You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@mynewt.apache.org by ma...@apache.org on 2017/03/09 22:51:41 UTC

[14/17] incubator-mynewt-core git commit: Update CMSIS

http://git-wip-us.apache.org/repos/asf/incubator-mynewt-core/blob/c8b6596e/hw/cmsis-core/src/ext/arm_math.h
----------------------------------------------------------------------
diff --git a/hw/cmsis-core/src/ext/arm_math.h b/hw/cmsis-core/src/ext/arm_math.h
new file mode 100644
index 0000000..580cbbd
--- /dev/null
+++ b/hw/cmsis-core/src/ext/arm_math.h
@@ -0,0 +1,7154 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
+*
+* $Date:        20. October 2015
+* $Revision:    V1.4.5 b
+*
+* Project:      CMSIS DSP Library
+* Title:        arm_math.h
+*
+* Description:  Public header file for CMSIS DSP Library
+*
+* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+ * -------------------------------------------------------------------- */
+
+/**
+   \mainpage CMSIS DSP Software Library
+   *
+   * Introduction
+   * ------------
+   *
+   * This user manual describes the CMSIS DSP software library,
+   * a suite of common signal processing functions for use on Cortex-M processor based devices.
+   *
+   * The library is divided into a number of functions each covering a specific category:
+   * - Basic math functions
+   * - Fast math functions
+   * - Complex math functions
+   * - Filters
+   * - Matrix functions
+   * - Transforms
+   * - Motor control functions
+   * - Statistical functions
+   * - Support functions
+   * - Interpolation functions
+   *
+   * The library has separate functions for operating on 8-bit integers, 16-bit integers,
+   * 32-bit integer and 32-bit floating-point values.
+   *
+   * Using the Library
+   * ------------
+   *
+   * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
+   * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
+   * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
+   * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
+   * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
+   * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
+   * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
+   * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
+   * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
+   * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
+   * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
+   * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
+   * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
+   * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
+   * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
+   *
+   * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
+   * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
+   * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+   * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or  ARM_MATH_CM3 or
+   * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
+   *
+   * Examples
+   * --------
+   *
+   * The library ships with a number of examples which demonstrate how to use the library functions.
+   *
+   * Toolchain Support
+   * ------------
+   *
+   * The library has been developed and tested with MDK-ARM version 5.14.0.0
+   * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
+   *
+   * Building the Library
+   * ------------
+   *
+   * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
+   * - arm_cortexM_math.uvprojx
+   *
+   *
+   * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
+   *
+   * Pre-processor Macros
+   * ------------
+   *
+   * Each library project have differant pre-processor macros.
+   *
+   * - UNALIGNED_SUPPORT_DISABLE:
+   *
+   * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
+   *
+   * - ARM_MATH_BIG_ENDIAN:
+   *
+   * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+   *
+   * - ARM_MATH_MATRIX_CHECK:
+   *
+   * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
+   *
+   * - ARM_MATH_ROUNDING:
+   *
+   * Define macro ARM_MATH_ROUNDING for rounding on support functions
+   *
+   * - ARM_MATH_CMx:
+   *
+   * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
+   * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
+   * ARM_MATH_CM7 for building the library on cortex-M7.
+   *
+   * - __FPU_PRESENT:
+   *
+   * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
+   *
+   * <hr>
+   * CMSIS-DSP in ARM::CMSIS Pack
+   * -----------------------------
+   *
+   * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
+   * |File/Folder                   |Content                                                                 |
+   * |------------------------------|------------------------------------------------------------------------|
+   * |\b CMSIS\\Documentation\\DSP  | This documentation                                                     |
+   * |\b CMSIS\\DSP_Lib             | Software license agreement (license.txt)                               |
+   * |\b CMSIS\\DSP_Lib\\Examples   | Example projects demonstrating the usage of the library functions      |
+   * |\b CMSIS\\DSP_Lib\\Source     | Source files for rebuilding the library                                |
+   *
+   * <hr>
+   * Revision History of CMSIS-DSP
+   * ------------
+   * Please refer to \ref ChangeLog_pg.
+   *
+   * Copyright Notice
+   * ------------
+   *
+   * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
+   */
+
+
+/**
+ * @defgroup groupMath Basic Math Functions
+ */
+
+/**
+ * @defgroup groupFastMath Fast Math Functions
+ * This set of functions provides a fast approximation to sine, cosine, and square root.
+ * As compared to most of the other functions in the CMSIS math library, the fast math functions
+ * operate on individual values and not arrays.
+ * There are separate functions for Q15, Q31, and floating-point data.
+ *
+ */
+
+/**
+ * @defgroup groupCmplxMath Complex Math Functions
+ * This set of functions operates on complex data vectors.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * In the API functions, the number of samples in a complex array refers
+ * to the number of complex values; the array contains twice this number of
+ * real values.
+ */
+
+/**
+ * @defgroup groupFilters Filtering Functions
+ */
+
+/**
+ * @defgroup groupMatrix Matrix Functions
+ *
+ * This set of functions provides basic matrix math operations.
+ * The functions operate on matrix data structures.  For example,
+ * the type
+ * definition for the floating-point matrix structure is shown
+ * below:
+ * <pre>
+ *     typedef struct
+ *     {
+ *       uint16_t numRows;     // number of rows of the matrix.
+ *       uint16_t numCols;     // number of columns of the matrix.
+ *       float32_t *pData;     // points to the data of the matrix.
+ *     } arm_matrix_instance_f32;
+ * </pre>
+ * There are similar definitions for Q15 and Q31 data types.
+ *
+ * The structure specifies the size of the matrix and then points to
+ * an array of data.  The array is of size <code>numRows X numCols</code>
+ * and the values are arranged in row order.  That is, the
+ * matrix element (i, j) is stored at:
+ * <pre>
+ *     pData[i*numCols + j]
+ * </pre>
+ *
+ * \par Init Functions
+ * There is an associated initialization function for each type of matrix
+ * data structure.
+ * The initialization function sets the values of the internal structure fields.
+ * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
+ * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types,  respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure.  For example:
+ * <pre>
+ * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
+ * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
+ * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
+ * </pre>
+ * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
+ * specifies the number of columns, and <code>pData</code> points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices.  For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns.  If the size check fails the functions return:
+ * <pre>
+ *     ARM_MATH_SIZE_MISMATCH
+ * </pre>
+ * Otherwise the functions return
+ * <pre>
+ *     ARM_MATH_SUCCESS
+ * </pre>
+ * There is some overhead associated with this matrix size checking.
+ * The matrix size checking is enabled via the \#define
+ * <pre>
+ *     ARM_MATH_MATRIX_CHECK
+ * </pre>
+ * within the library project settings.  By default this macro is defined
+ * and size checking is enabled.  By changing the project settings and
+ * undefining this macro size checking is eliminated and the functions
+ * run a bit faster.  With size checking disabled the functions always
+ * return <code>ARM_MATH_SUCCESS</code>.
+ */
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+/**
+ * @defgroup groupExamples Examples
+ */
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+/* ignore some GCC warnings */
+#if defined ( __GNUC__ )
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wsign-conversion"
+#pragma GCC diagnostic ignored "-Wconversion"
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+#define __CMSIS_GENERIC         /* disable NVIC and Systick functions */
+
+#if defined(ARM_MATH_CM7)
+  #include "core_cm7.h"
+#elif defined (ARM_MATH_CM4)
+  #include "core_cm4.h"
+#elif defined (ARM_MATH_CM3)
+  #include "core_cm3.h"
+#elif defined (ARM_MATH_CM0)
+  #include "core_cm0.h"
+  #define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_CM0PLUS)
+  #include "core_cm0plus.h"
+  #define ARM_MATH_CM0_FAMILY
+#else
+  #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
+#endif
+
+#undef  __CMSIS_GENERIC         /* enable NVIC and Systick functions */
+#include "string.h"
+#include "math.h"
+#ifdef   __cplusplus
+extern "C"
+{
+#endif
+
+
+  /**
+   * @brief Macros required for reciprocal calculation in Normalized LMS
+   */
+
+#define DELTA_Q31          (0x100)
+#define DELTA_Q15          0x5
+#define INDEX_MASK         0x0000003F
+#ifndef PI
+#define PI                 3.14159265358979f
+#endif
+
+  /**
+   * @brief Macros required for SINE and COSINE Fast math approximations
+   */
+
+#define FAST_MATH_TABLE_SIZE  512
+#define FAST_MATH_Q31_SHIFT   (32 - 10)
+#define FAST_MATH_Q15_SHIFT   (16 - 10)
+#define CONTROLLER_Q31_SHIFT  (32 - 9)
+#define TABLE_SIZE  256
+#define TABLE_SPACING_Q31     0x400000
+#define TABLE_SPACING_Q15     0x80
+
+  /**
+   * @brief Macros required for SINE and COSINE Controller functions
+   */
+  /* 1.31(q31) Fixed value of 2/360 */
+  /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING         0xB60B61
+
+  /**
+   * @brief Macro for Unaligned Support
+   */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+    #define ALIGN4
+#else
+  #if defined  (__GNUC__)
+    #define ALIGN4 __attribute__((aligned(4)))
+  #else
+    #define ALIGN4 __align(4)
+  #endif
+#endif   /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+  /**
+   * @brief Error status returned by some functions in the library.
+   */
+
+  typedef enum
+  {
+    ARM_MATH_SUCCESS = 0,                /**< No error */
+    ARM_MATH_ARGUMENT_ERROR = -1,        /**< One or more arguments are incorrect */
+    ARM_MATH_LENGTH_ERROR = -2,          /**< Length of data buffer is incorrect */
+    ARM_MATH_SIZE_MISMATCH = -3,         /**< Size of matrices is not compatible with the operation. */
+    ARM_MATH_NANINF = -4,                /**< Not-a-number (NaN) or infinity is generated */
+    ARM_MATH_SINGULAR = -5,              /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
+    ARM_MATH_TEST_FAILURE = -6           /**< Test Failed  */
+  } arm_status;
+
+  /**
+   * @brief 8-bit fractional data type in 1.7 format.
+   */
+  typedef int8_t q7_t;
+
+  /**
+   * @brief 16-bit fractional data type in 1.15 format.
+   */
+  typedef int16_t q15_t;
+
+  /**
+   * @brief 32-bit fractional data type in 1.31 format.
+   */
+  typedef int32_t q31_t;
+
+  /**
+   * @brief 64-bit fractional data type in 1.63 format.
+   */
+  typedef int64_t q63_t;
+
+  /**
+   * @brief 32-bit floating-point type definition.
+   */
+  typedef float float32_t;
+
+  /**
+   * @brief 64-bit floating-point type definition.
+   */
+  typedef double float64_t;
+
+  /**
+   * @brief definition to read/write two 16 bit values.
+   */
+#if defined __CC_ARM
+  #define __SIMD32_TYPE int32_t __packed
+  #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+  #define __SIMD32_TYPE int32_t
+  #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined __GNUC__
+  #define __SIMD32_TYPE int32_t
+  #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined __ICCARM__
+  #define __SIMD32_TYPE int32_t __packed
+  #define CMSIS_UNUSED
+
+#elif defined __CSMC__
+  #define __SIMD32_TYPE int32_t
+  #define CMSIS_UNUSED
+
+#elif defined __TASKING__
+  #define __SIMD32_TYPE __unaligned int32_t
+  #define CMSIS_UNUSED
+
+#else
+  #error Unknown compiler
+#endif
+
+#define __SIMD32(addr)        (*(__SIMD32_TYPE **) & (addr))
+#define __SIMD32_CONST(addr)  ((__SIMD32_TYPE *)(addr))
+#define _SIMD32_OFFSET(addr)  (*(__SIMD32_TYPE *)  (addr))
+#define __SIMD64(addr)        (*(int64_t **) & (addr))
+
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+  /**
+   * @brief definition to pack two 16 bit values.
+   */
+#define __PKHBT(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0x0000FFFF) | \
+                                         (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000)  )
+#define __PKHTB(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0xFFFF0000) | \
+                                         (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF)  )
+
+#endif
+
+
+   /**
+   * @brief definition to pack four 8 bit values.
+   */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) <<  0) & (int32_t)0x000000FF) | \
+                                (((int32_t)(v1) <<  8) & (int32_t)0x0000FF00) | \
+                                (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+                                (((int32_t)(v3) << 24) & (int32_t)0xFF000000)  )
+#else
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) <<  0) & (int32_t)0x000000FF) | \
+                                (((int32_t)(v2) <<  8) & (int32_t)0x0000FF00) | \
+                                (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+                                (((int32_t)(v0) << 24) & (int32_t)0xFF000000)  )
+
+#endif
+
+
+  /**
+   * @brief Clips Q63 to Q31 values.
+   */
+  static __INLINE q31_t clip_q63_to_q31(
+  q63_t x)
+  {
+    return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+      ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+  }
+
+  /**
+   * @brief Clips Q63 to Q15 values.
+   */
+  static __INLINE q15_t clip_q63_to_q15(
+  q63_t x)
+  {
+    return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+      ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+  }
+
+  /**
+   * @brief Clips Q31 to Q7 values.
+   */
+  static __INLINE q7_t clip_q31_to_q7(
+  q31_t x)
+  {
+    return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+      ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+  }
+
+  /**
+   * @brief Clips Q31 to Q15 values.
+   */
+  static __INLINE q15_t clip_q31_to_q15(
+  q31_t x)
+  {
+    return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+      ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+  }
+
+  /**
+   * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+   */
+
+  static __INLINE q63_t mult32x64(
+  q63_t x,
+  q31_t y)
+  {
+    return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+            (((q63_t) (x >> 32) * y)));
+  }
+
+/*
+  #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM   )
+  #define __CLZ __clz
+  #endif
+ */
+/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
+#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__))  )
+  static __INLINE uint32_t __CLZ(
+  q31_t data);
+
+  static __INLINE uint32_t __CLZ(
+  q31_t data)
+  {
+    uint32_t count = 0;
+    uint32_t mask = 0x80000000;
+
+    while((data & mask) == 0)
+    {
+      count += 1u;
+      mask = mask >> 1u;
+    }
+
+    return (count);
+  }
+#endif
+
+  /**
+   * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
+   */
+
+  static __INLINE uint32_t arm_recip_q31(
+  q31_t in,
+  q31_t * dst,
+  q31_t * pRecipTable)
+  {
+    q31_t out;
+    uint32_t tempVal;
+    uint32_t index, i;
+    uint32_t signBits;
+
+    if(in > 0)
+    {
+      signBits = ((uint32_t) (__CLZ( in) - 1));
+    }
+    else
+    {
+      signBits = ((uint32_t) (__CLZ(-in) - 1));
+    }
+
+    /* Convert input sample to 1.31 format */
+    in = (in << signBits);
+
+    /* calculation of index for initial approximated Val */
+    index = (uint32_t)(in >> 24);
+    index = (index & INDEX_MASK);
+
+    /* 1.31 with exp 1 */
+    out = pRecipTable[index];
+
+    /* calculation of reciprocal value */
+    /* running approximation for two iterations */
+    for (i = 0u; i < 2u; i++)
+    {
+      tempVal = (uint32_t) (((q63_t) in * out) >> 31);
+      tempVal = 0x7FFFFFFFu - tempVal;
+      /*      1.31 with exp 1 */
+      /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
+      out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
+    }
+
+    /* write output */
+    *dst = out;
+
+    /* return num of signbits of out = 1/in value */
+    return (signBits + 1u);
+  }
+
+
+  /**
+   * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
+   */
+  static __INLINE uint32_t arm_recip_q15(
+  q15_t in,
+  q15_t * dst,
+  q15_t * pRecipTable)
+  {
+    q15_t out = 0;
+    uint32_t tempVal = 0;
+    uint32_t index = 0, i = 0;
+    uint32_t signBits = 0;
+
+    if(in > 0)
+    {
+      signBits = ((uint32_t)(__CLZ( in) - 17));
+    }
+    else
+    {
+      signBits = ((uint32_t)(__CLZ(-in) - 17));
+    }
+
+    /* Convert input sample to 1.15 format */
+    in = (in << signBits);
+
+    /* calculation of index for initial approximated Val */
+    index = (uint32_t)(in >>  8);
+    index = (index & INDEX_MASK);
+
+    /*      1.15 with exp 1  */
+    out = pRecipTable[index];
+
+    /* calculation of reciprocal value */
+    /* running approximation for two iterations */
+    for (i = 0u; i < 2u; i++)
+    {
+      tempVal = (uint32_t) (((q31_t) in * out) >> 15);
+      tempVal = 0x7FFFu - tempVal;
+      /*      1.15 with exp 1 */
+      out = (q15_t) (((q31_t) out * tempVal) >> 14);
+      /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
+    }
+
+    /* write output */
+    *dst = out;
+
+    /* return num of signbits of out = 1/in value */
+    return (signBits + 1);
+  }
+
+
+  /*
+   * @brief C custom defined intrinisic function for only M0 processors
+   */
+#if defined(ARM_MATH_CM0_FAMILY)
+  static __INLINE q31_t __SSAT(
+  q31_t x,
+  uint32_t y)
+  {
+    int32_t posMax, negMin;
+    uint32_t i;
+
+    posMax = 1;
+    for (i = 0; i < (y - 1); i++)
+    {
+      posMax = posMax * 2;
+    }
+
+    if(x > 0)
+    {
+      posMax = (posMax - 1);
+
+      if(x > posMax)
+      {
+        x = posMax;
+      }
+    }
+    else
+    {
+      negMin = -posMax;
+
+      if(x < negMin)
+      {
+        x = negMin;
+      }
+    }
+    return (x);
+  }
+#endif /* end of ARM_MATH_CM0_FAMILY */
+
+
+  /*
+   * @brief C custom defined intrinsic function for M3 and M0 processors
+   */
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+
+  /*
+   * @brief C custom defined QADD8 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QADD8(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s, t, u;
+
+    r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+    s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+    t = __SSAT(((((q31_t)x <<  8) >> 24) + (((q31_t)y <<  8) >> 24)), 8) & (int32_t)0x000000FF;
+    u = __SSAT(((((q31_t)x      ) >> 24) + (((q31_t)y      ) >> 24)), 8) & (int32_t)0x000000FF;
+
+    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QSUB8 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QSUB8(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s, t, u;
+
+    r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+    s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+    t = __SSAT(((((q31_t)x <<  8) >> 24) - (((q31_t)y <<  8) >> 24)), 8) & (int32_t)0x000000FF;
+    u = __SSAT(((((q31_t)x      ) >> 24) - (((q31_t)y      ) >> 24)), 8) & (int32_t)0x000000FF;
+
+    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QADD16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QADD16(
+  uint32_t x,
+  uint32_t y)
+  {
+/*  q31_t r,     s;  without initialisation 'arm_offset_q15 test' fails  but 'intrinsic' tests pass! for armCC */
+    q31_t r = 0, s = 0;
+
+    r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+    s = __SSAT(((((q31_t)x      ) >> 16) + (((q31_t)y      ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SHADD16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SHADD16(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+    s = (((((q31_t)x      ) >> 16) + (((q31_t)y      ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QSUB16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QSUB16(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+    s = __SSAT(((((q31_t)x      ) >> 16) - (((q31_t)y      ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SHSUB16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SHSUB16(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+    s = (((((q31_t)x      ) >> 16) - (((q31_t)y      ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QASX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QASX(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y      ) >> 16)), 16) & (int32_t)0x0000FFFF;
+    s = __SSAT(((((q31_t)x      ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SHASX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SHASX(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = (((((q31_t)x << 16) >> 16) - (((q31_t)y      ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+    s = (((((q31_t)x      ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined QSAX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __QSAX(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y      ) >> 16)), 16) & (int32_t)0x0000FFFF;
+    s = __SSAT(((((q31_t)x      ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SHSAX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SHSAX(
+  uint32_t x,
+  uint32_t y)
+  {
+    q31_t r, s;
+
+    r = (((((q31_t)x << 16) >> 16) + (((q31_t)y      ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+    s = (((((q31_t)x      ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+    return ((uint32_t)((s << 16) | (r      )));
+  }
+
+
+  /*
+   * @brief C custom defined SMUSDX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMUSDX(
+  uint32_t x,
+  uint32_t y)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) -
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16))   ));
+  }
+
+  /*
+   * @brief C custom defined SMUADX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMUADX(
+  uint32_t x,
+  uint32_t y)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16))   ));
+  }
+
+
+  /*
+   * @brief C custom defined QADD for M3 and M0 processors
+   */
+  static __INLINE int32_t __QADD(
+  int32_t x,
+  int32_t y)
+  {
+    return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
+  }
+
+
+  /*
+   * @brief C custom defined QSUB for M3 and M0 processors
+   */
+  static __INLINE int32_t __QSUB(
+  int32_t x,
+  int32_t y)
+  {
+    return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
+  }
+
+
+  /*
+   * @brief C custom defined SMLAD for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMLAD(
+  uint32_t x,
+  uint32_t y,
+  uint32_t sum)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ( ((q31_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMLADX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMLADX(
+  uint32_t x,
+  uint32_t y,
+  uint32_t sum)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ( ((q31_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMLSDX for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMLSDX(
+  uint32_t x,
+  uint32_t y,
+  uint32_t sum)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) -
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ( ((q31_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMLALD for M3 and M0 processors
+   */
+  static __INLINE uint64_t __SMLALD(
+  uint32_t x,
+  uint32_t y,
+  uint64_t sum)
+  {
+/*  return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
+    return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ( ((q63_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMLALDX for M3 and M0 processors
+   */
+  static __INLINE uint64_t __SMLALDX(
+  uint32_t x,
+  uint32_t y,
+  uint64_t sum)
+  {
+/*  return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
+    return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y      ) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ( ((q63_t)sum    )                                  )   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMUAD for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMUAD(
+  uint32_t x,
+  uint32_t y)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y      ) >> 16))   ));
+  }
+
+
+  /*
+   * @brief C custom defined SMUSD for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SMUSD(
+  uint32_t x,
+  uint32_t y)
+  {
+    return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
+                       ((((q31_t)x      ) >> 16) * (((q31_t)y      ) >> 16))   ));
+  }
+
+
+  /*
+   * @brief C custom defined SXTB16 for M3 and M0 processors
+   */
+  static __INLINE uint32_t __SXTB16(
+  uint32_t x)
+  {
+    return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
+                       ((((q31_t)x <<  8) >>  8) & (q31_t)0xFFFF0000)  ));
+  }
+
+#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+
+
+  /**
+   * @brief Instance structure for the Q7 FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;        /**< number of filter coefficients in the filter. */
+    q7_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q7_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
+  } arm_fir_instance_q7;
+
+  /**
+   * @brief Instance structure for the Q15 FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;         /**< number of filter coefficients in the filter. */
+    q15_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q15_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/
+  } arm_fir_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;         /**< number of filter coefficients in the filter. */
+    q31_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    q31_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps. */
+  } arm_fir_instance_q31;
+
+  /**
+   * @brief Instance structure for the floating-point FIR filter.
+   */
+  typedef struct
+  {
+    uint16_t numTaps;     /**< number of filter coefficients in the filter. */
+    float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+    float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */
+  } arm_fir_instance_f32;
+
+
+  /**
+   * @brief Processing function for the Q7 FIR filter.
+   * @param[in]  S          points to an instance of the Q7 FIR filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_q7(
+  const arm_fir_instance_q7 * S,
+  q7_t * pSrc,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q7 FIR filter.
+   * @param[in,out] S          points to an instance of the Q7 FIR structure.
+   * @param[in]     numTaps    Number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of samples that are processed.
+   */
+  void arm_fir_init_q7(
+  arm_fir_instance_q7 * S,
+  uint16_t numTaps,
+  q7_t * pCoeffs,
+  q7_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q15 FIR filter.
+   * @param[in]  S          points to an instance of the Q15 FIR structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_q15(
+  const arm_fir_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q15 FIR filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_fast_q15(
+  const arm_fir_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q15 FIR filter.
+   * @param[in,out] S          points to an instance of the Q15 FIR filter structure.
+   * @param[in]     numTaps    Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of samples that are processed at a time.
+   * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
+   * <code>numTaps</code> is not a supported value.
+   */
+  arm_status arm_fir_init_q15(
+  arm_fir_instance_q15 * S,
+  uint16_t numTaps,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q31 FIR filter.
+   * @param[in]  S          points to an instance of the Q31 FIR filter structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_q31(
+  const arm_fir_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q31 FIR structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_fast_q31(
+  const arm_fir_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q31 FIR filter.
+   * @param[in,out] S          points to an instance of the Q31 FIR structure.
+   * @param[in]     numTaps    Number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of samples that are processed at a time.
+   */
+  void arm_fir_init_q31(
+  arm_fir_instance_q31 * S,
+  uint16_t numTaps,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the floating-point FIR filter.
+   * @param[in]  S          points to an instance of the floating-point FIR structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_fir_f32(
+  const arm_fir_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the floating-point FIR filter.
+   * @param[in,out] S          points to an instance of the floating-point FIR filter structure.
+   * @param[in]     numTaps    Number of filter coefficients in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     blockSize  number of samples that are processed at a time.
+   */
+  void arm_fir_init_f32(
+  arm_fir_instance_f32 * S,
+  uint16_t numTaps,
+  float32_t * pCoeffs,
+  float32_t * pState,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q15 Biquad cascade filter.
+   */
+  typedef struct
+  {
+    int8_t numStages;        /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    q15_t *pState;           /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
+    q15_t *pCoeffs;          /**< Points to the array of coefficients.  The array is of length 5*numStages. */
+    int8_t postShift;        /**< Additional shift, in bits, applied to each output sample. */
+  } arm_biquad_casd_df1_inst_q15;
+
+  /**
+   * @brief Instance structure for the Q31 Biquad cascade filter.
+   */
+  typedef struct
+  {
+    uint32_t numStages;      /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    q31_t *pState;           /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
+    q31_t *pCoeffs;          /**< Points to the array of coefficients.  The array is of length 5*numStages. */
+    uint8_t postShift;       /**< Additional shift, in bits, applied to each output sample. */
+  } arm_biquad_casd_df1_inst_q31;
+
+  /**
+   * @brief Instance structure for the floating-point Biquad cascade filter.
+   */
+  typedef struct
+  {
+    uint32_t numStages;      /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */
+    float32_t *pState;       /**< Points to the array of state coefficients.  The array is of length 4*numStages. */
+    float32_t *pCoeffs;      /**< Points to the array of coefficients.  The array is of length 5*numStages. */
+  } arm_biquad_casd_df1_inst_f32;
+
+
+  /**
+   * @brief Processing function for the Q15 Biquad cascade filter.
+   * @param[in]  S          points to an instance of the Q15 Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_q15(
+  const arm_biquad_casd_df1_inst_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q15 Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the Q15 Biquad cascade structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     postShift  Shift to be applied to the output. Varies according to the coefficients format
+   */
+  void arm_biquad_cascade_df1_init_q15(
+  arm_biquad_casd_df1_inst_q15 * S,
+  uint8_t numStages,
+  q15_t * pCoeffs,
+  q15_t * pState,
+  int8_t postShift);
+
+
+  /**
+   * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q15 Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_fast_q15(
+  const arm_biquad_casd_df1_inst_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Processing function for the Q31 Biquad cascade filter
+   * @param[in]  S          points to an instance of the Q31 Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_q31(
+  const arm_biquad_casd_df1_inst_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+   * @param[in]  S          points to an instance of the Q31 Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_fast_q31(
+  const arm_biquad_casd_df1_inst_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the Q31 Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the Q31 Biquad cascade structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   * @param[in]     postShift  Shift to be applied to the output. Varies according to the coefficients format
+   */
+  void arm_biquad_cascade_df1_init_q31(
+  arm_biquad_casd_df1_inst_q31 * S,
+  uint8_t numStages,
+  q31_t * pCoeffs,
+  q31_t * pState,
+  int8_t postShift);
+
+
+  /**
+   * @brief Processing function for the floating-point Biquad cascade filter.
+   * @param[in]  S          points to an instance of the floating-point Biquad cascade structure.
+   * @param[in]  pSrc       points to the block of input data.
+   * @param[out] pDst       points to the block of output data.
+   * @param[in]  blockSize  number of samples to process.
+   */
+  void arm_biquad_cascade_df1_f32(
+  const arm_biquad_casd_df1_inst_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief  Initialization function for the floating-point Biquad cascade filter.
+   * @param[in,out] S          points to an instance of the floating-point Biquad cascade structure.
+   * @param[in]     numStages  number of 2nd order stages in the filter.
+   * @param[in]     pCoeffs    points to the filter coefficients.
+   * @param[in]     pState     points to the state buffer.
+   */
+  void arm_biquad_cascade_df1_init_f32(
+  arm_biquad_casd_df1_inst_f32 * S,
+  uint8_t numStages,
+  float32_t * pCoeffs,
+  float32_t * pState);
+
+
+  /**
+   * @brief Instance structure for the floating-point matrix structure.
+   */
+  typedef struct
+  {
+    uint16_t numRows;     /**< number of rows of the matrix.     */
+    uint16_t numCols;     /**< number of columns of the matrix.  */
+    float32_t *pData;     /**< points to the data of the matrix. */
+  } arm_matrix_instance_f32;
+
+
+  /**
+   * @brief Instance structure for the floating-point matrix structure.
+   */
+  typedef struct
+  {
+    uint16_t numRows;     /**< number of rows of the matrix.     */
+    uint16_t numCols;     /**< number of columns of the matrix.  */
+    float64_t *pData;     /**< points to the data of the matrix. */
+  } arm_matrix_instance_f64;
+
+  /**
+   * @brief Instance structure for the Q15 matrix structure.
+   */
+  typedef struct
+  {
+    uint16_t numRows;     /**< number of rows of the matrix.     */
+    uint16_t numCols;     /**< number of columns of the matrix.  */
+    q15_t *pData;         /**< points to the data of the matrix. */
+  } arm_matrix_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 matrix structure.
+   */
+  typedef struct
+  {
+    uint16_t numRows;     /**< number of rows of the matrix.     */
+    uint16_t numCols;     /**< number of columns of the matrix.  */
+    q31_t *pData;         /**< points to the data of the matrix. */
+  } arm_matrix_instance_q31;
+
+
+  /**
+   * @brief Floating-point matrix addition.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_add_f32(
+  const arm_matrix_instance_f32 * pSrcA,
+  const arm_matrix_instance_f32 * pSrcB,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix addition.
+   * @param[in]   pSrcA  points to the first input matrix structure
+   * @param[in]   pSrcB  points to the second input matrix structure
+   * @param[out]  pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_add_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst);
+
+
+  /**
+   * @brief Q31 matrix addition.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_add_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point, complex, matrix multiplication.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_cmplx_mult_f32(
+  const arm_matrix_instance_f32 * pSrcA,
+  const arm_matrix_instance_f32 * pSrcB,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15, complex,  matrix multiplication.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_cmplx_mult_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pScratch);
+
+
+  /**
+   * @brief Q31, complex, matrix multiplication.
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_cmplx_mult_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point matrix transpose.
+   * @param[in]  pSrc  points to the input matrix
+   * @param[out] pDst  points to the output matrix
+   * @return    The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
+   * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_trans_f32(
+  const arm_matrix_instance_f32 * pSrc,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix transpose.
+   * @param[in]  pSrc  points to the input matrix
+   * @param[out] pDst  points to the output matrix
+   * @return    The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
+   * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_trans_q15(
+  const arm_matrix_instance_q15 * pSrc,
+  arm_matrix_instance_q15 * pDst);
+
+
+  /**
+   * @brief Q31 matrix transpose.
+   * @param[in]  pSrc  points to the input matrix
+   * @param[out] pDst  points to the output matrix
+   * @return    The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code>
+   * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_trans_q31(
+  const arm_matrix_instance_q31 * pSrc,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point matrix multiplication
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_f32(
+  const arm_matrix_instance_f32 * pSrcA,
+  const arm_matrix_instance_f32 * pSrcB,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix multiplication
+   * @param[in]  pSrcA   points to the first input matrix structure
+   * @param[in]  pSrcB   points to the second input matrix structure
+   * @param[out] pDst    points to output matrix structure
+   * @param[in]  pState  points to the array for storing intermediate results
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pState);
+
+
+  /**
+   * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA   points to the first input matrix structure
+   * @param[in]  pSrcB   points to the second input matrix structure
+   * @param[out] pDst    points to output matrix structure
+   * @param[in]  pState  points to the array for storing intermediate results
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_fast_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pState);
+
+
+  /**
+   * @brief Q31 matrix multiplication
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_mult_fast_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point matrix subtraction
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_sub_f32(
+  const arm_matrix_instance_f32 * pSrcA,
+  const arm_matrix_instance_f32 * pSrcB,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix subtraction
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_sub_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst);
+
+
+  /**
+   * @brief Q31 matrix subtraction
+   * @param[in]  pSrcA  points to the first input matrix structure
+   * @param[in]  pSrcB  points to the second input matrix structure
+   * @param[out] pDst   points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_sub_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief Floating-point matrix scaling.
+   * @param[in]  pSrc   points to the input matrix
+   * @param[in]  scale  scale factor
+   * @param[out] pDst   points to the output matrix
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_scale_f32(
+  const arm_matrix_instance_f32 * pSrc,
+  float32_t scale,
+  arm_matrix_instance_f32 * pDst);
+
+
+  /**
+   * @brief Q15 matrix scaling.
+   * @param[in]  pSrc        points to input matrix
+   * @param[in]  scaleFract  fractional portion of the scale factor
+   * @param[in]  shift       number of bits to shift the result by
+   * @param[out] pDst        points to output matrix
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_scale_q15(
+  const arm_matrix_instance_q15 * pSrc,
+  q15_t scaleFract,
+  int32_t shift,
+  arm_matrix_instance_q15 * pDst);
+
+
+  /**
+   * @brief Q31 matrix scaling.
+   * @param[in]  pSrc        points to input matrix
+   * @param[in]  scaleFract  fractional portion of the scale factor
+   * @param[in]  shift       number of bits to shift the result by
+   * @param[out] pDst        points to output matrix structure
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   */
+  arm_status arm_mat_scale_q31(
+  const arm_matrix_instance_q31 * pSrc,
+  q31_t scaleFract,
+  int32_t shift,
+  arm_matrix_instance_q31 * pDst);
+
+
+  /**
+   * @brief  Q31 matrix initialization.
+   * @param[in,out] S         points to an instance of the floating-point matrix structure.
+   * @param[in]     nRows     number of rows in the matrix.
+   * @param[in]     nColumns  number of columns in the matrix.
+   * @param[in]     pData     points to the matrix data array.
+   */
+  void arm_mat_init_q31(
+  arm_matrix_instance_q31 * S,
+  uint16_t nRows,
+  uint16_t nColumns,
+  q31_t * pData);
+
+
+  /**
+   * @brief  Q15 matrix initialization.
+   * @param[in,out] S         points to an instance of the floating-point matrix structure.
+   * @param[in]     nRows     number of rows in the matrix.
+   * @param[in]     nColumns  number of columns in the matrix.
+   * @param[in]     pData     points to the matrix data array.
+   */
+  void arm_mat_init_q15(
+  arm_matrix_instance_q15 * S,
+  uint16_t nRows,
+  uint16_t nColumns,
+  q15_t * pData);
+
+
+  /**
+   * @brief  Floating-point matrix initialization.
+   * @param[in,out] S         points to an instance of the floating-point matrix structure.
+   * @param[in]     nRows     number of rows in the matrix.
+   * @param[in]     nColumns  number of columns in the matrix.
+   * @param[in]     pData     points to the matrix data array.
+   */
+  void arm_mat_init_f32(
+  arm_matrix_instance_f32 * S,
+  uint16_t nRows,
+  uint16_t nColumns,
+  float32_t * pData);
+
+
+
+  /**
+   * @brief Instance structure for the Q15 PID Control.
+   */
+  typedef struct
+  {
+    q15_t A0;           /**< The derived gain, A0 = Kp + Ki + Kd . */
+#ifdef ARM_MATH_CM0_FAMILY
+    q15_t A1;
+    q15_t A2;
+#else
+    q31_t A1;           /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+#endif
+    q15_t state[3];     /**< The state array of length 3. */
+    q15_t Kp;           /**< The proportional gain. */
+    q15_t Ki;           /**< The integral gain. */
+    q15_t Kd;           /**< The derivative gain. */
+  } arm_pid_instance_q15;
+
+  /**
+   * @brief Instance structure for the Q31 PID Control.
+   */
+  typedef struct
+  {
+    q31_t A0;            /**< The derived gain, A0 = Kp + Ki + Kd . */
+    q31_t A1;            /**< The derived gain, A1 = -Kp - 2Kd. */
+    q31_t A2;            /**< The derived gain, A2 = Kd . */
+    q31_t state[3];      /**< The state array of length 3. */
+    q31_t Kp;            /**< The proportional gain. */
+    q31_t Ki;            /**< The integral gain. */
+    q31_t Kd;            /**< The derivative gain. */
+  } arm_pid_instance_q31;
+
+  /**
+   * @brief Instance structure for the floating-point PID Control.
+   */
+  typedef struct
+  {
+    float32_t A0;          /**< The derived gain, A0 = Kp + Ki + Kd . */
+    float32_t A1;          /**< The derived gain, A1 = -Kp - 2Kd. */
+    float32_t A2;          /**< The derived gain, A2 = Kd . */
+    float32_t state[3];    /**< The state array of length 3. */
+    float32_t Kp;          /**< The proportional gain. */
+    float32_t Ki;          /**< The integral gain. */
+    float32_t Kd;          /**< The derivative gain. */
+  } arm_pid_instance_f32;
+
+
+
+  /**
+   * @brief  Initialization function for the floating-point PID Control.
+   * @param[in,out] S               points to an instance of the PID structure.
+   * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
+   */
+  void arm_pid_init_f32(
+  arm_pid_instance_f32 * S,
+  int32_t resetStateFlag);
+
+
+  /**
+   * @brief  Reset function for the floating-point PID Control.
+   * @param[in,out] S  is an instance of the floating-point PID Control structure
+   */
+  void arm_pid_reset_f32(
+  arm_pid_instance_f32 * S);
+
+
+  /**
+   * @brief  Initialization function for the Q31 PID Control.
+   * @param[in,out] S               points to an instance of the Q15 PID structure.
+   * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
+   */
+  void arm_pid_init_q31(
+  arm_pid_instance_q31 * S,
+  int32_t resetStateFlag);
+
+
+  /**
+   * @brief  Reset function for the Q31 PID Control.
+   * @param[in,out] S   points to an instance of the Q31 PID Control structure
+   */
+
+  void arm_pid_reset_q31(
+  arm_pid_instance_q31 * S);
+
+
+  /**
+   * @brief  Initialization function for the Q15 PID Control.
+   * @param[in,out] S               points to an instance of the Q15 PID structure.
+   * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.
+   */
+  void arm_pid_init_q15(
+  arm_pid_instance_q15 * S,
+  int32_t resetStateFlag);
+
+
+  /**
+   * @brief  Reset function for the Q15 PID Control.
+   * @param[in,out] S  points to an instance of the q15 PID Control structure
+   */
+  void arm_pid_reset_q15(
+  arm_pid_instance_q15 * S);
+
+
+  /**
+   * @brief Instance structure for the floating-point Linear Interpolate function.
+   */
+  typedef struct
+  {
+    uint32_t nValues;           /**< nValues */
+    float32_t x1;               /**< x1 */
+    float32_t xSpacing;         /**< xSpacing */
+    float32_t *pYData;          /**< pointer to the table of Y values */
+  } arm_linear_interp_instance_f32;
+
+  /**
+   * @brief Instance structure for the floating-point bilinear interpolation function.
+   */
+  typedef struct
+  {
+    uint16_t numRows;   /**< number of rows in the data table. */
+    uint16_t numCols;   /**< number of columns in the data table. */
+    float32_t *pData;   /**< points to the data table. */
+  } arm_bilinear_interp_instance_f32;
+
+   /**
+   * @brief Instance structure for the Q31 bilinear interpolation function.
+   */
+  typedef struct
+  {
+    uint16_t numRows;   /**< number of rows in the data table. */
+    uint16_t numCols;   /**< number of columns in the data table. */
+    q31_t *pData;       /**< points to the data table. */
+  } arm_bilinear_interp_instance_q31;
+
+   /**
+   * @brief Instance structure for the Q15 bilinear interpolation function.
+   */
+  typedef struct
+  {
+    uint16_t numRows;   /**< number of rows in the data table. */
+    uint16_t numCols;   /**< number of columns in the data table. */
+    q15_t *pData;       /**< points to the data table. */
+  } arm_bilinear_interp_instance_q15;
+
+   /**
+   * @brief Instance structure for the Q15 bilinear interpolation function.
+   */
+  typedef struct
+  {
+    uint16_t numRows;   /**< number of rows in the data table. */
+    uint16_t numCols;   /**< number of columns in the data table. */
+    q7_t *pData;        /**< points to the data table. */
+  } arm_bilinear_interp_instance_q7;
+
+
+  /**
+   * @brief Q7 vector multiplication.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_mult_q7(
+  q7_t * pSrcA,
+  q7_t * pSrcB,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q15 vector multiplication.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_mult_q15(
+  q15_t * pSrcA,
+  q15_t * pSrcB,
+  q15_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q31 vector multiplication.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_mult_q31(
+  q31_t * pSrcA,
+  q31_t * pSrcB,
+  q31_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Floating-point vector multiplication.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_mult_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Instance structure for the Q15 CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                 /**< length of the FFT. */
+    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    q15_t *pTwiddle;                 /**< points to the Sin twiddle factor table. */
+    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+  } arm_cfft_radix2_instance_q15;
+
+/* Deprecated */
+  arm_status arm_cfft_radix2_init_q15(
+  arm_cfft_radix2_instance_q15 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix2_q15(
+  const arm_cfft_radix2_instance_q15 * S,
+  q15_t * pSrc);
+
+
+  /**
+   * @brief Instance structure for the Q15 CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                 /**< length of the FFT. */
+    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    q15_t *pTwiddle;                 /**< points to the twiddle factor table. */
+    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+  } arm_cfft_radix4_instance_q15;
+
+/* Deprecated */
+  arm_status arm_cfft_radix4_init_q15(
+  arm_cfft_radix4_instance_q15 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix4_q15(
+  const arm_cfft_radix4_instance_q15 * S,
+  q15_t * pSrc);
+
+  /**
+   * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                 /**< length of the FFT. */
+    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    q31_t *pTwiddle;                 /**< points to the Twiddle factor table. */
+    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+  } arm_cfft_radix2_instance_q31;
+
+/* Deprecated */
+  arm_status arm_cfft_radix2_init_q31(
+  arm_cfft_radix2_instance_q31 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix2_q31(
+  const arm_cfft_radix2_instance_q31 * S,
+  q31_t * pSrc);
+
+  /**
+   * @brief Instance structure for the Q31 CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                 /**< length of the FFT. */
+    uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    q31_t *pTwiddle;                 /**< points to the twiddle factor table. */
+    uint16_t *pBitRevTable;          /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+  } arm_cfft_radix4_instance_q31;
+
+/* Deprecated */
+  void arm_cfft_radix4_q31(
+  const arm_cfft_radix4_instance_q31 * S,
+  q31_t * pSrc);
+
+/* Deprecated */
+  arm_status arm_cfft_radix4_init_q31(
+  arm_cfft_radix4_instance_q31 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+  /**
+   * @brief Instance structure for the floating-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
+    uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+    float32_t onebyfftLen;             /**< value of 1/fftLen. */
+  } arm_cfft_radix2_instance_f32;
+
+/* Deprecated */
+  arm_status arm_cfft_radix2_init_f32(
+  arm_cfft_radix2_instance_f32 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix2_f32(
+  const arm_cfft_radix2_instance_f32 * S,
+  float32_t * pSrc);
+
+  /**
+   * @brief Instance structure for the floating-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+    uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+    float32_t *pTwiddle;               /**< points to the Twiddle factor table. */
+    uint16_t *pBitRevTable;            /**< points to the bit reversal table. */
+    uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+    float32_t onebyfftLen;             /**< value of 1/fftLen. */
+  } arm_cfft_radix4_instance_f32;
+
+/* Deprecated */
+  arm_status arm_cfft_radix4_init_f32(
+  arm_cfft_radix4_instance_f32 * S,
+  uint16_t fftLen,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+/* Deprecated */
+  void arm_cfft_radix4_f32(
+  const arm_cfft_radix4_instance_f32 * S,
+  float32_t * pSrc);
+
+  /**
+   * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    const q15_t *pTwiddle;             /**< points to the Twiddle factor table. */
+    const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
+    uint16_t bitRevLength;             /**< bit reversal table length. */
+  } arm_cfft_instance_q15;
+
+void arm_cfft_q15(
+    const arm_cfft_instance_q15 * S,
+    q15_t * p1,
+    uint8_t ifftFlag,
+    uint8_t bitReverseFlag);
+
+  /**
+   * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    const q31_t *pTwiddle;             /**< points to the Twiddle factor table. */
+    const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
+    uint16_t bitRevLength;             /**< bit reversal table length. */
+  } arm_cfft_instance_q31;
+
+void arm_cfft_q31(
+    const arm_cfft_instance_q31 * S,
+    q31_t * p1,
+    uint8_t ifftFlag,
+    uint8_t bitReverseFlag);
+
+  /**
+   * @brief Instance structure for the floating-point CFFT/CIFFT function.
+   */
+  typedef struct
+  {
+    uint16_t fftLen;                   /**< length of the FFT. */
+    const float32_t *pTwiddle;         /**< points to the Twiddle factor table. */
+    const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */
+    uint16_t bitRevLength;             /**< bit reversal table length. */
+  } arm_cfft_instance_f32;
+
+  void arm_cfft_f32(
+  const arm_cfft_instance_f32 * S,
+  float32_t * p1,
+  uint8_t ifftFlag,
+  uint8_t bitReverseFlag);
+
+  /**
+   * @brief Instance structure for the Q15 RFFT/RIFFT function.
+   */
+  typedef struct
+  {
+    uint32_t fftLenReal;                      /**< length of the real FFT. */
+    uint8_t ifftFlagR;                        /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+    uint8_t bitReverseFlagR;                  /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+    uint32_t twidCoefRModifier;               /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    q15_t *pTwiddleAReal;                     /**< points to the real twiddle factor table. */
+    q15_t *pTwiddleBReal;                     /**< points to the imag twiddle factor table. */
+    const arm_cfft_instance_q15 *pCfft;       /**< points to the complex FFT instance. */
+  } arm_rfft_instance_q15;
+
+  arm_status arm_rfft_init_q15(
+  arm_rfft_instance_q15 * S,
+  uint32_t fftLenReal,
+  uint32_t ifftFlagR,
+  uint32_t bitReverseFlag);
+
+  void arm_rfft_q15(
+  const arm_rfft_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst);
+
+  /**
+   * @brief Instance structure for the Q31 RFFT/RIFFT function.
+   */
+  typedef struct
+  {
+    uint32_t fftLenReal;                        /**< length of the real FFT. */
+    uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+    uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+    uint32_t twidCoefRModifier;                 /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    q31_t *pTwiddleAReal;                       /**< points to the real twiddle factor table. */
+    q31_t *pTwiddleBReal;                       /**< points to the imag twiddle factor table. */
+    const arm_cfft_instance_q31 *pCfft;         /**< points to the complex FFT instance. */
+  } arm_rfft_instance_q31;
+
+  arm_status arm_rfft_init_q31(
+  arm_rfft_instance_q31 * S,
+  uint32_t fftLenReal,
+  uint32_t ifftFlagR,
+  uint32_t bitReverseFlag);
+
+  void arm_rfft_q31(
+  const arm_rfft_instance_q31 * S,
+  q31_t * pSrc,
+  q31_t * pDst);
+
+  /**
+   * @brief Instance structure for the floating-point RFFT/RIFFT function.
+   */
+  typedef struct
+  {
+    uint32_t fftLenReal;                        /**< length of the real FFT. */
+    uint16_t fftLenBy2;                         /**< length of the complex FFT. */
+    uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+    uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+    uint32_t twidCoefRModifier;                     /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+    float32_t *pTwiddleAReal;                   /**< points to the real twiddle factor table. */
+    float32_t *pTwiddleBReal;                   /**< points to the imag twiddle factor table. */
+    arm_cfft_radix4_instance_f32 *pCfft;        /**< points to the complex FFT instance. */
+  } arm_rfft_instance_f32;
+
+  arm_status arm_rfft_init_f32(
+  arm_rfft_instance_f32 * S,
+  arm_cfft_radix4_instance_f32 * S_CFFT,
+  uint32_t fftLenReal,
+  uint32_t ifftFlagR,
+  uint32_t bitReverseFlag);
+
+  void arm_rfft_f32(
+  const arm_rfft_instance_f32 * S,
+  float32_t * pSrc,
+  float32_t * pDst);
+
+  /**
+   * @brief Instance structure for the floating-point RFFT/RIFFT function.
+   */
+typedef struct
+  {
+    arm_cfft_instance_f32 Sint;      /**< Internal CFFT structure. */
+    uint16_t fftLenRFFT;             /**< length of the real sequence */
+    float32_t * pTwiddleRFFT;        /**< Twiddle factors real stage  */
+  } arm_rfft_fast_instance_f32 ;
+
+arm_status arm_rfft_fast_init_f32 (
+   arm_rfft_fast_instance_f32 * S,
+   uint16_t fftLen);
+
+void arm_rfft_fast_f32(
+  arm_rfft_fast_instance_f32 * S,
+  float32_t * p, float32_t * pOut,
+  uint8_t ifftFlag);
+
+  /**
+   * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+   */
+  typedef struct
+  {
+    uint16_t N;                          /**< length of the DCT4. */
+    uint16_t Nby2;                       /**< half of the length of the DCT4. */
+    float32_t normalize;                 /**< normalizing factor. */
+    float32_t *pTwiddle;                 /**< points to the twiddle factor table. */
+    float32_t *pCosFactor;               /**< points to the cosFactor table. */
+    arm_rfft_instance_f32 *pRfft;        /**< points to the real FFT instance. */
+    arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+  } arm_dct4_instance_f32;
+
+
+  /**
+   * @brief  Initialization function for the floating-point DCT4/IDCT4.
+   * @param[in,out] S          points to an instance of floating-point DCT4/IDCT4 structure.
+   * @param[in]     S_RFFT     points to an instance of floating-point RFFT/RIFFT structure.
+   * @param[in]     S_CFFT     points to an instance of floating-point CFFT/CIFFT structure.
+   * @param[in]     N          length of the DCT4.
+   * @param[in]     Nby2       half of the length of the DCT4.
+   * @param[in]     normalize  normalizing factor.
+   * @return      arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
+   */
+  arm_status arm_dct4_init_f32(
+  arm_dct4_instance_f32 * S,
+  arm_rfft_instance_f32 * S_RFFT,
+  arm_cfft_radix4_instance_f32 * S_CFFT,
+  uint16_t N,
+  uint16_t Nby2,
+  float32_t normalize);
+
+
+  /**
+   * @brief Processing function for the floating-point DCT4/IDCT4.
+   * @param[in]     S              points to an instance of the floating-point DCT4/IDCT4 structure.
+   * @param[in]     pState         points to state buffer.
+   * @param[in,out] pInlineBuffer  points to the in-place input and output buffer.
+   */
+  void arm_dct4_f32(
+  const arm_dct4_instance_f32 * S,
+  float32_t * pState,
+  float32_t * pInlineBuffer);
+
+
+  /**
+   * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+   */
+  typedef struct
+  {
+    uint16_t N;                          /**< length of the DCT4. */
+    uint16_t Nby2;                       /**< half of the length of the DCT4. */
+    q31_t normalize;                     /**< normalizing factor. */
+    q31_t *pTwiddle;                     /**< points to the twiddle factor table. */
+    q31_t *pCosFactor;                   /**< points to the cosFactor table. */
+    arm_rfft_instance_q31 *pRfft;        /**< points to the real FFT instance. */
+    arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+  } arm_dct4_instance_q31;
+
+
+  /**
+   * @brief  Initialization function for the Q31 DCT4/IDCT4.
+   * @param[in,out] S          points to an instance of Q31 DCT4/IDCT4 structure.
+   * @param[in]     S_RFFT     points to an instance of Q31 RFFT/RIFFT structure
+   * @param[in]     S_CFFT     points to an instance of Q31 CFFT/CIFFT structure
+   * @param[in]     N          length of the DCT4.
+   * @param[in]     Nby2       half of the length of the DCT4.
+   * @param[in]     normalize  normalizing factor.
+   * @return      arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
+   */
+  arm_status arm_dct4_init_q31(
+  arm_dct4_instance_q31 * S,
+  arm_rfft_instance_q31 * S_RFFT,
+  arm_cfft_radix4_instance_q31 * S_CFFT,
+  uint16_t N,
+  uint16_t Nby2,
+  q31_t normalize);
+
+
+  /**
+   * @brief Processing function for the Q31 DCT4/IDCT4.
+   * @param[in]     S              points to an instance of the Q31 DCT4 structure.
+   * @param[in]     pState         points to state buffer.
+   * @param[in,out] pInlineBuffer  points to the in-place input and output buffer.
+   */
+  void arm_dct4_q31(
+  const arm_dct4_instance_q31 * S,
+  q31_t * pState,
+  q31_t * pInlineBuffer);
+
+
+  /**
+   * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+   */
+  typedef struct
+  {
+    uint16_t N;                          /**< length of the DCT4. */
+    uint16_t Nby2;                       /**< half of the length of the DCT4. */
+    q15_t normalize;                     /**< normalizing factor. */
+    q15_t *pTwiddle;                     /**< points to the twiddle factor table. */
+    q15_t *pCosFactor;                   /**< points to the cosFactor table. */
+    arm_rfft_instance_q15 *pRfft;        /**< points to the real FFT instance. */
+    arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+  } arm_dct4_instance_q15;
+
+
+  /**
+   * @brief  Initialization function for the Q15 DCT4/IDCT4.
+   * @param[in,out] S          points to an instance of Q15 DCT4/IDCT4 structure.
+   * @param[in]     S_RFFT     points to an instance of Q15 RFFT/RIFFT structure.
+   * @param[in]     S_CFFT     points to an instance of Q15 CFFT/CIFFT structure.
+   * @param[in]     N          length of the DCT4.
+   * @param[in]     Nby2       half of the length of the DCT4.
+   * @param[in]     normalize  normalizing factor.
+   * @return      arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
+   */
+  arm_status arm_dct4_init_q15(
+  arm_dct4_instance_q15 * S,
+  arm_rfft_instance_q15 * S_RFFT,
+  arm_cfft_radix4_instance_q15 * S_CFFT,
+  uint16_t N,
+  uint16_t Nby2,
+  q15_t normalize);
+
+
+  /**
+   * @brief Processing function for the Q15 DCT4/IDCT4.
+   * @param[in]     S              points to an instance of the Q15 DCT4 structure.
+   * @param[in]     pState         points to state buffer.
+   * @param[in,out] pInlineBuffer  points to the in-place input and output buffer.
+   */
+  void arm_dct4_q15(
+  const arm_dct4_instance_q15 * S,
+  q15_t * pState,
+  q15_t * pInlineBuffer);
+
+
+  /**
+   * @brief Floating-point vector addition.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_add_f32(
+  float32_t * pSrcA,
+  float32_t * pSrcB,
+  float32_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q7 vector addition.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector
+   */
+  void arm_add_q7(
+  q7_t * pSrcA,
+  q7_t * pSrcB,
+  q7_t * pDst,
+  uint32_t blockSize);
+
+
+  /**
+   * @brief Q15 vector addition.
+   * @param[in]  pSrcA      points to the first input vector
+   * @param[in]  pSrcB      points to the second input vector
+   * @param[out] pDst       points to the output vector
+   * @param[in]  blockSize  number of samples in each vector

<TRUNCATED>