You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@spark.apache.org by me...@apache.org on 2014/07/21 05:49:01 UTC

git commit: [SPARK-1945][MLLIB] Documentation Improvements for Spark 1.0

Repository: spark
Updated Branches:
  refs/heads/master f6e7302cb -> db56f2df1


[SPARK-1945][MLLIB] Documentation Improvements for Spark 1.0

Standalone application examples are added to 'mllib-linear-methods.md' file written in Java.
This commit is related to the issue [Add full Java Examples in MLlib docs](https://issues.apache.org/jira/browse/SPARK-1945).
Also I changed the name of the sigmoid function from 'logit' to 'f'. This is because the logit function
is the inverse of sigmoid.

Thanks,
Michael

Author: Michael Giannakopoulos <mi...@gmail.com>

Closes #1311 from miccagiann/master and squashes the following commits:

8ffe5ab [Michael Giannakopoulos] Update code so as to comply with code standards.
f7ad5cc [Michael Giannakopoulos] Merge remote-tracking branch 'upstream/master'
38d92c7 [Michael Giannakopoulos] Adding PCA, SVD and LBFGS examples in Java. Performing minor updates in the already committed examples so as to eradicate the call of 'productElement' function whenever is possible.
cc0a089 [Michael Giannakopoulos] Modyfied Java examples so as to comply with coding standards.
b1141b2 [Michael Giannakopoulos] Added Java examples for Clustering and Collaborative Filtering [mllib-clustering.md & mllib-collaborative-filtering.md].
837f7a8 [Michael Giannakopoulos] Merge remote-tracking branch 'upstream/master'
15f0eb4 [Michael Giannakopoulos] Java examples included in 'mllib-linear-methods.md' file.


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/db56f2df
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/db56f2df
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/db56f2df

Branch: refs/heads/master
Commit: db56f2df1b8027171da1b8d2571d1f2ef1e103b6
Parents: f6e7302
Author: Michael Giannakopoulos <mi...@gmail.com>
Authored: Sun Jul 20 20:48:44 2014 -0700
Committer: Xiangrui Meng <me...@databricks.com>
Committed: Sun Jul 20 20:48:44 2014 -0700

----------------------------------------------------------------------
 docs/mllib-clustering.md               |  49 ++++++++-
 docs/mllib-collaborative-filtering.md  |  80 ++++++++++++++-
 docs/mllib-dimensionality-reduction.md |  94 +++++++++++++++++
 docs/mllib-linear-methods.md           | 154 +++++++++++++++++++++++++++-
 docs/mllib-optimization.md             |  96 ++++++++++++++++-
 5 files changed, 465 insertions(+), 8 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/db56f2df/docs/mllib-clustering.md
----------------------------------------------------------------------
diff --git a/docs/mllib-clustering.md b/docs/mllib-clustering.md
index c76ac01..561de48 100644
--- a/docs/mllib-clustering.md
+++ b/docs/mllib-clustering.md
@@ -69,7 +69,54 @@ println("Within Set Sum of Squared Errors = " + WSSSE)
 All of MLlib's methods use Java-friendly types, so you can import and call them there the same
 way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the
 Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by
-calling `.rdd()` on your `JavaRDD` object.
+calling `.rdd()` on your `JavaRDD` object. A standalone application example
+that is equivalent to the provided example in Scala is given bellow:
+
+{% highlight java %}
+import org.apache.spark.api.java.*;
+import org.apache.spark.api.java.function.Function;
+import org.apache.spark.mllib.clustering.KMeans;
+import org.apache.spark.mllib.clustering.KMeansModel;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.SparkConf;
+
+public class KMeansExample {
+  public static void main(String[] args) {
+    SparkConf conf = new SparkConf().setAppName("K-means Example");
+    JavaSparkContext sc = new JavaSparkContext(conf);
+
+    // Load and parse data
+    String path = "data/mllib/kmeans_data.txt";
+    JavaRDD<String> data = sc.textFile(path);
+    JavaRDD<Vector> parsedData = data.map(
+      new Function<String, Vector>() {
+        public Vector call(String s) {
+          String[] sarray = s.split(" ");
+          double[] values = new double[sarray.length];
+          for (int i = 0; i < sarray.length; i++)
+            values[i] = Double.parseDouble(sarray[i]);
+          return Vectors.dense(values);
+        }
+      }
+    );
+
+    // Cluster the data into two classes using KMeans
+    int numClusters = 2;
+    int numIterations = 20;
+    KMeansModel clusters = KMeans.train(parsedData.rdd(), numClusters, numIterations);
+
+    // Evaluate clustering by computing Within Set Sum of Squared Errors
+    double WSSSE = clusters.computeCost(parsedData.rdd());
+    System.out.println("Within Set Sum of Squared Errors = " + WSSSE);
+  }
+}
+{% endhighlight %}
+
+In order to run the above standalone application using Spark framework make
+sure that you follow the instructions provided at section [Standalone
+Applications](quick-start.html) of the quick-start guide. What is more, you
+should include to your build file *spark-mllib* as a dependency.
 </div>
 
 <div data-lang="python" markdown="1">

http://git-wip-us.apache.org/repos/asf/spark/blob/db56f2df/docs/mllib-collaborative-filtering.md
----------------------------------------------------------------------
diff --git a/docs/mllib-collaborative-filtering.md b/docs/mllib-collaborative-filtering.md
index 5cd7173..0d28b5f 100644
--- a/docs/mllib-collaborative-filtering.md
+++ b/docs/mllib-collaborative-filtering.md
@@ -99,7 +99,85 @@ val model = ALS.trainImplicit(ratings, rank, numIterations, alpha)
 All of MLlib's methods use Java-friendly types, so you can import and call them there the same
 way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the
 Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by
-calling `.rdd()` on your `JavaRDD` object.
+calling `.rdd()` on your `JavaRDD` object. A standalone application example
+that is equivalent to the provided example in Scala is given bellow:
+
+{% highlight java %}
+import scala.Tuple2;
+
+import org.apache.spark.api.java.*;
+import org.apache.spark.api.java.function.Function;
+import org.apache.spark.mllib.recommendation.ALS;
+import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
+import org.apache.spark.mllib.recommendation.Rating;
+import org.apache.spark.SparkConf;
+
+public class CollaborativeFiltering {
+  public static void main(String[] args) {
+    SparkConf conf = new SparkConf().setAppName("Collaborative Filtering Example");
+    JavaSparkContext sc = new JavaSparkContext(conf);
+
+    // Load and parse the data
+    String path = "data/mllib/als/test.data";
+    JavaRDD<String> data = sc.textFile(path);
+    JavaRDD<Rating> ratings = data.map(
+      new Function<String, Rating>() {
+        public Rating call(String s) {
+          String[] sarray = s.split(",");
+          return new Rating(Integer.parseInt(sarray[0]), Integer.parseInt(sarray[1]), 
+                            Double.parseDouble(sarray[2]));
+        }
+      }
+    );
+
+    // Build the recommendation model using ALS
+    int rank = 10;
+    int numIterations = 20;
+    MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), rank, numIterations, 0.01); 
+
+    // Evaluate the model on rating data
+    JavaRDD<Tuple2<Object, Object>> userProducts = ratings.map(
+      new Function<Rating, Tuple2<Object, Object>>() {
+        public Tuple2<Object, Object> call(Rating r) {
+          return new Tuple2<Object, Object>(r.user(), r.product());
+        }
+      }
+    );
+    JavaPairRDD<Tuple2<Integer, Integer>, Double> predictions = JavaPairRDD.fromJavaRDD(
+      model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(
+        new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
+          public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
+            return new Tuple2<Tuple2<Integer, Integer>, Double>(
+              new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
+          }
+        }
+    ));
+    JavaRDD<Tuple2<Double, Double>> ratesAndPreds = 
+      JavaPairRDD.fromJavaRDD(ratings.map(
+        new Function<Rating, Tuple2<Tuple2<Integer, Integer>, Double>>() {
+          public Tuple2<Tuple2<Integer, Integer>, Double> call(Rating r){
+            return new Tuple2<Tuple2<Integer, Integer>, Double>(
+              new Tuple2<Integer, Integer>(r.user(), r.product()), r.rating());
+          }
+        }
+    )).join(predictions).values();
+    double MSE = JavaDoubleRDD.fromRDD(ratesAndPreds.map(
+      new Function<Tuple2<Double, Double>, Object>() {
+        public Object call(Tuple2<Double, Double> pair) {
+          Double err = pair._1() - pair._2();
+          return err * err;
+        }
+      }
+    ).rdd()).mean();
+    System.out.println("Mean Squared Error = " + MSE);
+  }
+}
+{% endhighlight %}
+
+In order to run the above standalone application using Spark framework make
+sure that you follow the instructions provided at section [Standalone
+Applications](quick-start.html) of the quick-start guide. What is more, you
+should include to your build file *spark-mllib* as a dependency.
 </div>
 
 <div data-lang="python" markdown="1">

http://git-wip-us.apache.org/repos/asf/spark/blob/db56f2df/docs/mllib-dimensionality-reduction.md
----------------------------------------------------------------------
diff --git a/docs/mllib-dimensionality-reduction.md b/docs/mllib-dimensionality-reduction.md
index e360807..8e43499 100644
--- a/docs/mllib-dimensionality-reduction.md
+++ b/docs/mllib-dimensionality-reduction.md
@@ -57,10 +57,57 @@ val U: RowMatrix = svd.U // The U factor is a RowMatrix.
 val s: Vector = svd.s // The singular values are stored in a local dense vector.
 val V: Matrix = svd.V // The V factor is a local dense matrix.
 {% endhighlight %}
+
+Same code applies to `IndexedRowMatrix`.
+The only difference that the `U` matrix becomes an `IndexedRowMatrix`.
 </div>
+<div data-lang="java" markdown="1">
+In order to run the following standalone application using Spark framework make
+sure that you follow the instructions provided at section [Standalone
+Applications](quick-start.html) of the quick-start guide. What is more, you
+should include to your build file *spark-mllib* as a dependency.
+
+{% highlight java %}
+import java.util.LinkedList;
+
+import org.apache.spark.api.java.*;
+import org.apache.spark.mllib.linalg.distributed.RowMatrix;
+import org.apache.spark.mllib.linalg.Matrix;
+import org.apache.spark.mllib.linalg.SingularValueDecomposition;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.rdd.RDD;
+import org.apache.spark.SparkConf;
+import org.apache.spark.SparkContext;
+
+public class SVD {
+  public static void main(String[] args) {
+    SparkConf conf = new SparkConf().setAppName("SVD Example");
+    SparkContext sc = new SparkContext(conf);
+     
+    double[][] array = ...
+    LinkedList<Vector> rowsList = new LinkedList<Vector>();
+    for (int i = 0; i < array.length; i++) {
+      Vector currentRow = Vectors.dense(array[i]);
+      rowsList.add(currentRow);
+    }
+    JavaRDD<Vector> rows = JavaSparkContext.fromSparkContext(sc).parallelize(rowsList);
+
+    // Create a RowMatrix from JavaRDD<Vector>.
+    RowMatrix mat = new RowMatrix(rows.rdd());
+
+    // Compute the top 4 singular values and corresponding singular vectors.
+    SingularValueDecomposition<RowMatrix, Matrix> svd = mat.computeSVD(4, true, 1.0E-9d);
+    RowMatrix U = svd.U();
+    Vector s = svd.s();
+    Matrix V = svd.V();
+  }
+}
+{% endhighlight %}
 Same code applies to `IndexedRowMatrix`.
 The only difference that the `U` matrix becomes an `IndexedRowMatrix`.
 </div>
+</div>
 
 ## Principal component analysis (PCA)
 
@@ -91,4 +138,51 @@ val pc: Matrix = mat.computePrincipalComponents(10) // Principal components are
 val projected: RowMatrix = mat.multiply(pc)
 {% endhighlight %}
 </div>
+
+<div data-lang="java" markdown="1">
+
+The following code demonstrates how to compute principal components on a tall-and-skinny `RowMatrix`
+and use them to project the vectors into a low-dimensional space.
+The number of columns should be small, e.g, less than 1000.
+
+{% highlight java %}
+import java.util.LinkedList;
+
+import org.apache.spark.api.java.*;
+import org.apache.spark.mllib.linalg.distributed.RowMatrix;
+import org.apache.spark.mllib.linalg.Matrix;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.rdd.RDD;
+import org.apache.spark.SparkConf;
+import org.apache.spark.SparkContext;
+
+public class PCA {
+  public static void main(String[] args) {
+    SparkConf conf = new SparkConf().setAppName("PCA Example");
+    SparkContext sc = new SparkContext(conf);
+     
+    double[][] array = ...
+    LinkedList<Vector> rowsList = new LinkedList<Vector>();
+    for (int i = 0; i < array.length; i++) {
+      Vector currentRow = Vectors.dense(array[i]);
+      rowsList.add(currentRow);
+    }
+    JavaRDD<Vector> rows = JavaSparkContext.fromSparkContext(sc).parallelize(rowsList);
+
+    // Create a RowMatrix from JavaRDD<Vector>.
+    RowMatrix mat = new RowMatrix(rows.rdd());
+
+    // Compute the top 3 principal components.
+    Matrix pc = mat.computePrincipalComponents(3);
+    RowMatrix projected = mat.multiply(pc);
+  }
+}
+{% endhighlight %}
+
+In order to run the above standalone application using Spark framework make
+sure that you follow the instructions provided at section [Standalone
+Applications](quick-start.html) of the quick-start guide. What is more, you
+should include to your build file *spark-mllib* as a dependency.
+</div>
 </div>

http://git-wip-us.apache.org/repos/asf/spark/blob/db56f2df/docs/mllib-linear-methods.md
----------------------------------------------------------------------
diff --git a/docs/mllib-linear-methods.md b/docs/mllib-linear-methods.md
index b4d22e0..2542011 100644
--- a/docs/mllib-linear-methods.md
+++ b/docs/mllib-linear-methods.md
@@ -151,10 +151,10 @@ L(\wv;\x,y) :=  \log(1+\exp( -y \wv^T \x)).
 Logistic regression algorithm outputs a logistic regression model, which makes predictions by
 applying the logistic function
 `\[
-\mathrm{logit}(z) = \frac{1}{1 + e^{-z}}
+\mathrm{f}(z) = \frac{1}{1 + e^{-z}}
 \]`
-$\wv^T \x$.
-By default, if $\mathrm{logit}(\wv^T x) > 0.5$, the outcome is positive, or negative otherwise.
+where $z = \wv^T \x$.
+By default, if $\mathrm{f}(\wv^T x) > 0.5$, the outcome is positive, or negative otherwise.
 For the same reason mentioned above, quite often in practice, this default threshold is not a good choice.
 The threshold should be determined via model evaluation.
 
@@ -242,7 +242,86 @@ Similarly, you can use replace `SVMWithSGD` by
 All of MLlib's methods use Java-friendly types, so you can import and call them there the same
 way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the
 Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by
-calling `.rdd()` on your `JavaRDD` object.
+calling `.rdd()` on your `JavaRDD` object. A standalone application example
+that is equivalent to the provided example in Scala is given bellow:
+
+{% highlight java %}
+import java.util.Random;
+
+import scala.Tuple2;
+
+import org.apache.spark.api.java.*;
+import org.apache.spark.api.java.function.Function;
+import org.apache.spark.mllib.classification.*;
+import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
+import org.apache.spark.SparkConf;
+import org.apache.spark.SparkContext;
+
+public class SVMClassifier {
+  public static void main(String[] args) {
+    SparkConf conf = new SparkConf().setAppName("SVM Classifier Example");
+    SparkContext sc = new SparkContext(conf);
+    String path = "data/mllib/sample_libsvm_data.txt";
+    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();
+
+    // Split initial RDD into two... [60% training data, 40% testing data].
+    JavaRDD<LabeledPoint> training = data.sample(false, 0.6, 11L);
+    training.cache();
+    JavaRDD<LabeledPoint> test = data.subtract(training);
+    
+    // Run training algorithm to build the model.
+    int numIterations = 100;
+    final SVMModel model = SVMWithSGD.train(training.rdd(), numIterations);
+    
+    // Clear the default threshold.
+    model.clearThreshold();
+
+    // Compute raw scores on the test set.
+    JavaRDD<Tuple2<Object, Object>> scoreAndLabels = test.map(
+      new Function<LabeledPoint, Tuple2<Object, Object>>() {
+        public Tuple2<Object, Object> call(LabeledPoint p) {
+          Double score = model.predict(p.features());
+          return new Tuple2<Object, Object>(score, p.label());
+        }
+      }
+    );
+    
+    // Get evaluation metrics.
+    BinaryClassificationMetrics metrics = 
+      new BinaryClassificationMetrics(JavaRDD.toRDD(scoreAndLabels));
+    double auROC = metrics.areaUnderROC();
+    
+    System.out.println("Area under ROC = " + auROC);
+  }
+}
+{% endhighlight %}
+
+The `SVMWithSGD.train()` method by default performs L2 regularization with the
+regularization parameter set to 1.0. If we want to configure this algorithm, we
+can customize `SVMWithSGD` further by creating a new object directly and
+calling setter methods. All other MLlib algorithms support customization in
+this way as well. For example, the following code produces an L1 regularized
+variant of SVMs with regularization parameter set to 0.1, and runs the training
+algorithm for 200 iterations.
+
+{% highlight java %}
+import org.apache.spark.mllib.optimization.L1Updater;
+
+SVMWithSGD svmAlg = new SVMWithSGD();
+svmAlg.optimizer()
+  .setNumIterations(200)
+  .setRegParam(0.1)
+  .setUpdater(new L1Updater());
+final SVMModel modelL1 = svmAlg.run(training.rdd());
+{% endhighlight %}
+
+In order to run the above standalone application using Spark framework make
+sure that you follow the instructions provided at section [Standalone
+Applications](quick-start.html) of the quick-start guide. What is more, you
+should include to your build file *spark-mllib* as a dependency.
 </div>
 
 <div data-lang="python" markdown="1">
@@ -338,7 +417,72 @@ and [`LassoWithSGD`](api/scala/index.html#org.apache.spark.mllib.regression.Lass
 All of MLlib's methods use Java-friendly types, so you can import and call them there the same
 way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the
 Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by
-calling `.rdd()` on your `JavaRDD` object.
+calling `.rdd()` on your `JavaRDD` object. The corresponding Java example to
+the Scala snippet provided, is presented bellow:
+
+{% highlight java %}
+import scala.Tuple2;
+
+import org.apache.spark.api.java.*;
+import org.apache.spark.api.java.function.Function;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.regression.LinearRegressionModel;
+import org.apache.spark.mllib.regression.LinearRegressionWithSGD;
+import org.apache.spark.SparkConf;
+
+public class LinearRegression {
+  public static void main(String[] args) {
+    SparkConf conf = new SparkConf().setAppName("Linear Regression Example");
+    JavaSparkContext sc = new JavaSparkContext(conf);
+    
+    // Load and parse the data
+    String path = "data/mllib/ridge-data/lpsa.data";
+    JavaRDD<String> data = sc.textFile(path);
+    JavaRDD<LabeledPoint> parsedData = data.map(
+      new Function<String, LabeledPoint>() {
+        public LabeledPoint call(String line) {
+          String[] parts = line.split(",");
+          String[] features = parts[1].split(" ");
+          double[] v = new double[features.length];
+          for (int i = 0; i < features.length - 1; i++)
+            v[i] = Double.parseDouble(features[i]);
+          return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(v));
+        }
+      }
+    );
+
+    // Building the model
+    int numIterations = 100;
+    final LinearRegressionModel model = 
+      LinearRegressionWithSGD.train(JavaRDD.toRDD(parsedData), numIterations);
+
+    // Evaluate model on training examples and compute training error
+    JavaRDD<Tuple2<Double, Double>> valuesAndPreds = parsedData.map(
+      new Function<LabeledPoint, Tuple2<Double, Double>>() {
+        public Tuple2<Double, Double> call(LabeledPoint point) {
+          double prediction = model.predict(point.features());
+          return new Tuple2<Double, Double>(prediction, point.label());
+        }
+      }
+    );
+    JavaRDD<Object> MSE = new JavaDoubleRDD(valuesAndPreds.map(
+      new Function<Tuple2<Double, Double>, Object>() {
+        public Object call(Tuple2<Double, Double> pair) {
+          return Math.pow(pair._1() - pair._2(), 2.0);
+        }
+      }
+    ).rdd()).mean();
+    System.out.println("training Mean Squared Error = " + MSE);
+  }
+}
+{% endhighlight %}
+
+In order to run the above standalone application using Spark framework make
+sure that you follow the instructions provided at section [Standalone
+Applications](quick-start.html) of the quick-start guide. What is more, you
+should include to your build file *spark-mllib* as a dependency.
 </div>
 
 <div data-lang="python" markdown="1">

http://git-wip-us.apache.org/repos/asf/spark/blob/db56f2df/docs/mllib-optimization.md
----------------------------------------------------------------------
diff --git a/docs/mllib-optimization.md b/docs/mllib-optimization.md
index 651958c..26ce5f3 100644
--- a/docs/mllib-optimization.md
+++ b/docs/mllib-optimization.md
@@ -207,6 +207,10 @@ the loss computed for every iteration.
 
 Here is an example to train binary logistic regression with L2 regularization using
 L-BFGS optimizer. 
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
 {% highlight scala %}
 import org.apache.spark.SparkContext
 import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
@@ -263,7 +267,97 @@ println("Loss of each step in training process")
 loss.foreach(println)
 println("Area under ROC = " + auROC)
 {% endhighlight %}
-
+</div>
+
+<div data-lang="java" markdown="1">
+{% highlight java %}
+import java.util.Arrays;
+import java.util.Random;
+
+import scala.Tuple2;
+
+import org.apache.spark.api.java.*;
+import org.apache.spark.api.java.function.Function;
+import org.apache.spark.mllib.classification.LogisticRegressionModel;
+import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.mllib.optimization.*;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
+import org.apache.spark.SparkConf;
+import org.apache.spark.SparkContext;
+
+public class LBFGSExample {
+  public static void main(String[] args) {
+    SparkConf conf = new SparkConf().setAppName("L-BFGS Example");
+    SparkContext sc = new SparkContext(conf);
+    String path = "data/mllib/sample_libsvm_data.txt";
+    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();
+    int numFeatures = data.take(1).get(0).features().size();
+    
+    // Split initial RDD into two... [60% training data, 40% testing data].
+    JavaRDD<LabeledPoint> trainingInit = data.sample(false, 0.6, 11L);
+    JavaRDD<LabeledPoint> test = data.subtract(trainingInit);
+    
+    // Append 1 into the training data as intercept.
+    JavaRDD<Tuple2<Object, Vector>> training = data.map(
+      new Function<LabeledPoint, Tuple2<Object, Vector>>() {
+        public Tuple2<Object, Vector> call(LabeledPoint p) {
+          return new Tuple2<Object, Vector>(p.label(), MLUtils.appendBias(p.features()));
+        }
+      });
+    training.cache();
+
+    // Run training algorithm to build the model.
+    int numCorrections = 10;
+    double convergenceTol = 1e-4;
+    int maxNumIterations = 20;
+    double regParam = 0.1;
+    Vector initialWeightsWithIntercept = Vectors.dense(new double[numFeatures + 1]);
+
+    Tuple2<Vector, double[]> result = LBFGS.runLBFGS(
+      training.rdd(),
+      new LogisticGradient(),
+      new SquaredL2Updater(),
+      numCorrections,
+      convergenceTol,
+      maxNumIterations,
+      regParam,
+      initialWeightsWithIntercept);
+    Vector weightsWithIntercept = result._1();
+    double[] loss = result._2();
+
+    final LogisticRegressionModel model = new LogisticRegressionModel(
+      Vectors.dense(Arrays.copyOf(weightsWithIntercept.toArray(), weightsWithIntercept.size() - 1)),
+      (weightsWithIntercept.toArray())[weightsWithIntercept.size() - 1]);
+
+    // Clear the default threshold.
+    model.clearThreshold();
+
+    // Compute raw scores on the test set.
+    JavaRDD<Tuple2<Object, Object>> scoreAndLabels = test.map(
+      new Function<LabeledPoint, Tuple2<Object, Object>>() {
+      public Tuple2<Object, Object> call(LabeledPoint p) {
+        Double score = model.predict(p.features());
+        return new Tuple2<Object, Object>(score, p.label());
+      }
+    });
+
+    // Get evaluation metrics.
+    BinaryClassificationMetrics metrics = 
+      new BinaryClassificationMetrics(scoreAndLabels.rdd());
+    double auROC = metrics.areaUnderROC();
+     
+    System.out.println("Loss of each step in training process");
+    for (double l : loss)
+      System.out.println(l);
+    System.out.println("Area under ROC = " + auROC);
+  }
+}
+{% endhighlight %}
+</div>
+</div>
 #### Developer's note
 Since the Hessian is constructed approximately from previous gradient evaluations, 
 the objective function can not be changed during the optimization process.