You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@tvm.apache.org by "Hzfengsy (via GitHub)" <gi...@apache.org> on 2023/03/24 04:47:45 UTC

[GitHub] [tvm] Hzfengsy commented on a diff in pull request #14395: [Unittest] Add unittest for read_write_at

Hzfengsy commented on code in PR #14395:
URL: https://github.com/apache/tvm/pull/14395#discussion_r1147114150


##########
tests/python/unittest/test_tir_schedule_read_write_at.py:
##########
@@ -0,0 +1,221 @@
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+#
+#   http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License.
+# pylint: disable=missing-function-docstring,missing-module-docstring
+import sys
+
+import pytest
+
+import tvm
+from tvm import tir
+from tvm.script import tir as T
+from tvm.tir.schedule.testing import verify_trace_roundtrip
+
+
+# fmt: off
+# pylint: disable=no-member,invalid-name,unused-variable,line-too-long,redefined-outer-name,unexpected-keyword-arg,too-many-nested-blocks,not-callable
+
+@T.prim_func
+def cuda_matmul(a: T.handle, b: T.handle, c: T.handle) -> None:  # pylint: disable=undefined-loop-variable
+    A = T.match_buffer(a, [2048, 2048], "float32")
+    B = T.match_buffer(b, [2048, 2048], "float32")
+    C = T.match_buffer(c, [2048, 2048], "float32")
+    for by in T.thread_binding(0, 32, thread = "blockIdx.y"):
+        for bx in T.thread_binding(0, 32, thread = "blockIdx.x"):
+            for vy in T.thread_binding(0, 2, thread = "vthread.y"):
+                for vx in T.thread_binding(0, 2, thread = "vthread.x"):
+                    for ty in T.thread_binding(0, 8, thread = "threadIdx.y"):
+                        for tx in T.thread_binding(0, 8, thread = "threadIdx.x"):
+                            for k0 in T.serial(0, 256):
+                                for k1 in T.unroll(0, 8):
+                                    for _, i, j in T.grid(1, 4, 4):
+                                        with T.block("C"):
+                                            vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i)
+                                            vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j)
+                                            vk = T.axis.R(2048, k0 * 8 + k1)
+                                            T.reads([C[vi, vj], A[vi, vk], B[vk, vj]])
+                                            T.writes([C[vi, vj]])
+                                            with T.init():
+                                                C[vi, vj] = 0.0
+                                            C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
+
+
+@T.prim_func
+def cuda_matmul_read_at_a(a: T.handle, b: T.handle, c: T.handle) -> None:
+    A = T.match_buffer(a, [2048, 2048], dtype="float32")
+    B = T.match_buffer(b, [2048, 2048], dtype="float32")
+    C = T.match_buffer(c, [2048, 2048], dtype="float32")
+    A_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared")
+    for by in T.thread_binding(0, 32, thread="blockIdx.y"):
+        for bx in T.thread_binding(0, 32, thread="blockIdx.x"):
+            for vy in T.thread_binding(0, 2, thread="vthread.y"):
+                for vx in T.thread_binding(0, 2, thread="vthread.x"):
+                    for ty in T.thread_binding(0, 8, thread="threadIdx.y"):
+                        for tx in T.thread_binding(0, 8, thread="threadIdx.x"):
+                            for k0 in T.serial(0, 256):
+                                with T.block("A_shared"):
+                                    v0 = T.axis.S(32, by)
+                                    v1 = T.axis.S(256, k0)
+                                    T.reads([A[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]])
+                                    T.writes([A_shared[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]])
+                                    T.block_attr({"auto_copy":1})
+                                    for ax0, ax1 in T.grid(64, 8):
+                                        A_shared[v0 * 64 + ax0, v1 * 8 + ax1] = A[v0 * 64 + ax0, v1 * 8 + ax1]
+                                for k1 in T.unroll(0, 8):
+                                    for v_, i, j in T.grid(1, 4, 4):
+                                        with T.block("C"):
+                                            vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i)
+                                            vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j)
+                                            vk = T.axis.R(2048, k0 * 8 + k1)
+                                            T.reads([C[vi, vj], A_shared[vi, vk], B[vk, vj]])
+                                            T.writes([C[vi, vj]])
+                                            with T.init():
+                                                C[vi, vj] = T.float32(0)
+                                            C[vi, vj] = C[vi, vj] + A_shared[vi, vk] * B[vk, vj]
+
+
+@T.prim_func
+def cuda_matmul_read_at_ab(a: T.handle, b: T.handle, c: T.handle) -> None:
+    A = T.match_buffer(a, [2048, 2048], dtype="float32")
+    B = T.match_buffer(b, [2048, 2048], dtype="float32")
+    C = T.match_buffer(c, [2048, 2048], dtype="float32")
+    A_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared")
+    B_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared")
+    for by in T.thread_binding(0, 32, thread="blockIdx.y"):
+        for bx in T.thread_binding(0, 32, thread="blockIdx.x"):
+            for vy in T.thread_binding(0, 2, thread="vthread.y"):
+                for vx in T.thread_binding(0, 2, thread="vthread.x"):
+                    for ty in T.thread_binding(0, 8, thread="threadIdx.y"):
+                        for tx in T.thread_binding(0, 8, thread="threadIdx.x"):
+                            for k0 in T.serial(0, 256):
+                                with T.block("A_shared"):
+                                    v0 = T.axis.S(32, by)
+                                    v1 = T.axis.S(256, k0)
+                                    T.reads([A[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]])
+                                    T.writes([A_shared[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]])
+                                    T.block_attr({"auto_copy":1})
+                                    for ax0, ax1 in T.grid(64, 8):
+                                        A_shared[v0 * 64 + ax0, v1 * 8 + ax1] = A[v0 * 64 + ax0, v1 * 8 + ax1]
+                                with T.block("B_shared"):
+                                    v0 = T.axis.S(256, k0)
+                                    v1 = T.axis.S(32, bx)
+                                    T.reads([B[v0 * 8 : v0 * 8 + 8, v1 * 64 : v1 * 64 + 64]])
+                                    T.writes([B_shared[v0 * 8 : v0 * 8 + 8, v1 * 64 : v1 * 64 + 64]])
+                                    T.block_attr({"auto_copy":1})
+                                    for ax0, ax1 in T.grid(8, 64):
+                                        B_shared[v0 * 8 + ax0, v1 * 64 + ax1] = B[v0 * 8 + ax0, v1 * 64 + ax1]
+                                for k1 in T.unroll(0, 8):
+                                    for v_, i, j in T.grid(1, 4, 4):
+                                        with T.block("C"):
+                                            vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i)
+                                            vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j)
+                                            vk = T.axis.R(2048, k0 * 8 + k1)
+                                            T.reads([C[vi, vj], A_shared[vi, vk], B_shared[vk, vj]])
+                                            T.writes([C[vi, vj]])
+                                            with T.init():
+                                                C[vi, vj] = T.float32(0)
+                                            C[vi, vj] = C[vi, vj] + A_shared[vi, vk] * B_shared[vk, vj]
+
+@T.prim_func
+def cuda_matmul_write_at_c(a: T.handle, b: T.handle, c: T.handle) -> None:
+    A = T.match_buffer(a, [2048, 2048], dtype="float32")
+    B = T.match_buffer(b, [2048, 2048], dtype="float32")
+    C = T.match_buffer(c, [2048, 2048], dtype="float32")
+    A_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared")
+    B_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared")
+    C_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared")
+    for by in T.thread_binding(0, 32, thread="blockIdx.y"):
+        for bx in T.thread_binding(0, 32, thread="blockIdx.x"):
+            for vy in T.thread_binding(0, 2, thread="vthread.y"):
+                for vx in T.thread_binding(0, 2, thread="vthread.x"):
+                    for ty in T.thread_binding(0, 8, thread="threadIdx.y"):
+                        for tx in T.thread_binding(0, 8, thread="threadIdx.x"):
+                            for k0 in T.serial(0, 256):
+                                with T.block("A_shared"):
+                                    v0 = T.axis.S(32, by)
+                                    v1 = T.axis.S(256, k0)
+                                    T.reads([A[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]])
+                                    T.writes([A_shared[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]])
+                                    T.block_attr({"auto_copy":1})
+                                    for ax0, ax1 in T.grid(64, 8):
+                                        A_shared[v0 * 64 + ax0, v1 * 8 + ax1] = A[v0 * 64 + ax0, v1 * 8 + ax1]
+                                with T.block("B_shared"):
+                                    v0 = T.axis.S(256, k0)
+                                    v1 = T.axis.S(32, bx)
+                                    T.reads([B[v0 * 8 : v0 * 8 + 8, v1 * 64 : v1 * 64 + 64]])
+                                    T.writes([B_shared[v0 * 8 : v0 * 8 + 8, v1 * 64 : v1 * 64 + 64]])
+                                    T.block_attr({"auto_copy":1})
+                                    for ax0, ax1 in T.grid(8, 64):
+                                        B_shared[v0 * 8 + ax0, v1 * 64 + ax1] = B[v0 * 8 + ax0, v1 * 64 + ax1]
+                                for k1 in T.unroll(0, 8):
+                                    for v_, i, j in T.grid(1, 4, 4):
+                                        with T.block("C"):
+                                            vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i)
+                                            vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j)
+                                            vk = T.axis.R(2048, k0 * 8 + k1)
+                                            T.reads([C_shared[vi, vj], A_shared[vi, vk], B_shared[vk, vj]])
+                                            T.writes([C_shared[vi, vj]])
+                                            with T.init():
+                                                C_shared[vi, vj] = T.float32(0)
+                                            C_shared[vi, vj] = C_shared[vi, vj] + A_shared[vi, vk] * B_shared[vk, vj]
+                            with T.block("C_shared"):
+                                v0 = T.axis.S(32, by)
+                                v1 = T.axis.S(32, bx)
+                                T.reads([C_shared[v0 * 64 : v0 * 64 + 64, v1 * 64 : v1 * 64 + 64]])
+                                T.writes([C[v0 * 64 : v0 * 64 + 64, v1 * 64 : v1 * 64 + 64]])
+                                T.block_attr({"auto_copy":1})
+                                for ax0, ax1 in T.grid(64, 64):
+                                    C[v0 * 64 + ax0, v1 * 64 + ax1] = C_shared[v0 * 64 + ax0, v1 * 64 + ax1]
+
+
+# pylint: enable=no-member,invalid-name,unused-variable,line-too-long,redefined-outer-name,unexpected-keyword-arg,too-many-nested-blocks,not-callable
+# fmt: on
+
+
+def test_read_at_global_to_shared_a():
+    sch = tir.Schedule(cuda_matmul, debug_mask="all")
+    block = sch.get_block("C")
+    # pylint: disable=invalid-name
+    _by, _bx, _vy, _vx, _ty, _tx, k0, _k1, _, _i, _j = sch.get_loops(block)
+    # pylint: enable=invalid-name
+    sch.read_at(k0, block, 1, "shared")
+    tvm.ir.assert_structural_equal(sch.mod["main"], cuda_matmul_read_at_a)
+    verify_trace_roundtrip(sch, cuda_matmul)
+
+
+def test_read_at_global_to_shared_ab():
+    sch = tir.Schedule(cuda_matmul_read_at_a, debug_mask="all")
+    block = sch.get_block("C")
+    # pylint: disable=invalid-name
+    _by, _bx, _vy, _vx, _ty, _tx, k0, _k1, _, _i, _j = sch.get_loops(block)
+    # pylint: enable=invalid-name
+    sch.read_at(k0, block, 2, "shared")
+    tvm.ir.assert_structural_equal(sch.mod["main"], cuda_matmul_read_at_ab)
+    verify_trace_roundtrip(sch, cuda_matmul_read_at_a)
+
+
+def test_read_at_local_to_shared_c():
+    sch = tir.Schedule(cuda_matmul_read_at_ab, debug_mask="all")
+    block = sch.get_block("C")
+    # pylint: disable=invalid-name
+    _by, _bx, _vy, _vx, _ty, tx, _k0, _k1, _, _i, _j = sch.get_loops(block)
+    # pylint: enable=invalid-name
+    sch.write_at(tx, block, 0, "shared")
+    tvm.ir.assert_structural_equal(sch.mod["main"], cuda_matmul_write_at_c)
+    verify_trace_roundtrip(sch, cuda_matmul_read_at_ab)
+
+
+if __name__ == "__main__":
+    sys.exit(pytest.main([__file__] + sys.argv[1:]))

Review Comment:
   ```suggestion
       tvm.testing.main()
   ```



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: commits-unsubscribe@tvm.apache.org

For queries about this service, please contact Infrastructure at:
users@infra.apache.org