT_TRUE(absl::holds_alternative<TypeParam>(source));
+  ASSERT_TRUE(absl::holds_alternative<TypeParam>(target));
+  ASSERT_NE(absl::get<TypeParam>(source), absl::get<TypeParam>(target));
+  target = source;
+  ASSERT_TRUE(absl::holds_alternative<TypeParam>(source));
+  ASSERT_TRUE(absl::holds_alternative<TypeParam>(target));
+  EXPECT_EQ(absl::get<TypeParam>(source), absl::get<TypeParam>(target));
+}
+
+// Test that assisnging a variant<..., T, ...> to a variant<1, ...>
+// produces a variant<..., T, ...> with the correct value.
+TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValuesVaryingSourceType) {
+  typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
+  using value_type1 = absl::variant_alternative_t<0, Variant>;
+  const TypeParam value(TypeParam::kIndex);
+  const Variant source(value);
+  ASSERT_TRUE(absl::holds_alternative<TypeParam>(source));
+  Variant target(value_type1(1));
+  ASSERT_TRUE(absl::holds_alternative<value_type1>(target));
+  target = source;
+  EXPECT_TRUE(absl::holds_alternative<TypeParam>(source));
+  EXPECT_TRUE(absl::holds_alternative<TypeParam>(target));
+  EXPECT_EQ(absl::get<TypeParam>(source), absl::get<TypeParam>(target));
+}
+
+// Test that assigning a variant<1, ...> to a variant<..., T, ...>
+// produces a variant<1, ...> with the correct value.
+TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValuesVaryingTargetType) {
+  typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
+  using value_type1 = absl::variant_alternative_t<0, Variant>;
+  const Variant source(value_type1(1));
+  ASSERT_TRUE(absl::holds_alternative<value_type1>(source));
+  const TypeParam value(TypeParam::kIndex);
+  Variant target(value);
+  ASSERT_TRUE(absl::holds_alternative<TypeParam>(target));
+  target = source;
+  EXPECT_TRUE(absl::holds_alternative<value_type1>(target));
+  EXPECT_TRUE(absl::holds_alternative<value_type1>(source));
+  EXPECT_EQ(absl::get<value_type1>(source), absl::get<value_type1>(target));
+}
+
+// Test that operator=<T> works, that assigning a new value destroys
+// the old and that assigning the new value again does not redestroy
+// the old
+TEST(VariantTest, TestAssign) {
+  typedef VariantFactory<IncrementInDtor>::Type Variant;
+  using value_type1 = absl::variant_alternative_t<0, Variant>;
+  using value_type2 = absl::variant_alternative_t<1, Variant>;
+  using value_type3 = absl::variant_alternative_t<2, Variant>;
+  using value_type4 = absl::variant_alternative_t<3, Variant>;
+
+  const int kSize = 4;
+  int counter[kSize];
+  std::unique_ptr<IncrementInDtor> counter_adjustor[kSize];
+  for (int i = 0; i != kSize; i++) {
+    counter[i] = 0;
+    counter_adjustor[i] = absl::make_unique<IncrementInDtor>(&counter[i]);
+  }
+
+  value_type1 v1(*counter_adjustor[0]);
+  value_type2 v2(*counter_adjustor[1]);
+  value_type3 v3(*counter_adjustor[2]);
+  value_type4 v4(*counter_adjustor[3]);
+
+  // Test that reassignment causes destruction of old value
+  {
+    Variant object(v1);
+    object = v2;
+    object = v3;
+    object = v4;
+    object = v1;
+  }
+
+  EXPECT_EQ(2, counter[0]);
+  EXPECT_EQ(1, counter[1]);
+  EXPECT_EQ(1, counter[2]);
+  EXPECT_EQ(1, counter[3]);
+
+  std::fill(std::begin(counter), std::end(counter), 0);
+
+  // Test that self-assignment does not cause destruction of old value
+  {
+    Variant object(v1);
+    object.operator=(object);
+    EXPECT_EQ(0, counter[0]);
+  }
+  {
+    Variant object(v2);
+    object.operator=(object);
+    EXPECT_EQ(0, counter[1]);
+  }
+  {
+    Variant object(v3);
+    object.operator=(object);
+    EXPECT_EQ(0, counter[2]);
+  }
+  {
+    Variant object(v4);
+    object.operator=(object);
+    EXPECT_EQ(0, counter[3]);
+  }
+
+  EXPECT_EQ(1, counter[0]);
+  EXPECT_EQ(1, counter[1]);
+  EXPECT_EQ(1, counter[2]);
+  EXPECT_EQ(1, counter[3]);
+}
+
+// This tests that we perform a backup if the copy-assign can throw but the move
+// cannot throw.
+TEST(VariantTest, TestBackupAssign) {
+  typedef VariantFactory<IncrementInDtorCopyCanThrow>::Type Variant;
+  using value_type1 = absl::variant_alternative_t<0, Variant>;
+  using value_type2 = absl::variant_alternative_t<1, Variant>;
+  using value_type3 = absl::variant_alternative_t<2, Variant>;
+  using value_type4 = absl::variant_alternative_t<3, Variant>;
+
+  const int kSize = 4;
+  int counter[kSize];
+  std::unique_ptr<IncrementInDtorCopyCanThrow> counter_adjustor[kSize];
+  for (int i = 0; i != kSize; i++) {
+    counter[i] = 0;
+    counter_adjustor[i].reset(new IncrementInDtorCopyCanThrow(&counter[i]));
+  }
+
+  value_type1 v1(*counter_adjustor[0]);
+  value_type2 v2(*counter_adjustor[1]);
+  value_type3 v3(*counter_adjustor[2]);
+  value_type4 v4(*counter_adjustor[3]);
+
+  // Test that reassignment causes destruction of old value
+  {
+    Variant object(v1);
+    object = v2;
+    object = v3;
+    object = v4;
+    object = v1;
+  }
+
+  // libstdc++ doesn't pass this test
+#if !(defined(ABSL_HAVE_STD_VARIANT) && defined(__GLIBCXX__))
+  EXPECT_EQ(3, counter[0]);
+  EXPECT_EQ(2, counter[1]);
+  EXPECT_EQ(2, counter[2]);
+  EXPECT_EQ(2, counter[3]);
+#endif
+
+  std::fill(std::begin(counter), std::end(counter), 0);
+
+  // Test that self-assignment does not cause destruction of old value
+  {
+    Variant object(v1);
+    object.operator=(object);
+    EXPECT_EQ(0, counter[0]);
+  }
+  {
+    Variant object(v2);
+    object.operator=(object);
+    EXPECT_EQ(0, counter[1]);
+  }
+  {
+    Variant object(v3);
+    object.operator=(object);
+    EXPECT_EQ(0, counter[2]);
+  }
+  {
+    Variant object(v4);
+    object.operator=(object);
+    EXPECT_EQ(0, counter[3]);
+  }
+
+  EXPECT_EQ(1, counter[0]);
+  EXPECT_EQ(1, counter[1]);
+  EXPECT_EQ(1, counter[2]);
+  EXPECT_EQ(1, counter[3]);
+}
+
+///////////////////
+// [variant.mod] //
+///////////////////
+
+TEST(VariantTest, TestEmplaceBasic) {
+  using Variant = variant<int, char>;
+
+  Variant v(absl::in_place_index_t<0>{}, 0);
+
+  {
+    char& emplace_result = v.emplace<char>();
+    ASSERT_TRUE(absl::holds_alternative<char>(v));
+    EXPECT_EQ(absl::get<char>(v), 0);
+    EXPECT_EQ(&emplace_result, &absl::get<char>(v));
+  }
+
+  // Make sure that another emplace does zero-initialization
+  absl::get<char>(v) = 'a';
+  v.emplace<char>('b');
+  ASSERT_TRUE(absl::holds_alternative<char>(v));
+  EXPECT_EQ(absl::get<char>(v), 'b');
+
+  {
+    int& emplace_result = v.emplace<int>();
+    EXPECT_TRUE(absl::holds_alternative<int>(v));
+    EXPECT_EQ(absl::get<int>(v), 0);
+    EXPECT_EQ(&emplace_result, &absl::get<int>(v));
+  }
+}
+
+TEST(VariantTest, TestEmplaceInitializerList) {
+  using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
+
+  Var v1(absl::in_place_index_t<0>{}, 555);
+  MoveOnlyWithListConstructor& emplace_result =
+      v1.emplace<MoveOnlyWithListConstructor>({1, 2, 3, 4, 5}, 6);
+  ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
+  EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
+  EXPECT_EQ(&emplace_result, &absl::get<MoveOnlyWithListConstructor>(v1));
+}
+
+TEST(VariantTest, TestEmplaceIndex) {
+  using Variant = variant<int, char>;
+
+  Variant v(absl::in_place_index_t<0>{}, 555);
+
+  {
+    char& emplace_result = v.emplace<1>();
+    ASSERT_TRUE(absl::holds_alternative<char>(v));
+    EXPECT_EQ(absl::get<char>(v), 0);
+    EXPECT_EQ(&emplace_result, &absl::get<char>(v));
+  }
+
+  // Make sure that another emplace does zero-initialization
+  absl::get<char>(v) = 'a';
+  v.emplace<1>('b');
+  ASSERT_TRUE(absl::holds_alternative<char>(v));
+  EXPECT_EQ(absl::get<char>(v), 'b');
+
+  {
+    int& emplace_result = v.emplace<0>();
+    EXPECT_TRUE(absl::holds_alternative<int>(v));
+    EXPECT_EQ(absl::get<int>(v), 0);
+    EXPECT_EQ(&emplace_result, &absl::get<int>(v));
+  }
+}
+
+TEST(VariantTest, TestEmplaceIndexInitializerList) {
+  using Var = variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
+
+  Var v1(absl::in_place_index_t<0>{}, 555);
+  MoveOnlyWithListConstructor& emplace_result =
+      v1.emplace<3>({1, 2, 3, 4, 5}, 6);
+  ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
+  EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
+  EXPECT_EQ(&emplace_result, &absl::get<MoveOnlyWithListConstructor>(v1));
+}
+
+//////////////////////
+// [variant.status] //
+//////////////////////
+
+TEST(VariantTest, Index) {
+  using Var = variant<int, std::string, double>;
+
+  Var v = 1;
+  EXPECT_EQ(0, v.index());
+  v = "str";
+  EXPECT_EQ(1, v.index());
+  v = 0.;
+  EXPECT_EQ(2, v.index());
+
+  Var v2 = v;
+  EXPECT_EQ(2, v2.index());
+  v2.emplace<int>(3);
+  EXPECT_EQ(0, v2.index());
+}
+
+TEST(VariantTest, NotValuelessByException) {
+  using Var = variant<int, std::string, double>;
+
+  Var v = 1;
+  EXPECT_FALSE(v.valueless_by_exception());
+  v = "str";
+  EXPECT_FALSE(v.valueless_by_exception());
+  v = 0.;
+  EXPECT_FALSE(v.valueless_by_exception());
+
+  Var v2 = v;
+  EXPECT_FALSE(v.valueless_by_exception());
+  v2.emplace<int>(3);
+  EXPECT_FALSE(v.valueless_by_exception());
+}
+
+#ifdef ABSL_HAVE_EXCEPTIONS
+
+TEST(VariantTest, IndexValuelessByException) {
+  using Var = variant<MoveCanThrow, std::string, double>;
+
+  Var v(absl::in_place_index_t<0>{});
+  EXPECT_EQ(0, v.index());
+  ToValuelessByException(v);
+  EXPECT_EQ(absl::variant_npos, v.index());
+  v = "str";
+  EXPECT_EQ(1, v.index());
+}
+
+TEST(VariantTest, ValuelessByException) {
+  using Var = variant<MoveCanThrow, std::string, double>;
+
+  Var v(absl::in_place_index_t<0>{});
+  EXPECT_FALSE(v.valueless_by_exception());
+  ToValuelessByException(v);
+  EXPECT_TRUE(v.valueless_by_exception());
+  v = "str";
+  EXPECT_FALSE(v.valueless_by_exception());
+}
+
+#endif  // ABSL_HAVE_EXCEPTIONS
+
+////////////////////
+// [variant.swap] //
+////////////////////
+
+TEST(VariantTest, MemberSwap) {
+  SpecialSwap v1(3);
+  SpecialSwap v2(7);
+
+  variant<SpecialSwap> a = v1, b = v2;
+
+  EXPECT_THAT(a, VariantWith<SpecialSwap>(v1));
+  EXPECT_THAT(b, VariantWith<SpecialSwap>(v2));
+
+  a.swap(b);
+  EXPECT_THAT(a, VariantWith<SpecialSwap>(v2));
+  EXPECT_THAT(b, VariantWith<SpecialSwap>(v1));
+  EXPECT_TRUE(absl::get<SpecialSwap>(a).special_swap);
+
+  using V = variant<MoveCanThrow, std::string, int>;
+  int i = 33;
+  std::string s = "abc";
+  V valueless(in_place_index_t<0>{});
+  ToValuelessByException(valueless);
+  {
+    // lhs and rhs holds different alternative
+    V lhs(i), rhs(s);
+    lhs.swap(rhs);
+    EXPECT_THAT(lhs, VariantWith<std::string>(s));
+    EXPECT_THAT(rhs, VariantWith<int>(i));
+  }
+  {
+    // lhs is valueless
+    V lhs(valueless), rhs(i);
+    lhs.swap(rhs);
+    EXPECT_THAT(lhs, VariantWith<int>(i));
+    EXPECT_TRUE(rhs.valueless_by_exception());
+  }
+  {
+    // rhs is valueless
+    V lhs(s), rhs(valueless);
+    lhs.swap(rhs);
+    EXPECT_THAT(rhs, VariantWith<std::string>(s));
+    EXPECT_TRUE(lhs.valueless_by_exception());
+  }
+  {
+    // both are valueless
+    V lhs(valueless), rhs(valueless);
+    lhs.swap(rhs);
+    EXPECT_TRUE(lhs.valueless_by_exception());
+    EXPECT_TRUE(rhs.valueless_by_exception());
+  }
+}
+
+//////////////////////
+// [variant.helper] //
+//////////////////////
+
+TEST(VariantTest, VariantSize) {
+  {
+    using Size1Variant = absl::variant<int>;
+    EXPECT_EQ(1, absl::variant_size<Size1Variant>::value);
+    EXPECT_EQ(1, absl::variant_size<const Size1Variant>::value);
+    EXPECT_EQ(1, absl::variant_size<volatile Size1Variant>::value);
+    EXPECT_EQ(1, absl::variant_size<const volatile Size1Variant>::value);
+  }
+
+  {
+    using Size3Variant = absl::variant<int, float, int>;
+    EXPECT_EQ(3, absl::variant_size<Size3Variant>::value);
+    EXPECT_EQ(3, absl::variant_size<const Size3Variant>::value);
+    EXPECT_EQ(3, absl::variant_size<volatile Size3Variant>::value);
+    EXPECT_EQ(3, absl::variant_size<const volatile Size3Variant>::value);
+  }
+}
+
+TEST(VariantTest, VariantAlternative) {
+  {
+    using V = absl::variant<float, int, const char*>;
+    EXPECT_TRUE(
+        (std::is_same<float, absl::variant_alternative_t<0, V>>::value));
+    EXPECT_TRUE((std::is_same<const float,
+                              absl::variant_alternative_t<0, const V>>::value));
+    EXPECT_TRUE(
+        (std::is_same<volatile float,
+                      absl::variant_alternative_t<0, volatile V>>::value));
+    EXPECT_TRUE((
+        std::is_same<const volatile float,
+                     absl::variant_alternative_t<0, const volatile V>>::value));
+
+    EXPECT_TRUE((std::is_same<int, absl::variant_alternative_t<1, V>>::value));
+    EXPECT_TRUE((std::is_same<const int,
+                              absl::variant_alternative_t<1, const V>>::value));
+    EXPECT_TRUE(
+        (std::is_same<volatile int,
+                      absl::variant_alternative_t<1, volatile V>>::value));
+    EXPECT_TRUE((
+        std::is_same<const volatile int,
+                     absl::variant_alternative_t<1, const volatile V>>::value));
+
+    EXPECT_TRUE(
+        (std::is_same<const char*, absl::variant_alternative_t<2, V>>::value));
+    EXPECT_TRUE((std::is_same<const char* const,
+                              absl::variant_alternative_t<2, const V>>::value));
+    EXPECT_TRUE(
+        (std::is_same<const char* volatile,
+                      absl::variant_alternative_t<2, volatile V>>::value));
+    EXPECT_TRUE((
+        std::is_same<const char* const volatile,
+                     absl::variant_alternative_t<2, const volatile V>>::value));
+  }
+
+  {
+    using V = absl::variant<float, volatile int, const char*>;
+    EXPECT_TRUE(
+        (std::is_same<float, absl::variant_alternative_t<0, V>>::value));
+    EXPECT_TRUE((std::is_same<const float,
+                              absl::variant_alternative_t<0, const V>>::value));
+    EXPECT_TRUE(
+        (std::is_same<volatile float,
+                      absl::variant_alternative_t<0, volatile V>>::value));
+    EXPECT_TRUE((
+        std::is_same<const volatile float,
+                     absl::variant_alternative_t<0, const volatile V>>::value));
+
+    EXPECT_TRUE(
+        (std::is_same<volatile int, absl::variant_alternative_t<1, V>>::value));
+    EXPECT_TRUE((std::is_same<const volatile int,
+                              absl::variant_alternative_t<1, const V>>::value));
+    EXPECT_TRUE(
+        (std::is_same<volatile int,
+                      absl::variant_alternative_t<1, volatile V>>::value));
+    EXPECT_TRUE((
+        std::is_same<const volatile int,
+                     absl::variant_alternative_t<1, const volatile V>>::value));
+
+    EXPECT_TRUE(
+        (std::is_same<const char*, absl::variant_alternative_t<2, V>>::value));
+    EXPECT_TRUE((std::is_same<const char* const,
+                              absl::variant_alternative_t<2, const V>>::value));
+    EXPECT_TRUE(
+        (std::is_same<const char* volatile,
+                      absl::variant_alternative_t<2, volatile V>>::value));
+    EXPECT_TRUE((
+        std::is_same<const char* const volatile,
+                     absl::variant_alternative_t<2, const volatile V>>::value));
+  }
+}
+
+///////////////////
+// [variant.get] //
+///////////////////
+
+TEST(VariantTest, HoldsAlternative) {
+  using Var = variant<int, std::string, double>;
+
+  Var v = 1;
+  EXPECT_TRUE(absl::holds_alternative<int>(v));
+  EXPECT_FALSE(absl::holds_alternative<std::string>(v));
+  EXPECT_FALSE(absl::holds_alternative<double>(v));
+  v = "str";
+  EXPECT_FALSE(absl::holds_alternative<int>(v));
+  EXPECT_TRUE(absl::holds_alternative<std::string>(v));
+  EXPECT_FALSE(absl::holds_alternative<double>(v));
+  v = 0.;
+  EXPECT_FALSE(absl::holds_alternative<int>(v));
+  EXPECT_FALSE(absl::holds_alternative<std::string>(v));
+  EXPECT_TRUE(absl::holds_alternative<double>(v));
+
+  Var v2 = v;
+  EXPECT_FALSE(absl::holds_alternative<int>(v2));
+  EXPECT_FALSE(absl::holds_alternative<std::string>(v2));
+  EXPECT_TRUE(absl::holds_alternative<double>(v2));
+  v2.emplace<int>(3);
+  EXPECT_TRUE(absl::holds_alternative<int>(v2));
+  EXPECT_FALSE(absl::holds_alternative<std::string>(v2));
+  EXPECT_FALSE(absl::holds_alternative<double>(v2));
+}
+
+TEST(VariantTest, GetIndex) {
+  using Var = variant<int, std::string, double, int>;
+
+  {
+    Var v(absl::in_place_index_t<0>{}, 0);
+
+    using LValueGetType = decltype(absl::get<0>(v));
+    using RValueGetType = decltype(absl::get<0>(absl::move(v)));
+
+    EXPECT_TRUE((std::is_same<LValueGetType, int&>::value));
+    EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value));
+    EXPECT_EQ(absl::get<0>(v), 0);
+    EXPECT_EQ(absl::get<0>(absl::move(v)), 0);
+
+    const Var& const_v = v;
+    using ConstLValueGetType = decltype(absl::get<0>(const_v));
+    using ConstRValueGetType = decltype(absl::get<0>(absl::move(const_v)));
+    EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value));
+    EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value));
+    EXPECT_EQ(absl::get<0>(const_v), 0);
+    EXPECT_EQ(absl::get<0>(absl::move(const_v)), 0);
+  }
+
+  {
+    Var v = std::string("Hello");
+
+    using LValueGetType = decltype(absl::get<1>(v));
+    using RValueGetType = decltype(absl::get<1>(absl::move(v)));
+
+    EXPECT_TRUE((std::is_same<LValueGetType, std::string&>::value));
+    EXPECT_TRUE((std::is_same<RValueGetType, std::string&&>::value));
+    EXPECT_EQ(absl::get<1>(v), "Hello");
+    EXPECT_EQ(absl::get<1>(absl::move(v)), "Hello");
+
+    const Var& const_v = v;
+    using ConstLValueGetType = decltype(absl::get<1>(const_v));
+    using ConstRValueGetType = decltype(absl::get<1>(absl::move(const_v)));
+    EXPECT_TRUE((std::is_same<ConstLValueGetType, const std::string&>::value));
+    EXPECT_TRUE((std::is_same<ConstRValueGetType, const std::string&&>::value));
+    EXPECT_EQ(absl::get<1>(const_v), "Hello");
+    EXPECT_EQ(absl::get<1>(absl::move(const_v)), "Hello");
+  }
+
+  {
+    Var v = 2.0;
+
+    using LValueGetType = decltype(absl::get<2>(v));
+    using RValueGetType = decltype(absl::get<2>(absl::move(v)));
+
+    EXPECT_TRUE((std::is_same<LValueGetType, double&>::value));
+    EXPECT_TRUE((std::is_same<RValueGetType, double&&>::value));
+    EXPECT_EQ(absl::get<2>(v), 2.);
+    EXPECT_EQ(absl::get<2>(absl::move(v)), 2.);
+
+    const Var& const_v = v;
+    using ConstLValueGetType = decltype(absl::get<2>(const_v));
+    using ConstRValueGetType = decltype(absl::get<2>(absl::move(const_v)));
+    EXPECT_TRUE((std::is_same<ConstLValueGetType, const double&>::value));
+    EXPECT_TRUE((std::is_same<ConstRValueGetType, const double&&>::value));
+    EXPECT_EQ(absl::get<2>(const_v), 2.);
+    EXPECT_EQ(absl::get<2>(absl::move(const_v)), 2.);
+  }
+
+  {
+    Var v(absl::in_place_index_t<0>{}, 0);
+    v.emplace<3>(1);
+
+    using LValueGetType = decltype(absl::get<3>(v));
+    using RValueGetType = decltype(absl::get<3>(absl::move(v)));
+
+    EXPECT_TRUE((std::is_same<LValueGetType, int&>::value));
+    EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value));
+    EXPECT_EQ(absl::get<3>(v), 1);
+    EXPECT_EQ(absl::get<3>(absl::move(v)), 1);
+
+    const Var& const_v = v;
+    using ConstLValueGetType = decltype(absl::get<3>(const_v));
+    using ConstRValueGetType = decltype(absl::get<3>(absl::move(const_v)));
+    EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value));
+    EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value));
+    EXPECT_EQ(absl::get<3>(const_v), 1);
+    EXPECT_EQ(absl::get<3>(absl::move(const_v)), 1);  // NOLINT
+  }
+}
+
+TEST(VariantTest, BadGetIndex) {
+  using Var = variant<int, std::string, double>;
+
+  {
+    Var v = 1;
+
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(v));
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(std::move(v)));
+
+    const Var& const_v = v;
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(const_v));
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
+        absl::get<1>(std::move(const_v)));  // NOLINT
+  }
+
+  {
+    Var v = std::string("Hello");
+
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(v));
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(std::move(v)));
+
+    const Var& const_v = v;
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(const_v));
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
+        absl::get<0>(std::move(const_v)));  // NOLINT
+  }
+}
+
+TEST(VariantTest, GetType) {
+  using Var = variant<int, std::string, double>;
+
+  {
+    Var v = 1;
+
+    using LValueGetType = decltype(absl::get<int>(v));
+    using RValueGetType = decltype(absl::get<int>(absl::move(v)));
+
+    EXPECT_TRUE((std::is_same<LValueGetType, int&>::value));
+    EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value));
+    EXPECT_EQ(absl::get<int>(v), 1);
+    EXPECT_EQ(absl::get<int>(absl::move(v)), 1);
+
+    const Var& const_v = v;
+    using ConstLValueGetType = decltype(absl::get<int>(const_v));
+    using ConstRValueGetType = decltype(absl::get<int>(absl::move(const_v)));
+    EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value));
+    EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value));
+    EXPECT_EQ(absl::get<int>(const_v), 1);
+    EXPECT_EQ(absl::get<int>(absl::move(const_v)), 1);
+  }
+
+  {
+    Var v = std::string("Hello");
+
+    using LValueGetType = decltype(absl::get<1>(v));
+    using RValueGetType = decltype(absl::get<1>(absl::move(v)));
+
+    EXPECT_TRUE((std::is_same<LValueGetType, std::string&>::value));
+    EXPECT_TRUE((std::is_same<RValueGetType, std::string&&>::value));
+    EXPECT_EQ(absl::get<std::string>(v), "Hello");
+    EXPECT_EQ(absl::get<std::string>(absl::move(v)), "Hello");
+
+    const Var& const_v = v;
+    using ConstLValueGetType = decltype(absl::get<1>(const_v));
+    using ConstRValueGetType = decltype(absl::get<1>(absl::move(const_v)));
+    EXPECT_TRUE((std::is_same<ConstLValueGetType, const std::string&>::value));
+    EXPECT_TRUE((std::is_same<ConstRValueGetType, const std::string&&>::value));
+    EXPECT_EQ(absl::get<std::string>(const_v), "Hello");
+    EXPECT_EQ(absl::get<std::string>(absl::move(const_v)), "Hello");
+  }
+
+  {
+    Var v = 2.0;
+
+    using LValueGetType = decltype(absl::get<2>(v));
+    using RValueGetType = decltype(absl::get<2>(absl::move(v)));
+
+    EXPECT_TRUE((std::is_same<LValueGetType, double&>::value));
+    EXPECT_TRUE((std::is_same<RValueGetType, double&&>::value));
+    EXPECT_EQ(absl::get<double>(v), 2.);
+    EXPECT_EQ(absl::get<double>(absl::move(v)), 2.);
+
+    const Var& const_v = v;
+    using ConstLValueGetType = decltype(absl::get<2>(const_v));
+    using ConstRValueGetType = decltype(absl::get<2>(absl::move(const_v)));
+    EXPECT_TRUE((std::is_same<ConstLValueGetType, const double&>::value));
+    EXPECT_TRUE((std::is_same<ConstRValueGetType, const double&&>::value));
+    EXPECT_EQ(absl::get<double>(const_v), 2.);
+    EXPECT_EQ(absl::get<double>(absl::move(const_v)), 2.);
+  }
+}
+
+TEST(VariantTest, BadGetType) {
+  using Var = variant<int, std::string, double>;
+
+  {
+    Var v = 1;
+
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<std::string>(v));
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
+        absl::get<std::string>(std::move(v)));
+
+    const Var& const_v = v;
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<std::string>(const_v));
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
+        absl::get<std::string>(std::move(const_v)));  // NOLINT
+  }
+
+  {
+    Var v = std::string("Hello");
+
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(v));
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(std::move(v)));
+
+    const Var& const_v = v;
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(const_v));
+    ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
+        absl::get<int>(std::move(const_v)));  // NOLINT
+  }
+}
+
+TEST(VariantTest, GetIfIndex) {
+  using Var = variant<int, std::string, double, int>;
+
+  {
+    Var v(absl::in_place_index_t<0>{}, 0);
+    EXPECT_TRUE(noexcept(absl::get_if<0>(&v)));
+
+    {
+      auto* elem = absl::get_if<0>(&v);
+      EXPECT_TRUE((std::is_same<decltype(elem), int*>::value));
+      ASSERT_NE(elem, nullptr);
+      EXPECT_EQ(*elem, 0);
+      {
+        auto* bad_elem = absl::get_if<1>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<2>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<3>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+    }
+
+    const Var& const_v = v;
+    EXPECT_TRUE(noexcept(absl::get_if<0>(&const_v)));
+
+    {
+      auto* elem = absl::get_if<0>(&const_v);
+      EXPECT_TRUE((std::is_same<decltype(elem), const int*>::value));
+      ASSERT_NE(elem, nullptr);
+      EXPECT_EQ(*elem, 0);
+      {
+        auto* bad_elem = absl::get_if<1>(&const_v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const std::string*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<2>(&const_v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<3>(&const_v);
+        EXPECT_EQ(bad_elem, nullptr);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
+      }
+    }
+  }
+
+  {
+    Var v = std::string("Hello");
+    EXPECT_TRUE(noexcept(absl::get_if<1>(&v)));
+
+    {
+      auto* elem = absl::get_if<1>(&v);
+      EXPECT_TRUE((std::is_same<decltype(elem), std::string*>::value));
+      ASSERT_NE(elem, nullptr);
+      EXPECT_EQ(*elem, "Hello");
+      {
+        auto* bad_elem = absl::get_if<0>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<2>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<3>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+    }
+
+    const Var& const_v = v;
+    EXPECT_TRUE(noexcept(absl::get_if<1>(&const_v)));
+
+    {
+      auto* elem = absl::get_if<1>(&const_v);
+      EXPECT_TRUE((std::is_same<decltype(elem), const std::string*>::value));
+      ASSERT_NE(elem, nullptr);
+      EXPECT_EQ(*elem, "Hello");
+      {
+        auto* bad_elem = absl::get_if<0>(&const_v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<2>(&const_v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<3>(&const_v);
+        EXPECT_EQ(bad_elem, nullptr);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
+      }
+    }
+  }
+
+  {
+    Var v = 2.0;
+    EXPECT_TRUE(noexcept(absl::get_if<2>(&v)));
+
+    {
+      auto* elem = absl::get_if<2>(&v);
+      EXPECT_TRUE((std::is_same<decltype(elem), double*>::value));
+      ASSERT_NE(elem, nullptr);
+      EXPECT_EQ(*elem, 2.0);
+      {
+        auto* bad_elem = absl::get_if<0>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<1>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<3>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+    }
+
+    const Var& const_v = v;
+    EXPECT_TRUE(noexcept(absl::get_if<2>(&const_v)));
+
+    {
+      auto* elem = absl::get_if<2>(&const_v);
+      EXPECT_TRUE((std::is_same<decltype(elem), const double*>::value));
+      ASSERT_NE(elem, nullptr);
+      EXPECT_EQ(*elem, 2.0);
+      {
+        auto* bad_elem = absl::get_if<0>(&const_v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<1>(&const_v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const std::string*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<3>(&const_v);
+        EXPECT_EQ(bad_elem, nullptr);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
+      }
+    }
+  }
+
+  {
+    Var v(absl::in_place_index_t<0>{}, 0);
+    v.emplace<3>(1);
+    EXPECT_TRUE(noexcept(absl::get_if<3>(&v)));
+
+    {
+      auto* elem = absl::get_if<3>(&v);
+      EXPECT_TRUE((std::is_same<decltype(elem), int*>::value));
+      ASSERT_NE(elem, nullptr);
+      EXPECT_EQ(*elem, 1);
+      {
+        auto* bad_elem = absl::get_if<0>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<1>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<2>(&v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+    }
+
+    const Var& const_v = v;
+    EXPECT_TRUE(noexcept(absl::get_if<3>(&const_v)));
+
+    {
+      auto* elem = absl::get_if<3>(&const_v);
+      EXPECT_TRUE((std::is_same<decltype(elem), const int*>::value));
+      ASSERT_NE(elem, nullptr);
+      EXPECT_EQ(*elem, 1);
+      {
+        auto* bad_elem = absl::get_if<0>(&const_v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<1>(&const_v);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const std::string*>::value));
+        EXPECT_EQ(bad_elem, nullptr);
+      }
+      {
+        auto* bad_elem = absl::get_if<2>(&const_v);
+        EXPECT_EQ(bad_elem, nullptr);
+        EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value));
+      }
+    }
+  }
+}
+
+//////////////////////
+// [variant.relops] //
+//////////////////////
+
+TEST(VariantTest, OperatorEquals) {
+  variant<int, std::string> a(1), b(1);
+  EXPECT_TRUE(a == b);
+  EXPECT_TRUE(b == a);
+  EXPECT_FALSE(a != b);
+  EXPECT_FALSE(b != a);
+
+  b = "str";
+  EXPECT_FALSE(a == b);
+  EXPECT_FALSE(b == a);
+  EXPECT_TRUE(a != b);
+  EXPECT_TRUE(b != a);
+
+  b = 0;
+  EXPECT_FALSE(a == b);
+  EXPECT_FALSE(b == a);
+  EXPECT_TRUE(a != b);
+  EXPECT_TRUE(b != a);
+
+  a = b = "foo";
+  EXPECT_TRUE(a == b);
+  EXPECT_TRUE(b == a);
+  EXPECT_FALSE(a != b);
+  EXPECT_FALSE(b != a);
+
+  a = "bar";
+  EXPECT_FALSE(a == b);
+  EXPECT_FALSE(b == a);
+  EXPECT_TRUE(a != b);
+  EXPECT_TRUE(b != a);
+}
+
+TEST(VariantTest, OperatorRelational) {
+  variant<int, std::string> a(1), b(1);
+  EXPECT_FALSE(a < b);
+  EXPECT_FALSE(b < a);
+  EXPECT_FALSE(a > b);
+  EXPECT_FALSE(b > a);
+  EXPECT_TRUE(a <= b);
+  EXPECT_TRUE(b <= a);
+  EXPECT_TRUE(a >= b);
+  EXPECT_TRUE(b >= a);
+
+  b = "str";
+  EXPECT_TRUE(a < b);
+  EXPECT_FALSE(b < a);
+  EXPECT_FALSE(a > b);
+  EXPECT_TRUE(b > a);
+  EXPECT_TRUE(a <= b);
+  EXPECT_FALSE(b <= a);
+  EXPECT_FALSE(a >= b);
+  EXPECT_TRUE(b >= a);
+
+  b = 0;
+  EXPECT_FALSE(a < b);
+  EXPECT_TRUE(b < a);
+  EXPECT_TRUE(a > b);
+  EXPECT_FALSE(b > a);
+  EXPECT_FALSE(a <= b);
+  EXPECT_TRUE(b <= a);
+  EXPECT_TRUE(a >= b);
+  EXPECT_FALSE(b >= a);
+
+  a = b = "foo";
+  EXPECT_FALSE(a < b);
+  EXPECT_FALSE(b < a);
+  EXPECT_FALSE(a > b);
+  EXPECT_FALSE(b > a);
+  EXPECT_TRUE(a <= b);
+  EXPECT_TRUE(b <= a);
+  EXPECT_TRUE(a >= b);
+  EXPECT_TRUE(b >= a);
+
+  a = "bar";
+  EXPECT_TRUE(a < b);
+  EXPECT_FALSE(b < a);
+  EXPECT_FALSE(a > b);
+  EXPECT_TRUE(b > a);
+  EXPECT_TRUE(a <= b);
+  EXPECT_FALSE(b <= a);
+  EXPECT_FALSE(a >= b);
+  EXPECT_TRUE(b >= a);
+}
+
+#ifdef ABSL_HAVE_EXCEPTIONS
+
+TEST(VariantTest, ValuelessOperatorEquals) {
+  variant<MoveCanThrow, std::string> int_v(1), string_v("Hello"),
+      valueless(absl::in_place_index_t<0>{}),
+      other_valueless(absl::in_place_index_t<0>{});
+  ToValuelessByException(valueless);
+  ToValuelessByException(other_valueless);
+
+  EXPECT_TRUE(valueless == other_valueless);
+  EXPECT_TRUE(other_valueless == valueless);
+  EXPECT_FALSE(valueless == int_v);
+  EXPECT_FALSE(valueless == string_v);
+  EXPECT_FALSE(int_v == valueless);
+  EXPECT_FALSE(string_v == valueless);
+
+  EXPECT_FALSE(valueless != other_valueless);
+  EXPECT_FALSE(other_valueless != valueless);
+  EXPECT_TRUE(valueless != int_v);
+  EXPECT_TRUE(valueless != string_v);
+  EXPECT_TRUE(int_v != valueless);
+  EXPECT_TRUE(string_v != valueless);
+}
+
+TEST(VariantTest, ValuelessOperatorRelational) {
+  variant<MoveCanThrow, std::string> int_v(1), string_v("Hello"),
+      valueless(absl::in_place_index_t<0>{}),
+      other_valueless(absl::in_place_index_t<0>{});
+  ToValuelessByException(valueless);
+  ToValuelessByException(other_valueless);
+
+  EXPECT_FALSE(valueless < other_valueless);
+  EXPECT_FALSE(other_valueless < valueless);
+  EXPECT_TRUE(valueless < int_v);
+  EXPECT_TRUE(valueless < string_v);
+  EXPECT_FALSE(int_v < valueless);
+  EXPECT_FALSE(string_v < valueless);
+
+  EXPECT_TRUE(valueless <= other_valueless);
+  EXPECT_TRUE(other_valueless <= valueless);
+  EXPECT_TRUE(valueless <= int_v);
+  EXPECT_TRUE(valueless <= string_v);
+  EXPECT_FALSE(int_v <= valueless);
+  EXPECT_FALSE(string_v <= valueless);
+
+  EXPECT_TRUE(valueless >= other_valueless);
+  EXPECT_TRUE(other_valueless >= valueless);
+  EXPECT_FALSE(valueless >= int_v);
+  EXPECT_FALSE(valueless >= string_v);
+  EXPECT_TRUE(int_v >= valueless);
+  EXPECT_TRUE(string_v >= valueless);
+
+  EXPECT_FALSE(valueless > other_valueless);
+  EXPECT_FALSE(other_valueless > valueless);
+  EXPECT_FALSE(valueless > int_v);
+  EXPECT_FALSE(valueless > string_v);
+  EXPECT_TRUE(int_v > valueless);
+  EXPECT_TRUE(string_v > valueless);
+}
+
+#endif
+
+/////////////////////
+// [variant.visit] //
+/////////////////////
+
+template <typename T>
+struct ConvertTo {
+  template <typename U>
+  T operator()(const U& u) const {
+    return u;
+  }
+};
+
+TEST(VariantTest, VisitSimple) {
+  variant<std::string, const char*> v = "A";
+
+  std::string str = absl::visit(ConvertTo<std::string>{}, v);
+  EXPECT_EQ("A", str);
+
+  v = std::string("B");
+
+  absl::string_view piece = absl::visit(ConvertTo<absl::string_view>{}, v);
+  EXPECT_EQ("B", piece);
+
+  struct StrLen {
+    int operator()(const std::string& s) const { return s.size(); }
+    int operator()(const char* s) const { return strlen(s); }
+  };
+
+  v = "SomeStr";
+  EXPECT_EQ(7, absl::visit(StrLen{}, v));
+  v = std::string("VeryLargeThisTime");
+  EXPECT_EQ(17, absl::visit(StrLen{}, v));
+}
+
+TEST(VariantTest, VisitRValue) {
+  variant<std::string> v = std::string("X");
+  struct Visitor {
+    bool operator()(const std::string&) const { return false; }
+    bool operator()(std::string&&) const { return true; }  // NOLINT
+
+    int operator()(const std::string&, const std::string&) const { return 0; }
+    int operator()(const std::string&, std::string&&) const { return 1; }  // NOLINT
+    int operator()(std::string&&, const std::string&) const { return 2; }  // NOLINT
+    int operator()(std::string&&, std::string&&) const { return 3; }       // NOLINT
+  };
+  EXPECT_FALSE(absl::visit(Visitor{}, v));
+  EXPECT_TRUE(absl::visit(Visitor{}, absl::move(v)));
+
+  // Also test the variadic overload.
+  EXPECT_EQ(0, absl::visit(Visitor{}, v, v));
+  EXPECT_EQ(1, absl::visit(Visitor{}, v, absl::move(v)));
+  EXPECT_EQ(2, absl::visit(Visitor{}, absl::move(v), v));
+  EXPECT_EQ(3, absl::visit(Visitor{}, absl::move(v), absl::move(v)));
+}
+
+TEST(VariantTest, VisitRValueVisitor) {
+  variant<std::string> v = std::string("X");
+  struct Visitor {
+    bool operator()(const std::string&) const& { return false; }
+    bool operator()(const std::string&) && { return true; }
+  };
+  Visitor visitor;
+  EXPECT_FALSE(absl::visit(visitor, v));
+  EXPECT_TRUE(absl::visit(Visitor{}, v));
+}
+
+TEST(VariantTest, VisitResultTypeDifferent) {
+  variant<std::string> v = std::string("X");
+  struct LValue_LValue {};
+  struct RValue_LValue {};
+  struct LValue_RValue {};
+  struct RValue_RValue {};
+  struct Visitor {
+    LValue_LValue operator()(const std::string&) const& { return {}; }
+    RValue_LValue operator()(std::string&&) const& { return {}; }  // NOLINT
+    LValue_RValue operator()(const std::string&) && { return {}; }
+    RValue_RValue operator()(std::string&&) && { return {}; }  // NOLINT
+  } visitor;
+
+  EXPECT_TRUE(
+      (std::is_same<LValue_LValue, decltype(absl::visit(visitor, v))>::value));
+  EXPECT_TRUE(
+      (std::is_same<RValue_LValue,
+                    decltype(absl::visit(visitor, absl::move(v)))>::value));
+  EXPECT_TRUE((
+      std::is_same<LValue_RValue, decltype(absl::visit(Visitor{}, v))>::value));
+  EXPECT_TRUE(
+      (std::is_same<RValue_RValue,
+                    decltype(absl::visit(Visitor{}, absl::move(v)))>::value));
+}
+
+TEST(VariantTest, VisitVariadic) {
+  using A = variant<int, std::string>;
+  using B = variant<std::unique_ptr<int>, absl::string_view>;
+
+  struct Visitor {
+    std::pair<int, int> operator()(int a, std::unique_ptr<int> b) const {
+      return {a, *b};
+    }
+    std::pair<int, int> operator()(absl::string_view a,
+                                   std::unique_ptr<int> b) const {
+      return {static_cast<int>(a.size()), static_cast<int>(*b)};
+    }
+    std::pair<int, int> operator()(int a, absl::string_view b) const {
+      return {a, static_cast<int>(b.size())};
+    }
+    std::pair<int, int> operator()(absl::string_view a,
+                                   absl::string_view b) const {
+      return {static_cast<int>(a.size()), static_cast<int>(b.size())};
+    }
+  };
+
+  EXPECT_THAT(absl::visit(Visitor(), A(1), B(std::unique_ptr<int>(new int(7)))),
+              ::testing::Pair(1, 7));
+  EXPECT_THAT(absl::visit(Visitor(), A(1), B(absl::string_view("ABC"))),
+              ::testing::Pair(1, 3));
+  EXPECT_THAT(absl::visit(Visitor(), A(std::string("BBBBB")),
+                          B(std::unique_ptr<int>(new int(7)))),
+              ::testing::Pair(5, 7));
+  EXPECT_THAT(
+      absl::visit(Visitor(), A(std::string("BBBBB")), B(absl::string_view("ABC"))),
+      ::testing::Pair(5, 3));
+}
+
+TEST(VariantTest, VisitNoArgs) {
+  EXPECT_EQ(5, absl::visit([] { return 5; }));
+}
+
+struct ConstFunctor {
+  int operator()(int a, int b) const { return a - b; }
+};
+
+struct MutableFunctor {
+  int operator()(int a, int b) { return a - b; }
+};
+
+struct Class {
+  int Method(int a, int b) { return a - b; }
+  int ConstMethod(int a, int b) const { return a - b; }
+
+  int member;
+};
+
+TEST(VariantTest, VisitReferenceWrapper) {
+  ConstFunctor cf;
+  MutableFunctor mf;
+  absl::variant<int> three = 3;
+  absl::variant<int> two = 2;
+
+  EXPECT_EQ(1, absl::visit(std::cref(cf), three, two));
+  EXPECT_EQ(1, absl::visit(std::ref(cf), three, two));
+  EXPECT_EQ(1, absl::visit(std::ref(mf), three, two));
+}
+
+// libstdc++ std::variant doesn't support the INVOKE semantics.
+#if !(defined(ABSL_HAVE_STD_VARIANT) && defined(__GLIBCXX__))
+TEST(VariantTest, VisitMemberFunction) {
+  absl::variant<std::unique_ptr<Class>> p(absl::make_unique<Class>());
+  absl::variant<std::unique_ptr<const Class>> cp(
+      absl::make_unique<const Class>());
+  absl::variant<int> three = 3;
+  absl::variant<int> two = 2;
+
+  EXPECT_EQ(1, absl::visit(&Class::Method, p, three, two));
+  EXPECT_EQ(1, absl::visit(&Class::ConstMethod, p, three, two));
+  EXPECT_EQ(1, absl::visit(&Class::ConstMethod, cp, three, two));
+}
+
+TEST(VariantTest, VisitDataMember) {
+  absl::variant<std::unique_ptr<Class>> p(absl::make_unique<Class>(Class{42}));
+  absl::variant<std::unique_ptr<const Class>> cp(
+      absl::make_unique<const Class>(Class{42}));
+  EXPECT_EQ(42, absl::visit(&Class::member, p));
+
+  absl::visit(&Class::member, p) = 5;
+  EXPECT_EQ(5, absl::visit(&Class::member, p));
+
+  EXPECT_EQ(42, absl::visit(&Class::member, cp));
+}
+#endif  // !(defined(ABSL_HAVE_STD_VARIANT) && defined(__GLIBCXX__))
+
+/////////////////////////
+// [variant.monostate] //
+/////////////////////////
+
+TEST(VariantTest, MonostateBasic) {
+  absl::monostate mono;
+  (void)mono;
+
+  // TODO(mattcalabrese) Expose move triviality metafunctions in absl.
+  EXPECT_TRUE(absl::is_trivially_default_constructible<absl::monostate>::value);
+  EXPECT_TRUE(is_trivially_move_constructible<absl::monostate>::value);
+  EXPECT_TRUE(absl::is_trivially_copy_constructible<absl::monostate>::value);
+  EXPECT_TRUE(is_trivially_move_assignable<absl::monostate>::value);
+  EXPECT_TRUE(absl::is_trivially_copy_assignable<absl::monostate>::value);
+  EXPECT_TRUE(absl::is_trivially_destructible<absl::monostate>::value);
+}
+
+TEST(VariantTest, VariantMonostateDefaultConstruction) {
+  absl::variant<absl::monostate, NonDefaultConstructible> var;
+  EXPECT_EQ(var.index(), 0);
+}
+
+////////////////////////////////
+// [variant.monostate.relops] //
+////////////////////////////////
+
+TEST(VariantTest, MonostateComparisons) {
+  absl::monostate lhs, rhs;
+
+  EXPECT_EQ(lhs, lhs);
+  EXPECT_EQ(lhs, rhs);
+
+  EXPECT_FALSE(lhs != lhs);
+  EXPECT_FALSE(lhs != rhs);
+  EXPECT_FALSE(lhs < lhs);
+  EXPECT_FALSE(lhs < rhs);
+  EXPECT_FALSE(lhs > lhs);
+  EXPECT_FALSE(lhs > rhs);
+
+  EXPECT_LE(lhs, lhs);
+  EXPECT_LE(lhs, rhs);
+  EXPECT_GE(lhs, lhs);
+  EXPECT_GE(lhs, rhs);
+
+  EXPECT_TRUE(noexcept(std::declval<absl::monostate>() ==
+                       std::declval<absl::monostate>()));
+  EXPECT_TRUE(noexcept(std::declval<absl::monostate>() !=
+                       std::declval<absl::monostate>()));
+  EXPECT_TRUE(noexcept(std::declval<absl::monostate>() <
+                       std::declval<absl::monostate>()));
+  EXPECT_TRUE(noexcept(std::declval<absl::monostate>() >
+                       std::declval<absl::monostate>()));
+  EXPECT_TRUE(noexcept(std::declval<absl::monostate>() <=
+                       std::declval<absl::monostate>()));
+  EXPECT_TRUE(noexcept(std::declval<absl::monostate>() >=
+                       std::declval<absl::monostate>()));
+}
+
+///////////////////////
+// [variant.specalg] //
+///////////////////////
+
+TEST(VariantTest, NonmemberSwap) {
+  using std::swap;
+
+  SpecialSwap v1(3);
+  SpecialSwap v2(7);
+
+  variant<SpecialSwap> a = v1, b = v2;
+
+  EXPECT_THAT(a, VariantWith<SpecialSwap>(v1));
+  EXPECT_THAT(b, VariantWith<SpecialSwap>(v2));
+
+  std::swap(a, b);
+  EXPECT_THAT(a, VariantWith<SpecialSwap>(v2));
+  EXPECT_THAT(b, VariantWith<SpecialSwap>(v1));
+#ifndef ABSL_HAVE_STD_VARIANT
+  EXPECT_FALSE(absl::get<SpecialSwap>(a).special_swap);
+#endif
+
+  swap(a, b);
+  EXPECT_THAT(a, VariantWith<SpecialSwap>(v1));
+  EXPECT_THAT(b, VariantWith<SpecialSwap>(v2));
+  EXPECT_TRUE(absl::get<SpecialSwap>(b).special_swap);
+}
+
+//////////////////////////
+// [variant.bad.access] //
+//////////////////////////
+
+TEST(VariantTest, BadAccess) {
+  EXPECT_TRUE(noexcept(absl::bad_variant_access()));
+  absl::bad_variant_access exception_obj;
+  std::exception* base = &exception_obj;
+  (void)base;
+}
+
+////////////////////
+// [variant.hash] //
+////////////////////
+
+TEST(VariantTest, MonostateHash) {
+  absl::monostate mono, other_mono;
+  std::hash<absl::monostate> const hasher{};
+  static_assert(std::is_same<decltype(hasher(mono)), std::size_t>::value, "");
+  EXPECT_EQ(hasher(mono), hasher(other_mono));
+}
+
+TEST(VariantTest, Hash) {
+  static_assert(type_traits_internal::IsHashEnabled<variant<int>>::value, "");
+  static_assert(type_traits_internal::IsHashEnabled<variant<Hashable>>::value,
+                "");
+  static_assert(
+      type_traits_internal::IsHashEnabled<variant<int, Hashable>>::value, "");
+
+#if defined(_MSC_VER) ||                                   \
+    (defined(_LIBCPP_VERSION) && _LIBCPP_VERSION < 4000 && \
+     _LIBCPP_STD_VER > 11) ||                              \
+    defined(__APPLE__)
+  // For MSVC and libc++ (< 4.0 and c++14), std::hash primary template has a
+  // static_assert to catch any user-defined type T that doesn't provide a hash
+  // specialization. So instantiating std::hash<variant<T>> will result
+  // in a hard error which is not SFINAE friendly.
+#define ABSL_STD_HASH_NOT_SFINAE_FRIENDLY 1
+#endif
+
+#ifndef ABSL_STD_HASH_NOT_SFINAE_FRIENDLY
+  static_assert(
+      !type_traits_internal::IsHashEnabled<variant<NonHashable>>::value, "");
+  static_assert(!type_traits_internal::IsHashEnabled<
+                    variant<Hashable, NonHashable>>::value,
+                "");
+#endif
+
+// MSVC std::hash<std::variant> does not use the index, thus produce the same
+// result on the same value as different alternative.
+#if !(defined(_MSC_VER) && defined(ABSL_HAVE_STD_VARIANT))
+  {
+    // same value as different alternative
+    variant<int, int> v0(in_place_index_t<0>{}, 42);
+    variant<int, int> v1(in_place_index_t<1>{}, 42);
+    std::hash<variant<int, int>> hash;
+    EXPECT_NE(hash(v0), hash(v1));
+  }
+#endif  // !(defined(_MSC_VER) && defined(ABSL_HAVE_STD_VARIANT))
+
+  {
+    std::hash<variant<int>> hash;
+    std::set<size_t> hashcodes;
+    for (int i = 0; i < 100; ++i) {
+      hashcodes.insert(hash(i));
+    }
+    EXPECT_GT(hashcodes.size(), 90);
+
+    // test const-qualified
+    static_assert(
+        type_traits_internal::IsHashEnabled<variant<const int>>::value, "");
+    static_assert(
+        type_traits_internal::IsHashEnabled<variant<const Hashable>>::value,
+        "");
+    std::hash<absl::variant<const int>> c_hash;
+    for (int i = 0; i < 100; ++i) {
+      EXPECT_EQ(hash(i), c_hash(i));
+    }
+  }
+}
+
+////////////////////////////////////////
+// Miscellaneous and deprecated tests //
+////////////////////////////////////////
+
+// Test that a set requiring a basic type conversion works correctly.
+TEST(VariantTest, TestConvertingSet) {
+  typedef variant<double> Variant;
+  Variant v(1.0);
+  const int two = 2;
+  v = two;
+  EXPECT_TRUE(absl::holds_alternative<double>(v));
+  ASSERT_TRUE(nullptr != absl::get_if<double>(&v));
+  EXPECT_DOUBLE_EQ(2, absl::get<double>(v));
+}
+
+// Test that a vector of variants behaves reasonably.
+TEST(VariantTest, Container) {
+  typedef variant<int, float> Variant;
+
+  // Creation of vector should work
+  std::vector<Variant> vec;
+  vec.push_back(Variant(10));
+  vec.push_back(Variant(20.0f));
+
+  // Vector resizing should work if we supply a value for new slots
+  vec.resize(10, Variant(0));
+}
+
+// Test that a variant with a non-copyable type can be constructed and
+// manipulated to some degree.
+TEST(VariantTest, TestVariantWithNonCopyableType) {
+  typedef variant<int, NonCopyable> Variant;
+  const int kValue = 1;
+  Variant v(kValue);
+  ASSERT_TRUE(absl::holds_alternative<int>(v));
+  EXPECT_EQ(kValue, absl::get<int>(v));
+}
+
+// Test that a variant with a non-copyable type can be transformed to
+// the non-copyable type with a call to `emplace` for different numbers
+// of arguments. We do not need to test this for each of T1 ... T8
+// because `emplace` does not overload on T1 ... to T8, so if this
+// works for any one of T1 ... T8, then it works for all of them. We
+// do need to test that it works with varying numbers of parameters
+// though.
+TEST(VariantTest, TestEmplace) {
+  typedef variant<int, NonCopyable> Variant;
+  const int kValue = 1;
+  Variant v(kValue);
+  ASSERT_TRUE(absl::holds_alternative<int>(v));
+  EXPECT_EQ(kValue, absl::get<int>(v));
+
+  // emplace with zero arguments, then back to 'int'
+  v.emplace<NonCopyable>();
+  ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
+  EXPECT_EQ(0, absl::get<NonCopyable>(v).value);
+  v = kValue;
+  ASSERT_TRUE(absl::holds_alternative<int>(v));
+
+  // emplace with one argument:
+  v.emplace<NonCopyable>(1);
+  ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
+  EXPECT_EQ(1, absl::get<NonCopyable>(v).value);
+  v = kValue;
+  ASSERT_TRUE(absl::holds_alternative<int>(v));
+
+  // emplace with two arguments:
+  v.emplace<NonCopyable>(1, 2);
+  ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
+  EXPECT_EQ(3, absl::get<NonCopyable>(v).value);
+  v = kValue;
+  ASSERT_TRUE(absl::holds_alternative<int>(v));
+
+  // emplace with three arguments
+  v.emplace<NonCopyable>(1, 2, 3);
+  ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
+  EXPECT_EQ(6, absl::get<NonCopyable>(v).value);
+  v = kValue;
+  ASSERT_TRUE(absl::holds_alternative<int>(v));
+
+  // emplace with four arguments
+  v.emplace<NonCopyable>(1, 2, 3, 4);
+  ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
+  EXPECT_EQ(10, absl::get<NonCopyable>(v).value);
+  v = kValue;
+  ASSERT_TRUE(absl::holds_alternative<int>(v));
+}
+
+TEST(VariantTest, TestEmplaceDestroysCurrentValue) {
+  typedef variant<int, IncrementInDtor, NonCopyable> Variant;
+  int counter = 0;
+  Variant v(0);
+  ASSERT_TRUE(absl::holds_alternative<int>(v));
+  v.emplace<IncrementInDtor>(&counter);
+  ASSERT_TRUE(absl::holds_alternative<IncrementInDtor>(v));
+  ASSERT_EQ(0, counter);
+  v.emplace<NonCopyable>();
+  ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
+  EXPECT_EQ(1, counter);
+}
+
+TEST(VariantTest, TestMoveSemantics) {
+  typedef variant<std::unique_ptr<int>, std::unique_ptr<std::string>> Variant;
+
+  // Construct a variant by moving from an element value.
+  Variant v(absl::WrapUnique(new int(10)));
+  EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v));
+
+  // Construct a variant by moving from another variant.
+  Variant v2(absl::move(v));
+  ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v2));
+  ASSERT_NE(nullptr, absl::get<std::unique_ptr<int>>(v2));
+  EXPECT_EQ(10, *absl::get<std::unique_ptr<int>>(v2));
+
+  // Moving from a variant object leaves it holding moved-from value of the
+  // same element type.
+  EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v));
+  ASSERT_NE(nullptr, absl::get_if<std::unique_ptr<int>>(&v));
+  EXPECT_EQ(nullptr, absl::get<std::unique_ptr<int>>(v));
+
+  // Assign a variant from an element value by move.
+  v = absl::make_unique<std::string>("foo");
+  ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v));
+  EXPECT_EQ("foo", *absl::get<std::unique_ptr<std::string>>(v));
+
+  // Move-assign a variant.
+  v2 = absl::move(v);
+  ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v2));
+  EXPECT_EQ("foo", *absl::get<std::unique_ptr<std::string>>(v2));
+  EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v));
+}
+
+variant<int, std::string> PassThrough(const variant<int, std::string>& arg) {
+  return arg;
+}
+
+TEST(VariantTest, TestImplicitConversion) {
+  EXPECT_TRUE(absl::holds_alternative<int>(PassThrough(0)));
+
+  // We still need the explicit cast for std::string, because C++ won't apply
+  // two user-defined implicit conversions in a row.
+  EXPECT_TRUE(absl::holds_alternative<std::string>(PassThrough(std::string("foo"))));
+}
+
+struct Convertible2;
+struct Convertible1 {
+  Convertible1() {}
+  Convertible1(const Convertible1&) {}
+  Convertible1& operator=(const Convertible1&) { return *this; }
+
+  // implicit conversion from Convertible2
+  Convertible1(const Convertible2&) {}  // NOLINT(runtime/explicit)
+};
+
+struct Convertible2 {
+  Convertible2() {}
+  Convertible2(const Convertible2&) {}
+  Convertible2& operator=(const Convertible2&) { return *this; }
+
+  // implicit conversion from Convertible1
+  Convertible2(const Convertible1&) {}  // NOLINT(runtime/explicit)
+};
+
+TEST(VariantTest, TestRvalueConversion) {
+  variant<double, std::string> var(
+      ConvertVariantTo<variant<double, std::string>>(variant<std::string, int>(0)));
+  ASSERT_TRUE(absl::holds_alternative<double>(var));
+  EXPECT_EQ(0.0, absl::get<double>(var));
+
+  var = ConvertVariantTo<variant<double, std::string>>(
+      variant<const char*, float>("foo"));
+  ASSERT_TRUE(absl::holds_alternative<std::string>(var));
+  EXPECT_EQ("foo", absl::get<std::string>(var));
+
+  variant<double> singleton(
+      ConvertVariantTo<variant<double>>(variant<int, float>(42)));
+  ASSERT_TRUE(absl::holds_alternative<double>(singleton));
+  EXPECT_EQ(42.0, absl::get<double>(singleton));
+
+  singleton = ConvertVariantTo<variant<double>>(variant<int, float>(3.14f));
+  ASSERT_TRUE(absl::holds_alternative<double>(singleton));
+  EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton)));
+
+  singleton = ConvertVariantTo<variant<double>>(variant<int>(0));
+  ASSERT_TRUE(absl::holds_alternative<double>(singleton));
+  EXPECT_EQ(0.0, absl::get<double>(singleton));
+
+  variant<int32_t, uint32_t> variant2(
+      ConvertVariantTo<variant<int32_t, uint32_t>>(variant<int32_t>(42)));
+  ASSERT_TRUE(absl::holds_alternative<int32_t>(variant2));
+  EXPECT_EQ(42, absl::get<int32_t>(variant2));
+
+  variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(variant<uint32_t>(42));
+  ASSERT_TRUE(absl::holds_alternative<uint32_t>(variant2));
+  EXPECT_EQ(42, absl::get<uint32_t>(variant2));
+
+  variant<Convertible1, Convertible2> variant3(
+      ConvertVariantTo<variant<Convertible1, Convertible2>>(
+          (variant<Convertible2, Convertible1>(Convertible1()))));
+  ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3));
+
+  variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(
+      variant<Convertible2, Convertible1>(Convertible2()));
+  ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3));
+}
+
+TEST(VariantTest, TestLvalueConversion) {
+  variant<std::string, int> source1 = 0;
+  variant<double, std::string> destination(
+      ConvertVariantTo<variant<double, std::string>>(source1));
+  ASSERT_TRUE(absl::holds_alternative<double>(destination));
+  EXPECT_EQ(0.0, absl::get<double>(destination));
+
+  variant<const char*, float> source2 = "foo";
+  destination = ConvertVariantTo<variant<double, std::string>>(source2);
+  ASSERT_TRUE(absl::holds_alternative<std::string>(destination));
+  EXPECT_EQ("foo", absl::get<std::string>(destination));
+
+  variant<int, float> source3(42);
+  variant<double> singleton(ConvertVariantTo<variant<double>>(source3));
+  ASSERT_TRUE(absl::holds_alternative<double>(singleton));
+  EXPECT_EQ(42.0, absl::get<double>(singleton));
+
+  source3 = 3.14f;
+  singleton = ConvertVariantTo<variant<double>>(source3);
+  ASSERT_TRUE(absl::holds_alternative<double>(singleton));
+  EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton)));
+
+  variant<int> source4(0);
+  singleton = ConvertVariantTo<variant<double>>(source4);
+  ASSERT_TRUE(absl::holds_alternative<double>(singleton));
+  EXPECT_EQ(0.0, absl::get<double>(singleton));
+
+  variant<int32_t> source5(42);
+  variant<int32_t, uint32_t> variant2(
+      ConvertVariantTo<variant<int32_t, uint32_t>>(source5));
+  ASSERT_TRUE(absl::holds_alternative<int32_t>(variant2));
+  EXPECT_EQ(42, absl::get<int32_t>(variant2));
+
+  variant<uint32_t> source6(42);
+  variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(source6);
+  ASSERT_TRUE(absl::holds_alternative<uint32_t>(variant2));
+  EXPECT_EQ(42, absl::get<uint32_t>(variant2));
+
+  variant<Convertible2, Convertible1> source7((Convertible1()));
+  variant<Convertible1, Convertible2> variant3(
+      ConvertVariantTo<variant<Convertible1, Convertible2>>(source7));
+  ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3));
+
+  source7 = Convertible2();
+  variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(source7);
+  ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3));
+}
+
+TEST(VariantTest, TestMoveConversion) {
+  using Variant =
+      variant<std::unique_ptr<const int>, std::unique_ptr<const std::string>>;
+  using OtherVariant = variant<std::unique_ptr<int>, std::unique_ptr<std::string>>;
+
+  Variant var(
+      ConvertVariantTo<Variant>(OtherVariant{absl::make_unique<int>(0)}));
+  ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<const int>>(var));
+  ASSERT_NE(absl::get<std::unique_ptr<const int>>(var), nullptr);
+  EXPECT_EQ(0, *absl::get<std::unique_ptr<const int>>(var));
+
+  var =
+      ConvertVariantTo<Variant>(OtherVariant(absl::make_unique<std::string>("foo")));
+  ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<const std::string>>(var));
+  EXPECT_EQ("foo", *absl::get<std::unique_ptr<const std::string>>(var));
+}
+
+TEST(VariantTest, DoesNotMoveFromLvalues) {
+  // We use shared_ptr here because it's both copyable and movable, and
+  // a moved-from shared_ptr is guaranteed to be null, so we can detect
+  // whether moving or copying has occurred.
+  using Variant =
+      variant<std::shared_ptr<const int>, std::shared_ptr<const std::string>>;
+  using OtherVariant = variant<std::shared_ptr<int>, std::shared_ptr<std::string>>;
+
+  Variant v1(std::make_shared<const int>(0));
+
+  // Test copy constructor
+  Variant v2(v1);
+  EXPECT_EQ(absl::get<std::shared_ptr<const int>>(v1),
+            absl::get<std::shared_ptr<const int>>(v2));
+
+  // Test copy-assignment operator
+  v1 = std::make_shared<const std::string>("foo");
+  v2 = v1;
+  EXPECT_EQ(absl::get<std::shared_ptr<const std::string>>(v1),
+            absl::get<std::shared_ptr<const std::string>>(v2));
+
+  // Test converting copy constructor
+  OtherVariant other(std::make_shared<int>(0));
+  Variant v3(ConvertVariantTo<Variant>(other));
+  EXPECT_EQ(absl::get<std::shared_ptr<int>>(other),
+            absl::get<std::shared_ptr<const int>>(v3));
+
+  other = std::make_shared<std::string>("foo");
+  v3 = ConvertVariantTo<Variant>(other);
+  EXPECT_EQ(absl::get<std::shared_ptr<std::string>>(other),
+            absl::get<std::shared_ptr<const std::string>>(v3));
+}
+
+TEST(VariantTest, TestRvalueConversionViaConvertVariantTo) {
+  variant<double, std::string> var(
+      ConvertVariantTo<variant<double, std::string>>(variant<std::string, int>(3)));
+  EXPECT_THAT(absl::get_if<double>(&var), Pointee(3.0));
+
+  var = ConvertVariantTo<variant<double, std::string>>(
+      variant<const char*, float>("foo"));
+  EXPECT_THAT(absl::get_if<std::string>(&var), Pointee(std::string("foo")));
+
+  variant<double> singleton(
+      ConvertVariantTo<variant<double>>(variant<int, float>(42)));
+  EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(42.0));
+
+  singleton = ConvertVariantTo<variant<double>>(variant<int, float>(3.14f));
+  EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(DoubleEq(3.14f)));
+
+  singleton = ConvertVariantTo<variant<double>>(variant<int>(3));
+  EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(3.0));
+
+  variant<int32_t, uint32_t> variant2(
+      ConvertVariantTo<variant<int32_t, uint32_t>>(variant<int32_t>(42)));
+  EXPECT_THAT(absl::get_if<int32_t>(&variant2), Pointee(42));
+
+  variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(variant<uint32_t>(42));
+  EXPECT_THAT(absl::get_if<uint32_t>(&variant2), Pointee(42));
+
+  variant<Convertible1, Convertible2> variant3(
+      ConvertVariantTo<variant<Convertible1, Convertible2>>(
+          (variant<Convertible2, Convertible1>(Convertible1()))));
+  ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3));
+
+  variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(
+      variant<Convertible2, Convertible1>(Convertible2()));
+  ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3));
+}
+
+TEST(VariantTest, TestLvalueConversionViaConvertVariantTo) {
+  variant<std::string, int> source1 = 3;
+  variant<double, std::string> destination(
+      ConvertVariantTo<variant<double, std::string>>(source1));
+  EXPECT_THAT(absl::get_if<double>(&destination), Pointee(3.0));
+
+  variant<const char*, float> source2 = "foo";
+  destination = ConvertVariantTo<variant<double, std::string>>(source2);
+  EXPECT_THAT(absl::get_if<std::string>(&destination), Pointee(std::string("foo")));
+
+  variant<int, float> source3(42);
+  variant<double> singleton(ConvertVariantTo<variant<double>>(source3));
+  EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(42.0));
+
+  source3 = 3.14f;
+  singleton = ConvertVariantTo<variant<double>>(source3);
+  EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton)));
+  EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(DoubleEq(3.14f)));
+
+  variant<int> source4(3);
+  singleton = ConvertVariantTo<variant<double>>(source4);
+  EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(3.0));
+
+  variant<int32_t> source5(42);
+  variant<int32_t, uint32_t> variant2(
+      ConvertVariantTo<variant<int32_t, uint32_t>>(source5));
+  EXPECT_THAT(absl::get_if<int32_t>(&variant2), Pointee(42));
+
+  variant<uint32_t> source6(42);
+  variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(source6);
+  EXPECT_THAT(absl::get_if<uint32_t>(&variant2), Pointee(42));
+
+  variant<Convertible2, Convertible1> source7((Convertible1()));
+  variant<Convertible1, Convertible2> variant3(
+      ConvertVariantTo<variant<Convertible1, Convertible2>>(source7));
+  ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3));
+
+  source7 = Convertible2();
+  variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(source7);
+  ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3));
+}
+
+TEST(VariantTest, TestMoveConversionViaConvertVariantTo) {
+  using Variant =
+      variant<std::unique_ptr<const int>, std::unique_ptr<const std::string>>;
+  using OtherVariant = variant<std::unique_ptr<int>, std::unique_ptr<std::string>>;
+
+  Variant var(
+      ConvertVariantTo<Variant>(OtherVariant{absl::make_unique<int>(3)}));
+  EXPECT_THAT(absl::get_if<std::unique_ptr<const int>>(&var),
+              Pointee(Pointee(3)));
+
+  var =
+      ConvertVariantTo<Variant>(OtherVariant(absl::make_unique<std::string>("foo")));
+  EXPECT_THAT(absl::get_if<std::unique_ptr<const std::string>>(&var),
+              Pointee(Pointee(std::string("foo"))));
+}
+
+// If all alternatives are trivially copy/move constructible, variant should
+// also be trivially copy/move constructible. This is not required by the
+// standard and we know that libstdc++ variant doesn't have this feature.
+// For more details see the paper:
+// http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0602r0.html
+#if !(defined(ABSL_HAVE_STD_VARIANT) && defined(__GLIBCXX__))
+#define ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY 1
+#endif
+
+TEST(VariantTest, TestCopyAndMoveTypeTraits) {
+  EXPECT_TRUE(std::is_copy_constructible<variant<std::string>>::value);
+  EXPECT_TRUE(std::is_copy_assignable<variant<std::string>>::value);
+  EXPECT_TRUE(std::is_move_constructible<variant<std::string>>::value);
+  EXPECT_TRUE(std::is_move_assignable<variant<std::string>>::value);
+  EXPECT_TRUE(std::is_move_constructible<variant<std::unique_ptr<int>>>::value);
+  EXPECT_TRUE(std::is_move_assignable<variant<std::unique_ptr<int>>>::value);
+  EXPECT_FALSE(
+      std::is_copy_constructible<variant<std::unique_ptr<int>>>::value);
+  EXPECT_FALSE(std::is_copy_assignable<variant<std::unique_ptr<int>>>::value);
+
+  EXPECT_FALSE(
+      absl::is_trivially_copy_constructible<variant<std::string>>::value);
+  EXPECT_FALSE(absl::is_trivially_copy_assignable<variant<std::string>>::value);
+#if ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
+  EXPECT_TRUE(absl::is_trivially_copy_constructible<variant<int>>::value);
+  EXPECT_TRUE(absl::is_trivially_copy_assignable<variant<int>>::value);
+  EXPECT_TRUE(is_trivially_move_constructible<variant<int>>::value);
+  EXPECT_TRUE(is_trivially_move_assignable<variant<int>>::value);
+#endif  // ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
+}
+
+TEST(VariantTest, TestVectorOfMoveonlyVariant) {
+  // Verify that variant<MoveonlyType> works correctly as a std::vector element.
+  std::vector<variant<std::unique_ptr<int>, std::string>> vec;
+  vec.push_back(absl::make_unique<int>(42));
+  vec.emplace_back("Hello");
+  vec.reserve(3);
+  auto another_vec = absl::move(vec);
+  // As a sanity check, verify vector contents.
+  ASSERT_EQ(2, another_vec.size());
+  EXPECT_EQ(42, *absl::get<std::unique_ptr<int>>(another_vec[0]));
+  EXPECT_EQ("Hello", absl::get<std::string>(another_vec[1]));
+}
+
+TEST(VariantTest, NestedVariant) {
+#if ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
+  static_assert(absl::is_trivially_copy_constructible<variant<int>>(), "");
+  static_assert(absl::is_trivially_copy_assignable<variant<int>>(), "");
+  static_assert(is_trivially_move_constructible<variant<int>>(), "");
+  static_assert(is_trivially_move_assignable<variant<int>>(), "");
+
+  static_assert(absl::is_trivially_copy_constructible<variant<variant<int>>>(),
+                "");
+  static_assert(absl::is_trivially_copy_assignable<variant<variant<int>>>(),
+                "");
+  static_assert(is_trivially_move_constructible<variant<variant<int>>>(), "");
+  static_assert(is_trivially_move_assignable<variant<variant<int>>>(), "");
+#endif  // ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
+
+  variant<int> x(42);
+  variant<variant<int>> y(x);
+  variant<variant<int>> z(y);
+  EXPECT_TRUE(absl::holds_alternative<variant<int>>(z));
+  EXPECT_EQ(x, absl::get<variant<int>>(z));
+}
+
+struct TriviallyDestructible {
+  TriviallyDestructible(TriviallyDestructible&&) {}
+  TriviallyDestructible(const TriviallyDestructible&) {}
+  TriviallyDestructible& operator=(TriviallyDestructible&&) { return *this; }
+  TriviallyDestructible& operator=(const TriviallyDestructible&) {
+    return *this;
+  }
+};
+
+struct TriviallyMovable {
+  TriviallyMovable(TriviallyMovable&&) = default;
+  TriviallyMovable(TriviallyMovable const&) {}
+  TriviallyMovable& operator=(const TriviallyMovable&) { return *this; }
+};
+
+struct TriviallyCopyable {
+  TriviallyCopyable(const TriviallyCopyable&) = default;
+  TriviallyCopyable& operator=(const TriviallyCopyable&) { return *this; }
+};
+
+struct TriviallyMoveAssignable {
+  TriviallyMoveAssignable(TriviallyMoveAssignable&&) = default;
+  TriviallyMoveAssignable(const TriviallyMoveAssignable&) {}
+  TriviallyMoveAssignable& operator=(TriviallyMoveAssignable&&) = default;
+  TriviallyMoveAssignable& operator=(const TriviallyMoveAssignable&) {
+    return *this;
+  }
+};
+
+struct TriviallyCopyAssignable {};
+
+#if ABSL_V

<TRUNCATED>