You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@commons.apache.org by er...@apache.org on 2021/08/11 11:31:33 UTC

[commons-math] branch master updated: Delete spurious files.

This is an automated email from the ASF dual-hosted git repository.

erans pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/commons-math.git


The following commit(s) were added to refs/heads/master by this push:
     new 9b7a2c8  Delete spurious files.
9b7a2c8 is described below

commit 9b7a2c8edca579929625f46f55b67eaffb3244ad
Author: Gilles Sadowski <gi...@gmail.com>
AuthorDate: Wed Aug 11 13:30:44 2021 +0200

    Delete spurious files.
    
    Files were committed by mistake.
---
 .../legacy/linear/EigenDecomposition.java_PRINT    | 945 ---------------------
 .../scalar/noderiv/SimplexOptimizer.java.DEBUG     | 339 --------
 2 files changed, 1284 deletions(-)

diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/linear/EigenDecomposition.java_PRINT b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/linear/EigenDecomposition.java_PRINT
deleted file mode 100644
index b74e3e0..0000000
--- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/linear/EigenDecomposition.java_PRINT
+++ /dev/null
@@ -1,945 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.commons.math4.linear;
-
-import org.apache.commons.numbers.complex.Complex;
-import org.apache.commons.numbers.core.Precision;
-import org.apache.commons.math4.exception.DimensionMismatchException;
-import org.apache.commons.math4.exception.MathArithmeticException;
-import org.apache.commons.math4.exception.MathUnsupportedOperationException;
-import org.apache.commons.math4.exception.MaxCountExceededException;
-import org.apache.commons.math4.exception.util.LocalizedFormats;
-import org.apache.commons.math4.util.FastMath;
-
-/**
- * Calculates the eigen decomposition of a real matrix.
- * <p>
- * The eigen decomposition of matrix A is a set of two matrices:
- * V and D such that A = V &times; D &times; V<sup>T</sup>.
- * A, V and D are all m &times; m matrices.
- * <p>
- * This class is similar in spirit to the {@code EigenvalueDecomposition}
- * class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a>
- * library, with the following changes:
- * <ul>
- *   <li>a {@link #getVT() getVt} method has been added,</li>
- *   <li>two {@link #getRealEigenvalue(int) getRealEigenvalue} and
- *       {@link #getImagEigenvalue(int) getImagEigenvalue} methods to pick up a
- *       single eigenvalue have been added,</li>
- *   <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a
- *       single eigenvector has been added,</li>
- *   <li>a {@link #getDeterminant() getDeterminant} method has been added.</li>
- *   <li>a {@link #getSolver() getSolver} method has been added.</li>
- * </ul>
- * <p>
- * As of 3.1, this class supports general real matrices (both symmetric and non-symmetric):
- * <p>
- * If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal
- * and the eigenvector matrix V is orthogonal, i.e.
- * {@code A = V.multiply(D.multiply(V.transpose()))} and
- * {@code V.multiply(V.transpose())} equals the identity matrix.
- * </p>
- * <p>
- * If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real
- * eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2
- * blocks:
- * <pre>
- *    [lambda, mu    ]
- *    [   -mu, lambda]
- * </pre>
- * The columns of V represent the eigenvectors in the sense that {@code A*V = V*D},
- * i.e. A.multiply(V) equals V.multiply(D).
- * The matrix V may be badly conditioned, or even singular, so the validity of the
- * equation {@code A = V*D*inverse(V)} depends upon the condition of V.
- * <p>
- * This implementation is based on the paper by A. Drubrulle, R.S. Martin and
- * J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971)
- * Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag,
- * New-York.
- *
- * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a>
- * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a>
- * @since 2.0 (changed to concrete class in 3.0)
- */
-public class EigenDecomposition {
-    /** Internally used epsilon criteria. */
-    private static final double EPSILON = 1e-12;
-    /** Maximum number of iterations accepted in the implicit QL transformation */
-    private static final byte MAX_ITER = 30;
-    /** Main diagonal of the tridiagonal matrix. */
-    private double[] main;
-    /** Secondary diagonal of the tridiagonal matrix. */
-    private double[] secondary;
-    /**
-     * Transformer to tridiagonal (may be null if matrix is already
-     * tridiagonal).
-     */
-    private TriDiagonalTransformer transformer;
-    /** Real part of the realEigenvalues. */
-    private double[] realEigenvalues;
-    /** Imaginary part of the realEigenvalues. */
-    private double[] imagEigenvalues;
-    /** Eigenvectors. */
-    private ArrayRealVector[] eigenvectors;
-    /** Cached value of V. */
-    private RealMatrix cachedV;
-    /** Cached value of D. */
-    private RealMatrix cachedD;
-    /** Cached value of Vt. */
-    private RealMatrix cachedVt;
-    /** Whether the matrix is symmetric. */
-    private final boolean isSymmetric;
-
-    /**
-     * Calculates the eigen decomposition of the given real matrix.
-     * <p>
-     * Supports decomposition of a general matrix since 3.1.
-     *
-     * @param matrix Matrix to decompose.
-     * @throws MaxCountExceededException if the algorithm fails to converge.
-     * @throws MathArithmeticException if the decomposition of a general matrix
-     * results in a matrix with zero norm
-     * @since 3.1
-     */
-    public EigenDecomposition(final RealMatrix matrix)
-        throws MathArithmeticException {
-        final double symTol = 10 * matrix.getRowDimension() * matrix.getColumnDimension() * Precision.EPSILON;
-        isSymmetric = MatrixUtils.isSymmetric(matrix, symTol);
-        if (isSymmetric) {
-            transformToTridiagonal(matrix);
-            findEigenVectors(transformer.getQ().getData());
-        } else {
-            final SchurTransformer t = transformToSchur(matrix);
-            findEigenVectorsFromSchur(t);
-        }
-    }
-
-    /**
-     * Calculates the eigen decomposition of the symmetric tridiagonal
-     * matrix.  The Householder matrix is assumed to be the identity matrix.
-     *
-     * @param main Main diagonal of the symmetric tridiagonal form.
-     * @param secondary Secondary of the tridiagonal form.
-     * @throws MaxCountExceededException if the algorithm fails to converge.
-     * @since 3.1
-     */
-    public EigenDecomposition(final double[] main, final double[] secondary) {
-        isSymmetric = true;
-        this.main      = main.clone();
-        this.secondary = secondary.clone();
-        transformer    = null;
-        final int size = main.length;
-        final double[][] z = new double[size][size];
-        for (int i = 0; i < size; i++) {
-            z[i][i] = 1.0;
-        }
-        findEigenVectors(z);
-    }
-
-    /**
-     * Gets the matrix V of the decomposition.
-     * V is an orthogonal matrix, i.e. its transpose is also its inverse.
-     * The columns of V are the eigenvectors of the original matrix.
-     * No assumption is made about the orientation of the system axes formed
-     * by the columns of V (e.g. in a 3-dimension space, V can form a left-
-     * or right-handed system).
-     *
-     * @return the V matrix.
-     */
-    public RealMatrix getV() {
-
-        if (cachedV == null) {
-            final int m = eigenvectors.length;
-            cachedV = MatrixUtils.createRealMatrix(m, m);
-            for (int k = 0; k < m; ++k) {
-                cachedV.setColumnVector(k, eigenvectors[k]);
-            }
-        }
-        // return the cached matrix
-        return cachedV;
-    }
-
-    /**
-     * Gets the block diagonal matrix D of the decomposition.
-     * D is a block diagonal matrix.
-     * Real eigenvalues are on the diagonal while complex values are on
-     * 2x2 blocks { {real +imaginary}, {-imaginary, real} }.
-     *
-     * @return the D matrix.
-     *
-     * @see #getRealEigenvalues()
-     * @see #getImagEigenvalues()
-     */
-    public RealMatrix getD() {
-
-        if (cachedD == null) {
-            // cache the matrix for subsequent calls
-            cachedD = MatrixUtils.createRealMatrixWithDiagonal(realEigenvalues);
-
-            for (int i = 0; i < imagEigenvalues.length; i++) {
-                if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) > 0) {
-                    cachedD.setEntry(i, i+1, imagEigenvalues[i]);
-                } else if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
-                    cachedD.setEntry(i, i-1, imagEigenvalues[i]);
-                }
-            }
-        }
-        return cachedD;
-    }
-
-    /**
-     * Gets the transpose of the matrix V of the decomposition.
-     * V is an orthogonal matrix, i.e. its transpose is also its inverse.
-     * The columns of V are the eigenvectors of the original matrix.
-     * No assumption is made about the orientation of the system axes formed
-     * by the columns of V (e.g. in a 3-dimension space, V can form a left-
-     * or right-handed system).
-     *
-     * @return the transpose of the V matrix.
-     */
-    public RealMatrix getVT() {
-
-        if (cachedVt == null) {
-            final int m = eigenvectors.length;
-            cachedVt = MatrixUtils.createRealMatrix(m, m);
-            for (int k = 0; k < m; ++k) {
-                cachedVt.setRowVector(k, eigenvectors[k]);
-            }
-        }
-
-        // return the cached matrix
-        return cachedVt;
-    }
-
-    /**
-     * Returns whether the calculated eigen values are complex or real.
-     * <p>The method performs a zero check for each element of the
-     * {@link #getImagEigenvalues()} array and returns {@code true} if any
-     * element is not equal to zero.
-     *
-     * @return {@code true} if the eigen values are complex, {@code false} otherwise
-     * @since 3.1
-     */
-    public boolean hasComplexEigenvalues() {
-        for (int i = 0; i < imagEigenvalues.length; i++) {
-            if (!Precision.equals(imagEigenvalues[i], 0.0, EPSILON)) {
-                return true;
-            }
-        }
-        return false;
-    }
-
-    /**
-     * Gets a copy of the real parts of the eigenvalues of the original matrix.
-     *
-     * @return a copy of the real parts of the eigenvalues of the original matrix.
-     *
-     * @see #getD()
-     * @see #getRealEigenvalue(int)
-     * @see #getImagEigenvalues()
-     */
-    public double[] getRealEigenvalues() {
-        return realEigenvalues.clone();
-    }
-
-    /**
-     * Returns the real part of the i<sup>th</sup> eigenvalue of the original
-     * matrix.
-     *
-     * @param i index of the eigenvalue (counting from 0)
-     * @return real part of the i<sup>th</sup> eigenvalue of the original
-     * matrix.
-     *
-     * @see #getD()
-     * @see #getRealEigenvalues()
-     * @see #getImagEigenvalue(int)
-     */
-    public double getRealEigenvalue(final int i) {
-        return realEigenvalues[i];
-    }
-
-    /**
-     * Gets a copy of the imaginary parts of the eigenvalues of the original
-     * matrix.
-     *
-     * @return a copy of the imaginary parts of the eigenvalues of the original
-     * matrix.
-     *
-     * @see #getD()
-     * @see #getImagEigenvalue(int)
-     * @see #getRealEigenvalues()
-     */
-    public double[] getImagEigenvalues() {
-        return imagEigenvalues.clone();
-    }
-
-    /**
-     * Gets the imaginary part of the i<sup>th</sup> eigenvalue of the original
-     * matrix.
-     *
-     * @param i Index of the eigenvalue (counting from 0).
-     * @return the imaginary part of the i<sup>th</sup> eigenvalue of the original
-     * matrix.
-     *
-     * @see #getD()
-     * @see #getImagEigenvalues()
-     * @see #getRealEigenvalue(int)
-     */
-    public double getImagEigenvalue(final int i) {
-        return imagEigenvalues[i];
-    }
-
-    /**
-     * Gets a copy of the i<sup>th</sup> eigenvector of the original matrix.
-     *
-     * @param i Index of the eigenvector (counting from 0).
-     * @return a copy of the i<sup>th</sup> eigenvector of the original matrix.
-     * @see #getD()
-     */
-    public RealVector getEigenvector(final int i) {
-        return eigenvectors[i].copy();
-    }
-
-    /**
-     * Computes the determinant of the matrix.
-     *
-     * @return the determinant of the matrix.
-     */
-    public double getDeterminant() {
-        double determinant = 1;
-        for (double lambda : realEigenvalues) {
-            determinant *= lambda;
-        }
-        return determinant;
-    }
-
-    /**
-     * Computes the square-root of the matrix.
-     * This implementation assumes that the matrix is symmetric and positive
-     * definite.
-     *
-     * @return the square-root of the matrix.
-     * @throws MathUnsupportedOperationException if the matrix is not
-     * symmetric or not positive definite.
-     * @since 3.1
-     */
-    public RealMatrix getSquareRoot() {
-        if (!isSymmetric) {
-            throw new MathUnsupportedOperationException();
-        }
-
-        final double[] sqrtEigenValues = new double[realEigenvalues.length];
-        for (int i = 0; i < realEigenvalues.length; i++) {
-            final double eigen = realEigenvalues[i];
-            if (eigen <= 0) {
-                throw new MathUnsupportedOperationException();
-            }
-            sqrtEigenValues[i] = FastMath.sqrt(eigen);
-        }
-        final RealMatrix sqrtEigen = MatrixUtils.createRealDiagonalMatrix(sqrtEigenValues);
-        final RealMatrix v = getV();
-        final RealMatrix vT = getVT();
-
-        return v.multiply(sqrtEigen).multiply(vT);
-    }
-
-    /**
-     * Gets a solver for finding the A &times; X = B solution in exact
-     * linear sense.
-     * <p>
-     * Since 3.1, eigen decomposition of a general matrix is supported,
-     * but the {@link DecompositionSolver} only supports real eigenvalues.
-     *
-     * @return a solver
-     * @throws MathUnsupportedOperationException if the decomposition resulted in
-     * complex eigenvalues
-     */
-    public DecompositionSolver getSolver() {
-        if (hasComplexEigenvalues()) {
-            throw new MathUnsupportedOperationException();
-        }
-        return new Solver(realEigenvalues, imagEigenvalues, eigenvectors);
-    }
-
-    /** Specialized solver. */
-    private static class Solver implements DecompositionSolver {
-        /** Real part of the realEigenvalues. */
-        private final double[] realEigenvalues;
-        /** Imaginary part of the realEigenvalues. */
-        private final double[] imagEigenvalues;
-        /** Eigenvectors. */
-        private final ArrayRealVector[] eigenvectors;
-
-        /**
-         * Builds a solver from decomposed matrix.
-         *
-         * @param realEigenvalues Real parts of the eigenvalues.
-         * @param imagEigenvalues Imaginary parts of the eigenvalues.
-         * @param eigenvectors Eigenvectors.
-         */
-        private Solver(final double[] realEigenvalues,
-                final double[] imagEigenvalues,
-                final ArrayRealVector[] eigenvectors) {
-            this.realEigenvalues = realEigenvalues;
-            this.imagEigenvalues = imagEigenvalues;
-            this.eigenvectors = eigenvectors;
-        }
-
-        /**
-         * Solves the linear equation A &times; X = B for symmetric matrices A.
-         * <p>
-         * This method only finds exact linear solutions, i.e. solutions for
-         * which ||A &times; X - B|| is exactly 0.
-         * </p>
-         *
-         * @param b Right-hand side of the equation A &times; X = B.
-         * @return a Vector X that minimizes the two norm of A &times; X - B.
-         *
-         * @throws DimensionMismatchException if the matrices dimensions do not match.
-         * @throws SingularMatrixException if the decomposed matrix is singular.
-         */
-        @Override
-        public RealVector solve(final RealVector b) {
-            if (!isNonSingular()) {
-                throw new SingularMatrixException();
-            }
-
-            final int m = realEigenvalues.length;
-            if (b.getDimension() != m) {
-                throw new DimensionMismatchException(b.getDimension(), m);
-            }
-
-            final double[] bp = new double[m];
-            for (int i = 0; i < m; ++i) {
-                final ArrayRealVector v = eigenvectors[i];
-                final double[] vData = v.getDataRef();
-                final double s = v.dotProduct(b) / realEigenvalues[i];
-                for (int j = 0; j < m; ++j) {
-                    bp[j] += s * vData[j];
-                }
-            }
-
-            return new ArrayRealVector(bp, false);
-        }
-
-        /** {@inheritDoc} */
-        @Override
-        public RealMatrix solve(RealMatrix b) {
-
-            if (!isNonSingular()) {
-                throw new SingularMatrixException();
-            }
-
-            final int m = realEigenvalues.length;
-            if (b.getRowDimension() != m) {
-                throw new DimensionMismatchException(b.getRowDimension(), m);
-            }
-
-            final int nColB = b.getColumnDimension();
-            final double[][] bp = new double[m][nColB];
-            final double[] tmpCol = new double[m];
-            for (int k = 0; k < nColB; ++k) {
-                for (int i = 0; i < m; ++i) {
-                    tmpCol[i] = b.getEntry(i, k);
-                    bp[i][k]  = 0;
-                }
-                for (int i = 0; i < m; ++i) {
-                    final ArrayRealVector v = eigenvectors[i];
-                    final double[] vData = v.getDataRef();
-                    double s = 0;
-                    for (int j = 0; j < m; ++j) {
-                        s += v.getEntry(j) * tmpCol[j];
-                    }
-                    s /= realEigenvalues[i];
-                    for (int j = 0; j < m; ++j) {
-                        bp[j][k] += s * vData[j];
-                    }
-                }
-            }
-
-            return new Array2DRowRealMatrix(bp, false);
-
-        }
-
-        /**
-         * Checks whether the decomposed matrix is non-singular.
-         *
-         * @return true if the decomposed matrix is non-singular.
-         */
-        @Override
-        public boolean isNonSingular() {
-            double largestEigenvalueNorm = 0.0;
-            // Looping over all values (in case they are not sorted in decreasing
-            // order of their norm).
-            for (int i = 0; i < realEigenvalues.length; ++i) {
-                largestEigenvalueNorm = FastMath.max(largestEigenvalueNorm, eigenvalueNorm(i));
-            }
-            // Corner case: zero matrix, all exactly 0 eigenvalues
-            if (largestEigenvalueNorm == 0.0) {
-                return false;
-            }
-            for (int i = 0; i < realEigenvalues.length; ++i) {
-                // Looking for eigenvalues that are 0, where we consider anything much much smaller
-                // than the largest eigenvalue to be effectively 0.
-                if (Precision.equals(eigenvalueNorm(i) / largestEigenvalueNorm, 0, EPSILON)) {
-                    return false;
-                }
-            }
-            return true;
-        }
-
-        /**
-         * @param i which eigenvalue to find the norm of
-         * @return the norm of ith (complex) eigenvalue.
-         */
-        private double eigenvalueNorm(int i) {
-            final double re = realEigenvalues[i];
-            final double im = imagEigenvalues[i];
-            return FastMath.sqrt(re * re + im * im);
-        }
-
-        /**
-         * Get the inverse of the decomposed matrix.
-         *
-         * @return the inverse matrix.
-         * @throws SingularMatrixException if the decomposed matrix is singular.
-         */
-        @Override
-        public RealMatrix getInverse() {
-            if (!isNonSingular()) {
-                throw new SingularMatrixException();
-            }
-
-            final int m = realEigenvalues.length;
-            final double[][] invData = new double[m][m];
-
-            for (int i = 0; i < m; ++i) {
-                final double[] invI = invData[i];
-                for (int j = 0; j < m; ++j) {
-                    double invIJ = 0;
-                    for (int k = 0; k < m; ++k) {
-                        final double[] vK = eigenvectors[k].getDataRef();
-                        invIJ += vK[i] * vK[j] / realEigenvalues[k];
-                    }
-                    invI[j] = invIJ;
-                }
-            }
-            return MatrixUtils.createRealMatrix(invData);
-        }
-    }
-
-    /**
-     * Transforms the matrix to tridiagonal form.
-     *
-     * @param matrix Matrix to transform.
-     */
-    private void transformToTridiagonal(final RealMatrix matrix) {
-        // transform the matrix to tridiagonal
-        transformer = new TriDiagonalTransformer(matrix);
-        main = transformer.getMainDiagonalRef();
-        secondary = transformer.getSecondaryDiagonalRef();
-    }
-
-    /**
-     * Find eigenvalues and eigenvectors (Dubrulle et al., 1971)
-     *
-     * @param householderMatrix Householder matrix of the transformation
-     * to tridiagonal form.
-     */
-    private void findEigenVectors(final double[][] householderMatrix) {
-        final double[][]z = householderMatrix.clone();
-        final int n = main.length;
-        realEigenvalues = new double[n];
-        imagEigenvalues = new double[n];
-        final double[] e = new double[n];
-        for (int i = 0; i < n - 1; i++) {
-            realEigenvalues[i] = main[i];
-            e[i] = secondary[i];
-        }
-        realEigenvalues[n - 1] = main[n - 1];
-        e[n - 1] = 0;
-
-        // Determine the largest main and secondary value in absolute term.
-        double maxAbsoluteValue = 0;
-        for (int i = 0; i < n; i++) {
-            if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
-                maxAbsoluteValue = FastMath.abs(realEigenvalues[i]);
-            }
-            if (FastMath.abs(e[i]) > maxAbsoluteValue) {
-                maxAbsoluteValue = FastMath.abs(e[i]);
-            }
-        }
-        // Make null any main and secondary value too small to be significant
-        if (maxAbsoluteValue != 0) {
-            for (int i=0; i < n; i++) {
-                if (FastMath.abs(realEigenvalues[i]) <= Precision.EPSILON * maxAbsoluteValue) {
-                    realEigenvalues[i] = 0;
-                }
-                if (FastMath.abs(e[i]) <= Precision.EPSILON * maxAbsoluteValue) {
-                    e[i]=0;
-                }
-            }
-        }
-
-        for (int j = 0; j < n; j++) {
-            int its = 0;
-            int m;
-            do {
-                for (m = j; m < n - 1; m++) {
-                    double delta = FastMath.abs(realEigenvalues[m]) +
-                        FastMath.abs(realEigenvalues[m + 1]);
-                    if (FastMath.abs(e[m]) + delta == delta) {
-                        break;
-                    }
-                }
-                if (m != j) {
-                    if (its == MAX_ITER) {
-                        throw new MaxCountExceededException(LocalizedFormats.CONVERGENCE_FAILED,
-                                                            MAX_ITER);
-                    }
-                    its++;
-                    double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]);
-                    double t = FastMath.sqrt(1 + q * q);
-                    if (q < 0.0) {
-                        q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t);
-                    } else {
-                        q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t);
-                    }
-                    double u = 0.0;
-                    double s = 1.0;
-                    double c = 1.0;
-                    int i;
-                    for (i = m - 1; i >= j; i--) {
-                        double p = s * e[i];
-                        double h = c * e[i];
-                        if (FastMath.abs(p) >= FastMath.abs(q)) {
-                            c = q / p;
-                            t = FastMath.sqrt(c * c + 1.0);
-                            e[i + 1] = p * t;
-                            s = 1.0 / t;
-                            c *= s;
-                        } else {
-                            s = p / q;
-                            t = FastMath.sqrt(s * s + 1.0);
-                            e[i + 1] = q * t;
-                            c = 1.0 / t;
-                            s *= c;
-                        }
-                        if (e[i + 1] == 0.0) {
-                            realEigenvalues[i + 1] -= u;
-                            e[m] = 0.0;
-                            break;
-                        }
-                        q = realEigenvalues[i + 1] - u;
-                        t = (realEigenvalues[i] - q) * s + 2.0 * c * h;
-                        u = s * t;
-                        realEigenvalues[i + 1] = q + u;
-                        q = c * t - h;
-                        for (int ia = 0; ia < n; ia++) {
-                            p = z[ia][i + 1];
-                            z[ia][i + 1] = s * z[ia][i] + c * p;
-                            z[ia][i] = c * z[ia][i] - s * p;
-                        }
-                    }
-                    if (t == 0.0 && i >= j) {
-                        continue;
-                    }
-                    realEigenvalues[j] -= u;
-                    e[j] = q;
-                    e[m] = 0.0;
-                }
-            } while (m != j);
-        }
-
-        //Sort the eigen values (and vectors) in increase order
-        for (int i = 0; i < n; i++) {
-            int k = i;
-            double p = realEigenvalues[i];
-            for (int j = i + 1; j < n; j++) {
-                if (realEigenvalues[j] > p) {
-                    k = j;
-                    p = realEigenvalues[j];
-                }
-            }
-            if (k != i) {
-                realEigenvalues[k] = realEigenvalues[i];
-                realEigenvalues[i] = p;
-                for (int j = 0; j < n; j++) {
-                    p = z[j][i];
-                    z[j][i] = z[j][k];
-                    z[j][k] = p;
-                }
-            }
-        }
-
-        // Determine the largest eigen value in absolute term.
-        maxAbsoluteValue = 0;
-        for (int i = 0; i < n; i++) {
-            if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
-                maxAbsoluteValue=FastMath.abs(realEigenvalues[i]);
-            }
-        }
-        // Make null any eigen value too small to be significant
-        if (maxAbsoluteValue != 0.0) {
-            for (int i=0; i < n; i++) {
-                if (FastMath.abs(realEigenvalues[i]) < Precision.EPSILON * maxAbsoluteValue) {
-                    realEigenvalues[i] = 0;
-                }
-            }
-        }
-        eigenvectors = new ArrayRealVector[n];
-        final double[] tmp = new double[n];
-        for (int i = 0; i < n; i++) {
-            for (int j = 0; j < n; j++) {
-                tmp[j] = z[j][i];
-            }
-            eigenvectors[i] = new ArrayRealVector(tmp);
-        }
-    }
-
-    /**
-     * Transforms the matrix to Schur form and calculates the eigenvalues.
-     *
-     * @param matrix Matrix to transform.
-     * @return the {@link SchurTransformer Shur transform} for this matrix
-     */
-    private SchurTransformer transformToSchur(final RealMatrix matrix) {
-        final SchurTransformer schurTransform = new SchurTransformer(matrix);
-        final double[][] matT = schurTransform.getT().getData();
-
-        realEigenvalues = new double[matT.length];
-        imagEigenvalues = new double[matT.length];
-
-        for (int i = 0; i < realEigenvalues.length; i++) {
-            if (i == (realEigenvalues.length - 1) ||
-                Precision.equals(matT[i + 1][i], 0.0, EPSILON)) {
-                realEigenvalues[i] = matT[i][i];
-            } else {
-                final double x = matT[i + 1][i + 1];
-                final double p = 0.5 * (matT[i][i] - x);
-                final double z = FastMath.sqrt(FastMath.abs(p * p + matT[i + 1][i] * matT[i][i + 1]));
-                realEigenvalues[i] = x + p;
-                imagEigenvalues[i] = z;
-                realEigenvalues[i + 1] = x + p;
-                imagEigenvalues[i + 1] = -z;
-                i++;
-            }
-        }
-        return schurTransform;
-    }
-
-    /**
-     * Performs a division of two complex numbers.
-     *
-     * @param xr real part of the first number
-     * @param xi imaginary part of the first number
-     * @param yr real part of the second number
-     * @param yi imaginary part of the second number
-     * @return result of the complex division
-     */
-    private Complex cdiv(final double xr, final double xi,
-                         final double yr, final double yi) {
-        return Complex.ofCartesian(xr, xi).divide(Complex.ofCartesian(yr, yi));
-    }
-
-    /**
-     * Find eigenvectors from a matrix transformed to Schur form.
-     *
-     * @param schur the schur transformation of the matrix
-     * @throws MathArithmeticException if the Schur form has a norm of zero
-     */
-    private void findEigenVectorsFromSchur(final SchurTransformer schur)
-        throws MathArithmeticException {
-        final double[][] matrixT = schur.getT().getData();
-        final double[][] matrixP = schur.getP().getData();
-
-        final int n = matrixT.length;
-
-        // compute matrix norm
-        double norm = 0.0;
-        for (int i = 0; i < n; i++) {
-           for (int j = FastMath.max(i - 1, 0); j < n; j++) {
-               norm += FastMath.abs(matrixT[i][j]);
-           }
-        }
-
-        // we can not handle a matrix with zero norm
-        if (Precision.equals(norm, 0.0, EPSILON)) {
-           throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
-        }
-
-        // Backsubstitute to find vectors of upper triangular form
-
-        double r = 0.0;
-        double s = 0.0;
-        double z = 0.0;
-
-        for (int idx = n - 1; idx >= 0; idx--) {
-            double p = realEigenvalues[idx];
-            double q = imagEigenvalues[idx];
-
-            if (Precision.equals(q, 0.0)) {
-                // Real vector
-                int l = idx;
-                matrixT[idx][idx] = 1.0;
-                for (int i = idx - 1; i >= 0; i--) {
-                    double w = matrixT[i][i] - p;
-                    r = 0.0;
-                    for (int j = l; j <= idx; j++) {
-                        r += matrixT[i][j] * matrixT[j][idx];
-                    }
-                    if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
-                        z = w;
-                        s = r;
-                    } else {
-                        l = i;
-                        if (Precision.equals(imagEigenvalues[i], 0.0)) {
-                            if (w != 0.0) {
-                                matrixT[i][idx] = -r / w;
-                            } else {
-                                matrixT[i][idx] = -r / (Precision.EPSILON * norm);
-                            }
-                        } else {
-                            // Solve real equations
-                            double x = matrixT[i][i + 1];
-                            double y = matrixT[i + 1][i];
-                            q = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) +
-                                imagEigenvalues[i] * imagEigenvalues[i];
-                            double t = (x * s - z * r) / q;
-                            matrixT[i][idx] = t;
-                            if (FastMath.abs(x) > FastMath.abs(z)) {
-                                matrixT[i + 1][idx] = (-r - w * t) / x;
-                            } else {
-                                matrixT[i + 1][idx] = (-s - y * t) / z;
-                            }
-                        }
-
-                        // Overflow control
-                        double t = FastMath.abs(matrixT[i][idx]);
-                        if ((Precision.EPSILON * t) * t > 1) {
-                            for (int j = i; j <= idx; j++) {
-                                matrixT[j][idx] /= t;
-                            }
-                        }
-                    }
-                }
-            } else if (q < 0.0) {
-                // Complex vector
-                int l = idx - 1;
-
-                // Last vector component imaginary so matrix is triangular
-                if (FastMath.abs(matrixT[idx][idx - 1]) > FastMath.abs(matrixT[idx - 1][idx])) {
-                    matrixT[idx - 1][idx - 1] = q / matrixT[idx][idx - 1];
-                    matrixT[idx - 1][idx]     = -(matrixT[idx][idx] - p) / matrixT[idx][idx - 1];
-                } else {
-                    final Complex result = cdiv(0.0, -matrixT[idx - 1][idx],
-                                                matrixT[idx - 1][idx - 1] - p, q);
-                    matrixT[idx - 1][idx - 1] = result.getReal();
-                    matrixT[idx - 1][idx]     = result.getImaginary();
-                }
-
-                matrixT[idx][idx - 1] = 0.0;
-                matrixT[idx][idx]     = 1.0;
-
-                for (int i = idx - 2; i >= 0; i--) {
-                    double ra = 0.0;
-                    double sa = 0.0;
-                    for (int j = l; j <= idx; j++) {
-                        ra += matrixT[i][j] * matrixT[j][idx - 1];
-                        sa += matrixT[i][j] * matrixT[j][idx];
-                    }
-                    double w = matrixT[i][i] - p;
-
-                    if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
-                        z = w;
-                        r = ra;
-                        s = sa;
-                    } else {
-                        l = i;
-                        if (Precision.equals(imagEigenvalues[i], 0.0)) {
-                            final Complex c = cdiv(-ra, -sa, w, q);
-                            matrixT[i][idx - 1] = c.getReal();
-                            matrixT[i][idx] = c.getImaginary();
-                        } else {
-                            // Solve complex equations
-                            double x = matrixT[i][i + 1];
-                            double y = matrixT[i + 1][i];
-                            double vr = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) +
-                                        imagEigenvalues[i] * imagEigenvalues[i] - q * q;
-                            final double vi = (realEigenvalues[i] - p) * 2.0 * q;
-                            if (Precision.equals(vr, 0.0) && Precision.equals(vi, 0.0)) {
-                                vr = Precision.EPSILON * norm *
-                                     (FastMath.abs(w) + FastMath.abs(q) + FastMath.abs(x) +
-                                      FastMath.abs(y) + FastMath.abs(z));
-                            }
-                            final Complex c     = cdiv(x * r - z * ra + q * sa,
-                                                       x * s - z * sa - q * ra, vr, vi);
-                            matrixT[i][idx - 1] = c.getReal();
-                            matrixT[i][idx]     = c.getImaginary();
-
-                            if (FastMath.abs(x) > (FastMath.abs(z) + FastMath.abs(q))) {
-                                matrixT[i + 1][idx - 1] = (-ra - w * matrixT[i][idx - 1] +
-                                                           q * matrixT[i][idx]) / x;
-                                matrixT[i + 1][idx]     = (-sa - w * matrixT[i][idx] -
-                                                           q * matrixT[i][idx - 1]) / x;
-                            } else {
-                                final Complex c2        = cdiv(-r - y * matrixT[i][idx - 1],
-                                                               -s - y * matrixT[i][idx], z, q);
-                                matrixT[i + 1][idx - 1] = c2.getReal();
-                                matrixT[i + 1][idx]     = c2.getImaginary();
-                            }
-                        }
-
-                        // Overflow control
-                        double t = FastMath.max(FastMath.abs(matrixT[i][idx - 1]),
-                                                FastMath.abs(matrixT[i][idx]));
-                        if ((Precision.EPSILON * t) * t > 1) {
-                            for (int j = i; j <= idx; j++) {
-                                matrixT[j][idx - 1] /= t;
-                                matrixT[j][idx] /= t;
-                            }
-                        }
-                    }
-                }
-            }
-        }
-
-        // Back transformation to get eigenvectors of original matrix
-        for (int j = n - 1; j >= 0; j--) {
-            for (int i = 0; i <= n - 1; i++) {
-                z = 0.0;
-                for (int k = 0; k <= FastMath.min(j, n - 1); k++) {
-                    z += matrixP[i][k] * matrixT[k][j];
-                }
-                matrixP[i][j] = z;
-            }
-        }
-
-        eigenvectors = new ArrayRealVector[n];
-        final double[] tmp = new double[n];
-        for (int i = 0; i < n; i++) {
-            System.out.println("Eigenvector " + i + ": "); // XXX
-            for (int j = 0; j < n; j++) {
-                tmp[j] = matrixP[j][i];
-                System.out.print(tmp[j] + "\t"); // XXX
-            }
-            System.out.println(); // XXX
-            eigenvectors[i] = new ArrayRealVector(tmp);
-        }
-    }
-}
diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java.DEBUG b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java.DEBUG
deleted file mode 100644
index c6b4420..0000000
--- a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/optim/nonlinear/scalar/noderiv/SimplexOptimizer.java.DEBUG
+++ /dev/null
@@ -1,339 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.optim.nonlinear.scalar.noderiv;
-
-import java.util.Comparator;
-
-import org.apache.commons.rng.UniformRandomProvider;
-import org.apache.commons.rng.simple.RandomSource;
-import org.apache.commons.math4.analysis.MultivariateFunction;
-import org.apache.commons.math4.exception.MathUnsupportedOperationException;
-import org.apache.commons.math4.exception.NullArgumentException;
-import org.apache.commons.math4.exception.util.LocalizedFormats;
-import org.apache.commons.math4.optim.ConvergenceChecker;
-import org.apache.commons.math4.optim.OptimizationData;
-import org.apache.commons.math4.optim.PointValuePair;
-import org.apache.commons.math4.optim.SimpleValueChecker;
-import org.apache.commons.math4.optim.nonlinear.scalar.GoalType;
-import org.apache.commons.math4.optim.nonlinear.scalar.SimulatedAnnealing;
-import org.apache.commons.math4.optim.nonlinear.scalar.MultivariateOptimizer;
-
-/**
- * This class implements simplex-based direct search optimization.
- *
- * <p>
- *  Direct search methods only use objective function values, they do
- *  not need derivatives and don't either try to compute approximation
- *  of the derivatives. According to a 1996 paper by Margaret H. Wright
- *  (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
- *  Search Methods: Once Scorned, Now Respectable</a>), they are used
- *  when either the computation of the derivative is impossible (noisy
- *  functions, unpredictable discontinuities) or difficult (complexity,
- *  computation cost). In the first cases, rather than an optimum, a
- *  <em>not too bad</em> point is desired. In the latter cases, an
- *  optimum is desired but cannot be reasonably found. In all cases
- *  direct search methods can be useful.
- * </p>
- * <p>
- *  Simplex-based direct search methods are based on comparison of
- *  the objective function values at the vertices of a simplex (which is a
- *  set of n+1 points in dimension n) that is updated by the algorithms
- *  steps.
- * </p>
- * <p>
- *  The simplex update procedure ({@link NelderMeadSimplex} or
- * {@link MultiDirectionalSimplex})  must be passed to the
- * {@code optimize} method.
- * </p>
- * <p>
- *  Each call to {@code optimize} will re-use the start configuration of
- *  the current simplex and move it such that its first vertex is at the
- *  provided start point of the optimization.
- *  If the {@code optimize} method is called to solve a different problem
- *  and the number of parameters change, the simplex must be re-initialized
- *  to one with the appropriate dimensions.
- * </p>
- * <p>
- *  Convergence is checked by providing the <em>worst</em> points of
- *  previous and current simplex to the convergence checker, not the best
- *  ones.
- * </p>
- * <p>
- *  This simplex optimizer implementation does not directly support constrained
- *  optimization with simple bounds; so, for such optimizations, either a more
- *  dedicated algorithm must be used like
- *  {@link CMAESOptimizer} or {@link BOBYQAOptimizer}, or the objective
- *  function must be wrapped in an adapter like
- *  {@link org.apache.commons.math4.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
- *  MultivariateFunctionMappingAdapter} or
- *  {@link org.apache.commons.math4.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
- *  MultivariateFunctionPenaltyAdapter}.
- *  <br>
- *  The call to {@link #optimize(OptimizationData[]) optimize} will throw
- *  {@link MathUnsupportedOperationException} if bounds are passed to it.
- * </p>
- *
- * @since 3.0
- */
-public class SimplexOptimizer extends MultivariateOptimizer {
-    /** Simplex update rule. */
-    private AbstractSimplex simplex;
-    /** Simulated annealing setup. */
-    private SimulatedAnnealing annealing;
-    /** Overall best. */
-    private PointValuePair best;
-
-    /**
-     * @param checker Convergence checker.
-     */
-    public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
-        super(checker);
-    }
-
-    /**
-     * @param rel Relative threshold.
-     * @param abs Absolute threshold.
-     */
-    public SimplexOptimizer(double rel, double abs) {
-        this(new SimpleValueChecker(rel, abs));
-    }
-
-    /**
-     * {@inheritDoc}
-     *
-     * @param optData Optimization data. In addition to those documented in
-     * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
-     * MultivariateOptimizer}, this method will register the following data:
-     * <ul>
-     *  <li>{@link AbstractSimplex}</li>
-     *  <li>{@link SimulatedAnnealing}</li>
-     * </ul>
-     * @return {@inheritDoc}
-     */
-    @Override
-    public PointValuePair optimize(OptimizationData... optData) {
-        // Set up base class and perform computation.
-        return super.optimize(optData);
-    }
-
-    /** {@inheritDoc} */
-    @Override
-    protected PointValuePair doOptimize() {
-        checkParameters();
-
-        // Indirect call to "computeObjectiveValue" in order to update the
-        // evaluations counter.
-        final MultivariateFunction evalFunc
-            = new MultivariateFunction() {
-                /** {@inheritDoc} */
-                @Override
-                public double value(double[] point) {
-                    return computeObjectiveValue(point);
-                }
-            };
-
-        final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
-        final Comparator<PointValuePair> comparator
-            = new Comparator<PointValuePair>() {
-            /** {@inheritDoc} */
-            @Override
-            public int compare(final PointValuePair o1,
-                               final PointValuePair o2) {
-                final double v1 = o1.getValue();
-                final double v2 = o2.getValue();
-                return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
-            }
-        };
-
-        // Initialize search.
-        simplex.build(getStartPoint());
-        simplex.evaluate(evalFunc, comparator);
-        final UniformRandomProvider rng = annealing != null ?
-            RandomSource.create(RandomSource.KISS) :
-            null;
-
-        PointValuePair[] previous = null;
-        int iteration = 0;
-        final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
-        while (true) {
-            iteration = getIterations();
-            if (iteration > 0) {
-                boolean converged = true;
-                for (int i = 0; i < simplex.getSize(); i++) {
-                    PointValuePair prev = previous[i];
-                    converged = converged &&
-                        checker.converged(iteration, prev, simplex.getPoint(i));
-
-                    if (!converged) {
-                        // Short circuit, since "converged" will stay "false".
-                        break;
-                    }
-                }
-                if (converged) {
-                    System.out.println(" saAcceptCount=" + saAcceptCount); // XXX
-                    // We have found an optimum.
-                    return best;
-                }
-            }
-
-            // We still need to search.
-            previous = simplex.getPoints();
-            simplex.iterate(evalFunc, comparator);
-
-            // Track best point.
-            final int bestIndex = 0; // Index of best point.
-            if (best == null ||
-                comparator.compare(best, simplex.getPoint(bestIndex)) > 0) {
-                best = simplex.getPoint(bestIndex);
-            }
-
-            if (annealing != null) {
-                // Simulated annealing step.
-                simulatedAnnealing(iteration,
-                                   evalFunc,
-                                   isMinim,
-                                   rng);
-            }
-
-            incrementIterationCount();
-        }
-    }
-
-    /**
-     * Scans the list of (required and optional) optimization data that
-     * characterize the problem.
-     *
-     * @param optData Optimization data.
-     * The following data will be looked for:
-     * <ul>
-     *  <li>{@link AbstractSimplex}</li>
-     *  <li>{@link SimulatedAnnealing}</li>
-     * </ul>
-     */
-    @Override
-    protected void parseOptimizationData(OptimizationData... optData) {
-        // Allow base class to register its own data.
-        super.parseOptimizationData(optData);
-
-        // The existing values (as set by the previous call) are reused if
-        // not provided in the argument list.
-        for (OptimizationData data : optData) {
-            if (data instanceof AbstractSimplex) {
-                simplex = (AbstractSimplex) data;
-                continue;
-            }
-            if (data instanceof SimulatedAnnealing) {
-                annealing = (SimulatedAnnealing) data;
-                continue;
-            }
-        }
-    }
-
-    /**
-     * @throws MathUnsupportedOperationException if bounds were passed to the
-     * {@link #optimize(OptimizationData[]) optimize} method.
-     * @throws NullArgumentException if no initial simplex was passed to the
-     * {@link #optimize(OptimizationData[]) optimize} method.
-     */
-    private void checkParameters() {
-        if (simplex == null) {
-            throw new NullArgumentException();
-        }
-        if (getLowerBound() != null ||
-            getUpperBound() != null) {
-            throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
-        }
-    }
-
-    private int saAcceptCount = 0; // XXX
-    /**
-     * Perform the annealing step (possibly replacing simplex's best point).
-     *
-     * @param iteration Current iteration.
-     * @param evalFunc Evaluation function.
-     * @param isMinim Whether a minimization is performed.
-     * @param rng RNG.
-     */
-    private void simulatedAnnealing(int iteration,
-                                    MultivariateFunction evalFunc,
-                                    boolean isMinim,
-                                    UniformRandomProvider rng) {
-        if (iteration > annealing.getIterations()) {
-            return; // Do nothing.
-        }
-
-        // Construct alternative state.
-        final int bestIndex = 0; // Index of best point.
-        final PointValuePair alt = alternativeState(simplex,
-                                                    bestIndex,
-                                                    evalFunc,
-                                                    rng);
-
-        if (annealing.accept(simplex.getPoint(bestIndex).getValue(),
-                             alt.getValue(),
-                             isMinim,
-                             iteration)) {
-            System.out.println("eO=" + simplex.getPoint(bestIndex).getValue()); // XXX
-            System.out.println("eN=" + alt.getValue()); // XXX
-            ++saAcceptCount; // XXX
-
-            // Modify best point of the current simplex.
-            simplex.setPoint(bestIndex, alt);
-        }
-    }
-
-    /**
-     * Creates a state that could replace the one stored at
-     * {@code replaceIndex} in the given {@code simplex}.
-     *
-     * @param simplex Current simplex.
-     * @param replaceIndex Index of the simplex point that will potentially be
-     * replace by the new state.
-     * @param evalFunc Evaluation function.
-     * @param rng RNG.
-     * @return a new state.
-     */
-    private static PointValuePair alternativeState(AbstractSimplex simplex,
-                                                   int replaceIndex,
-                                                   MultivariateFunction evalFunc,
-                                                   UniformRandomProvider rng) {
-        final PointValuePair[] points = simplex.getPoints();
-        final int numPoints = points.length;
-        final int spaceDim = numPoints - 1;
-
-        // Compute mean coordinate offsets from the point to replace
-        // to all the other points.
-        final double[] coord = new double[spaceDim];
-        final double[] replaceCoord = points[replaceIndex].getPointRef();
-        for (int j = 0; j < numPoints; j++) {
-            if (j == replaceIndex) {
-                continue;
-            }
-            final double[] c = points[j].getPointRef();
-            for (int i = 0; i < spaceDim; i++) {
-                coord[i] += c[i] - replaceCoord[i];
-            }
-        }
-
-        for (int i = 0; i < spaceDim; i++) {
-            coord[i] /= numPoints; // Mean coordinate offset.
-            coord[i] = replaceCoord[i] + (rng.nextDouble() - 0.5) * coord[i];
-        }
-
-        return new PointValuePair(coord, evalFunc.value(coord), false);
-    }
-}