You are viewing a plain text version of this content. The canonical link for it is here.
Posted to user@struts.apache.org by "Galbreath, Mark" <Ga...@tessco.com> on 2002/09/20 13:20:05 UTC

[42] So you wanna be a REAL programmer, huh?

Real Programmers Don't Use Pascal


Back in the good old days-- the "Golden Era" of computers-- it was easy to
separate the men from the boys (sometimes called "Real Men" and "Quiche
Eaters" in the literature). During this period, the Real Men were the ones
who understood computer programming, and the Quiche Eaters were the ones who
didn't. A real computer programmer said things like "DO 10 I=1,10" and
"ABEND" (they actually talked in capital letters, you understand), and the
rest of the world said things like "computers are too complicated for me"
and "I can't relate to computers-- they're so impersonal". (A previous work
[1] points out that Real Men don't "relate" to anything, and aren't afraid
of being impersonal.) 


But, as usual, times change. We are faced today with a world in which little
old ladies can get computers in their microwave ovens, 12 year old kids can
blow Real Men out of the water playing Asteroids and Pac-Man, and anyone can
buy and even understand their very own personal Computer. The Real
Programmer is in danger of becoming extinct, of being replaced by high
school students with TRASH-80s. 


There is a clear need to point out the differences between the typical high
school junior Pac-Man player and a Real Programmer. If this difference is
made clear, it will give these kids something to aspire to-- a role model, a
Father Figure. It will also help explain to the employers of Real
Programmers why it would be a mistake to replace the Real Programmers on
their staff with 12 year old Pac-Man players (at a considerable salary
savings). 


The easiest way to tell a Real Programmer from the crowd is by the
programming language he (or she) uses. Real Programmers use Fortran. Quiche
Eaters use Pascal. Nicklaus Wirth, the designer of Pascal, gave a talk once
at which he was asked, "How do you pronounce your name?". He replied, "You
can either call me by name, pronouncing it 'Veert', or call me by value,
'Worth'." One can tell immediately by this comment that Nicklaus Wirth is a
Quiche Eater. The only parameter passing mechanism endorsed by Real
Programmers is call-by-value-return, as implemented in the IBM/370 Fortran G
and H compilers. Real Programmers don't need all these abstract concepts to
get their jobs done-- they are perfectly happy with a keypunch, a Fortran IV
compiler, and a beer. 



*	Real Programmers do List Processing in Fortran. 


	

*	Real Programmers do String Manipulation in Fortran. 


	

*	Real Programmers do Accounting (if they do it at all) in Fortran. 


	

*	Real Programmers do Artificial Intelligence programs in Fortran. 

If you can't do it in Fortran, do it in assembly language. If you can't do
it in assembly language, it isn't worth doing. 


The academics in computer science have gotten into the "structured
programming" rut over the past several years. They claim that programs are
more easily understood if the programmer uses some special language
constructs and techniques. They don't all agree on exactly which constructs,
of course, and the example they use to show their particular point of view
invariably fit on a single page of some obscure journal or another-- clearly
not enough of an example to convince anyone. When I got out of school, I
thought I was the best programmer in the world. I could write an unbeatable
tic-tac-toe program, use five different computer languages, and create 1000
line programs that WORKED (Really!). Then I got out into the Real World. My
first task in the Real World was to read and understand a 200,000 line
Fortran program, then speed it up by a factor of two. Any Real Programmer
will tell you that all the Structured Coding in the world won't help you
solve a problem like that-- it takes actual talent. Some quick observations
on Real Programmers and Structured Programming: 



*	Real Programmers aren't afraid to use GOTOs. 


	

*	Real Programmers can write five page long DO loops without getting
confused. 


	

*	Real Programmers like Arithmetic IF statements-- they make the code
more interesting. 


	

*	Real Programmers write self-modifying code, especially if they can
save 20 nanoseconds in the middle of a tight loop. 


	

*	Real Programmers don't need comments-- the code is obvious. 


	

*	Since Fortran doesn't have a structured IF, REPEAT ... UNTIL, or
CASE statement, Real Programmers don't have to worry about not using them.
Besides, they can be simulated when necessary using assigned GOTOs. 

Data structures have also gotten a lot of press lately. Abstract Data Types,
Structures, Pointers, Lists, and Strings have become popular in certain
circles. Wirth (the above mentioned Quiche Eater) actually wrote an entire
book [2] contending that you could write a program based on data structures,
instead of the other way around. As all Real Programmers know, the only
useful data structure is the Array. Strings, Lists, Structures, Sets-- these
are all special cases of arrays and can be treated that way just as easily
without messing up your programming language with all sorts of
complications. The worst thing about fancy data types is that you have to
declare them, and Real Programming Languages, as we all know, have implicit
typing based on the first letter of the (six character) variable name. 


What kind of operating system is used by a Real Programmer? CP/M? God
forbid-- CP/M, after all, is basically a toy operating system. Even little
old ladies and grade school students can understand and use CP/M. 


Unix is a lot more complicated of course-- the typical Unix hacker never can
remember what the PRINT command is called this week-- but when it gets right
down to it, Unix is a glorified video game. People don't do Serious Work on
Unix systems: they send jokes around the world on UUCP-net and write
Adventure games and research papers. 


No, your Real Programmer uses OS/370. A good programmer can find and
understand the description of the IJK305I error he just got in his JCL
manual. A great programmer can write JCL without referring to the manual at
all. A truly outstanding programmer can find bugs buried in a 6 megabyte
core dump without using a hex calculator. (I have actually seen this done.) 


OS is a truly remarkable operating system. It's possible to destroy days of
work with a single misplaced space, so alertness in the programming staff is
encouraged. The best way to approach the system is through a keypunch. Some
people claim there is a Time Sharing system that runs on OS/370, but after
careful study I have come to the conclusion that they were mistaken. 


What kind of tools does a Real Programmer use? In theory, a Real Programmer
could run his programs by keying them into the front panel of the computer.
Back in the days when computers had front panels, this was actually done
occasionally. Your typical Real Programmer knew the entire bootstrap loader
by memory in hex, and toggled it in whenever it got destroyed by his
program. (Back then, memory was memory-- it didn't go away when the power
went off. Today, memory either forgets things when you don't want it to, or
remembers things long after they're better forgotten.) Legend has it that
Seymore Cray, inventor of the Cray I supercomputer and most of Control
Data's computers, actually toggled the first operating system for the
CDC7600 in on the front panel from memory when it was first powered on.
Seymore, needless to say, is a Real Programmer. 


One of my favorite Real Programmers was a systems programmer for Texas
Instruments. One day, he got a long distance call from a user whose system
had crashed in the middle of saving some important work. Jim was able to
repair the damage over the phone, getting the user to toggle in disk I/O
instructions at the front panel, repairing system tables in hex, reading
register contents back over the phone. The moral of this story: while a Real
Programmer usually includes a keypunch and line printer in his toolkit, he
can get along with just a front panel and a telephone in emergencies. 


In some companies, text editing no longer consists of ten engineers standing
in line to use an 029 keypunch. In fact, the building I work in doesn't
contain a single keypunch. The Real Programmer in this situation has to do
his work with a "text editor" program. Most systems supply several text
editors to select from, and the Real Programmer must be careful to pick one
that reflects his personal style. Many people believe that the best text
editors in the world were written at Xerox Palo Alto Research Center for use
on their Alto and Dorado computers[3]. Unfortunately, no Real Programmer
would ever use a computer whose operating system is called SmallTalk, and
would certainly not talk to the computer with a mouse. 


Some of the concepts in these Xerox editors have been incorporated into
editors running on more reasonably named operating systems-- EMACS and VI
being two. The problem with these editors is that Real Programmers consider
"what you see is what you get" to be just as bad a concept in Text Editors
as it is in Women. No, the Real Programmer wants a "you asked for it, you
got it" text editor-- complicated, cryptic, powerful, unforgiving,
dangerous. TECO, to be precise. 


It has been observed that a TECO command sequence more closely resembles
transmission line noise than readable text[4]. One of the more entertaining
games to play with TECO is to type your name in as a command line and try to
guess what it does. Just about any possible typing error while talking with
TECO will probably destroy your program, or even worse-- introduce subtle
and mysterious bugs in a once working subroutine. 


For this reason, Real Programmers are reluctant to actually edit a program
that is close to working. They find it much easier to just patch the binary
object code directly, using a wonderful program called SUPERZAP (or its
equivalent on non-IBM machines). This works so well that many working
programs on IBM systems bear no relation to the original Fortran code. In
many cases, the original source code is no longer available. When it comes
time to fix a program like this, no manager would even think of sending
anything less than a Real Programmer to do the job-- no Quiche Eating
structured programmer would even know where to start. This is called "job
security". 


Some programming tools NOT used by Real Programmers: 



*	Fortran preprocessors like MORTRAN and RATFOR. The Cuisinarts of
programming-- great for making Quiche. See comments above on structured
programming. 


	

*	Source language debuggers. Real Programmers can read core dumps. 


	

*	Compilers with array bounds checking. They stifle creativity,
destroy most of the interesting uses for EQUIVALENCE, and make it impossible
to modify the operating system code with negative subscripts. Worst of all,
bounds checking is inefficient. 


	

*	Source code maintenance systems. A Real Programmer keeps his code
locked up in a card file, because it implies that its owner cannot leave his
important programs unguarded [5]. 

Where does the typical Real Programmer work? What kind of programs are
worthy of the efforts of so talented an individual? You can be sure that no
Real Programmer would be caught dead writing accounts-receivable programs in
COBOL, or sorting mailing lists for People magazine. A Real Programmer wants
tasks of earth-shaking importance (literally!). 



*	Real Programmers work for Los Alamos National Laboratory, writing
atomic bomb simulations to run on Cray I supercomputers. 


	

*	Real Programmers work for the National Security Agency, decoding
Russian transmissions. 


	

*	It was largely due to the efforts of thousands of Real Programmers
working for NASA that our boys got to the moon and back before the Russkies.



	

*	The computers in the Space Shuttle were programmed by Real
Programmers. 


	

*	Real Programmers are at work for Boeing designing the operation
systems for cruise missiles. 

Some of the most awesome Real Programmers of all work at the Jet Propulsion
Laboratory in California. Many of them know the entire operating system of
the Pioneer and Voyager spacecraft by heart. With a combination of large
ground-based Fortran programs and small spacecraft-based assembly language
programs, they are able to do incredible feats of navigation and
improvisation-- hitting ten-kilometer wide windows at Saturn after six years
in space, repairing or bypassing damaged sensor platforms, radios, and
batteries. Allegedly, one Real Programmer managed to tuck a pattern matching
program into a few hundred bytes of unused memory in a Voyager spacecraft
that searched for, located, and photographed a new moon of Jupiter. 


The current plan for the Galileo spacecraft is to use a gravity assist
trajectory past Mars on the way to Jupiter. This trajectory passes within 80
+/- 3 kilometers of the surface of Mars. Nobody is going to trust a Pascal
program (or Pascal programmer) for navigation to these tolerances. 


As you can tell, many of the world's Real Programmers work for the U.S.
Government-- mainly the Defense Department. This is as it should be.
Recently, however, a black cloud has formed on the Real Programmer horizon.
It seems that some highly placed Quiche Eaters at the Defense Department
decided that all Defense programs should be written in some grand unified
language called "ADA" ((C), DoD). For a while, it seemed that ADA was
destined to become a language that went against all the precepts of Real
Programming-- a language with structure, a language with data types, strong
typing, and semicolons. In short, a language designed to cripple the
creativity of the typical Real Programmer. Fortunately, the language adopted
by DoD had enough interesting features to make it approachable-- it's
incredibly complex, includes methods for messing with the operating system
and rearranging memory, and Edsger Dijkstra doesn't like it [6]. (Dijkstra,
as I'm sure you know, was the author of "GOTOs Considered Harmful"-- a
landmark work in programming methodology, applauded by Pascal Programmers
and Quiche Eaters alike.) Besides, the determined Real Programmer can write
Fortran programs in any language. 


The Real Programmer might compromise his principles and work on something
slightly more trivial than the destruction of life as we know it. Providing
there's enough money in it. There are several Real Programmers building
video games at Atari, for example. (But not playing them-- a Real Programmer
knows how to beat the machine every time: no challenge in that.) Everyone
working at LucasFilm is a Real Programmer. (It would be crazy to turn down
the money of fifty million Star Trek fans.) The proportion of Real
Programmers in Computer Graphics is somewhat lower than the norm, mostly
because nobody has found a use for Computer Graphics yet. On the other hand,
all Computer Graphics is done in Fortran, so there are a fair number of
people doing Graphics in order to avoid having to write COBOL programs. 


Generally, the Real Programmer plays the same way he works-- with computers.
He is constantly amazed that his employer actually pays him to do what he
would be doing for fun anyway (although he is careful not to express this
opinion out loud). Occasionally, the Real Programmer does step out of the
office for a breath of fresh air and a beer or two. Some tips on recognizing
Real Programmers away from the computer room: 



*	At a party, the Real Programmers are the ones in the corner talking
about operating system security and how to get around it. 


	

*	At a football game, the Real Programmer is the one comparing the
plays against his simulations printed on 11 by 14 fanfold paper. 


	

*	At the beach, the Real Programmer is the one drawing flowcharts in
the sand. 


	

*	At a funeral, the Real Programmer is the one saying "Poor George.
And he almost had the sort routine working before the coronary." 


	

*	In a grocery store, the Real Programmer is the one who insists on
running the cans past the laser checkout scanner himself, because he never
could trust keypunch operators to get it right the first time. 

What sort of environment does the Real Programmer function best in? This is
an important question for the managers of Real Programmers. Considering the
amount of money it costs to keep one on the staff, it's best to put him (or
her) in an environment where he can get his work done. 


The typical Real Programmer lives in front of a computer terminal.
Surrounding this terminal are: 



*	Listings of all programs the Real Programmer has ever worked on,
piled in roughly chronological order on every flat surface in the office. 


	

*	Some half-dozen or so partly filled cups of cold coffee.
Occasionally, there will be cigarette butts floating in the coffee. In some
cases, the cups will contain Orange Crush. 


	

*	Unless he is very good, there will be copies of the OS JCL manual
and the Principles of Operation open to some particularly interesting pages.



	

*	Taped to the wall is a line-printer Snoopy calendar for the year
1969. 


	

*	Strewn about the floor are several wrappers for peanut butter filled
cheese bars-- the type that are made pre-stale at the bakery so they can't
get any worse while waiting in the vending machine. 


	

*	Hiding in the top left-hand drawer of the desk is a stash of
double-stuff Oreos for special occasions. 


	

*	Underneath the Oreos is a flow-charting template, left there by the
previous occupant of the office. (Real Programmers write programs, not
documentation. Leave that to the maintenence people.) 

The Real Programmer is capable of working 30, 40, even 50 hours at a
stretch, under intense pressure. In fact, he prefers it that way. Bad
response time doesn't bother the Real Programmer-- it gives him a chance to
catch a little sleep between compiles. If there is not enough schedule
pressure on the Real Programmer, he tends to make things more challenging by
working on some small but interesting part of the problem for the first nine
weeks, then finishing the rest in the last week, in two or three 50-hour
marathons. This not only impresses the hell out of his manager, who was
despairing of ever getting the project done on time, but creates a
convenient excuse for not doing the documentation. In general: 



*	No Real Programmer works 9 to 5. (Unless it's the ones at night.) 


	

*	Real Programmers don't wear neckties. 


	

*	Real Programmers don't wear high heeled shoes. 


	

*	Real Programmers arrive at work in time for lunch. 


	

*	A Real Programmer might or might not know his wife's name. He does,
however, know the entire ASCII (or EBCDIC) code table. 


	

*	Real Programmers don't know how to cook. Grocery stores aren't open
at three in the morning. Real Programmers survive on Twinkies and coffee. 

What of the future? It is a matter of some concern to Real Programmers that
the latest generation of computer programmers are not being brought up with
the same outlook on life as their elders. Many of them have never seen a
computer with a front panel. Hardly anyone graduating from school these days
can do hex arithmetic without a calculator. College graduates these days are
soft-- protected from the realities of programming by source level
debuggers, text editors that count parentheses, and "user friendly"
operating systems. Worst of all, some of these alleged "computer scientists"
manage to get degrees without ever learning Fortran! Are we destined to
become an industry of Unix hackers and Pascal programmers? 


>From my experience, I can only report that the future is bright for Real
Programmers everywhere. Neither OS/370 nor Fortran show any signs of dying
out, despite all the efforts of Pas- cal programmers the world over. Even
more subtle tricks, like adding structured coding constructs to Fortran,
have failed. Oh sure, some computer vendors have come out with Fortran 77
compilers, but every one of them has a way of converting itself back into a
Fortran 66 compiler at the drop of an option card-- to compile DO loops like
God meant them to be. 


Even Unix might not be as bad on Real Programmers as it once was. The latest
release of Unix has the potential of an operating system worthy of any Real
Programmer-- two different and subtly incompatible user interfaces, an
arcane and complicated teletype driver, virtual memory. If you ignore the
fact that it's "structured", even 'C' programming can be appreciated by the
Real Programmer: after all, there's no type checking, variable names are
seven (ten? eight?) characters long, and the added bonus of the Pointer data
type is thrown in-- like having the best parts of Fortran and assembly
language in one place. (Not to mention some of the more creative uses for
#define.) 


No, the future isn't all that bad. Why, in the past few years, the popular
press has even commented on the bright new crop of computer nerds and
hackers ([7] and [8]) leaving places like Stanford and MIT for the Real
World. From all evidence, the spirit of Real Programming lives on in these
young men and women. As long as there are ill-defined goals, bizarre bugs,
and unrealistic schedules, there will be Real Programmers willing to jump in
and Solve The Problem, saving the documentation for later. Long live
Fortran! 


RE: [42] So you wanna be a REAL programmer, huh?

Posted by Andrew Hill <an...@gridnode.com>.
"Real Programmers don't need all these abstract concepts to
get their jobs done-- they are perfectly happy with a keypunch, a Fortran IV
compiler, and a beer."

Having conducted extensive empirical research, I can say conclusively that
of these items listed, only the last is in fact required.

...and Im spent.
Time to escape the office and enjoy the last 30 minutes of Friday.

-----Original Message-----
From: Galbreath, Mark [mailto:Galbreath@tessco.com]
Sent: Friday, September 20, 2002 19:20
To: Struts (E-mail)
Subject: [42] So you wanna be a REAL programmer, huh?



Real Programmers Don't Use Pascal


Back in the good old days-- the "Golden Era" of computers-- it was easy to
separate the men from the boys (sometimes called "Real Men" and "Quiche
Eaters" in the literature). During this period, the Real Men were the ones
who understood computer programming, and the Quiche Eaters were the ones who
didn't. A real computer programmer said things like "DO 10 I=1,10" and
"ABEND" (they actually talked in capital letters, you understand), and the
rest of the world said things like "computers are too complicated for me"
and "I can't relate to computers-- they're so impersonal". (A previous work
[1] points out that Real Men don't "relate" to anything, and aren't afraid
of being impersonal.)


But, as usual, times change. We are faced today with a world in which little
old ladies can get computers in their microwave ovens, 12 year old kids can
blow Real Men out of the water playing Asteroids and Pac-Man, and anyone can
buy and even understand their very own personal Computer. The Real
Programmer is in danger of becoming extinct, of being replaced by high
school students with TRASH-80s.


There is a clear need to point out the differences between the typical high
school junior Pac-Man player and a Real Programmer. If this difference is
made clear, it will give these kids something to aspire to-- a role model, a
Father Figure. It will also help explain to the employers of Real
Programmers why it would be a mistake to replace the Real Programmers on
their staff with 12 year old Pac-Man players (at a considerable salary
savings).


The easiest way to tell a Real Programmer from the crowd is by the
programming language he (or she) uses. Real Programmers use Fortran. Quiche
Eaters use Pascal. Nicklaus Wirth, the designer of Pascal, gave a talk once
at which he was asked, "How do you pronounce your name?". He replied, "You
can either call me by name, pronouncing it 'Veert', or call me by value,
'Worth'." One can tell immediately by this comment that Nicklaus Wirth is a
Quiche Eater. The only parameter passing mechanism endorsed by Real
Programmers is call-by-value-return, as implemented in the IBM/370 Fortran G
and H compilers. Real Programmers don't need all these abstract concepts to
get their jobs done-- they are perfectly happy with a keypunch, a Fortran IV
compiler, and a beer.



*	Real Programmers do List Processing in Fortran.




*	Real Programmers do String Manipulation in Fortran.




*	Real Programmers do Accounting (if they do it at all) in Fortran.




*	Real Programmers do Artificial Intelligence programs in Fortran.

If you can't do it in Fortran, do it in assembly language. If you can't do
it in assembly language, it isn't worth doing.


The academics in computer science have gotten into the "structured
programming" rut over the past several years. They claim that programs are
more easily understood if the programmer uses some special language
constructs and techniques. They don't all agree on exactly which constructs,
of course, and the example they use to show their particular point of view
invariably fit on a single page of some obscure journal or another-- clearly
not enough of an example to convince anyone. When I got out of school, I
thought I was the best programmer in the world. I could write an unbeatable
tic-tac-toe program, use five different computer languages, and create 1000
line programs that WORKED (Really!). Then I got out into the Real World. My
first task in the Real World was to read and understand a 200,000 line
Fortran program, then speed it up by a factor of two. Any Real Programmer
will tell you that all the Structured Coding in the world won't help you
solve a problem like that-- it takes actual talent. Some quick observations
on Real Programmers and Structured Programming:



*	Real Programmers aren't afraid to use GOTOs.




*	Real Programmers can write five page long DO loops without getting
confused.




*	Real Programmers like Arithmetic IF statements-- they make the code
more interesting.




*	Real Programmers write self-modifying code, especially if they can
save 20 nanoseconds in the middle of a tight loop.




*	Real Programmers don't need comments-- the code is obvious.




*	Since Fortran doesn't have a structured IF, REPEAT ... UNTIL, or
CASE statement, Real Programmers don't have to worry about not using them.
Besides, they can be simulated when necessary using assigned GOTOs.

Data structures have also gotten a lot of press lately. Abstract Data Types,
Structures, Pointers, Lists, and Strings have become popular in certain
circles. Wirth (the above mentioned Quiche Eater) actually wrote an entire
book [2] contending that you could write a program based on data structures,
instead of the other way around. As all Real Programmers know, the only
useful data structure is the Array. Strings, Lists, Structures, Sets-- these
are all special cases of arrays and can be treated that way just as easily
without messing up your programming language with all sorts of
complications. The worst thing about fancy data types is that you have to
declare them, and Real Programming Languages, as we all know, have implicit
typing based on the first letter of the (six character) variable name.


What kind of operating system is used by a Real Programmer? CP/M? God
forbid-- CP/M, after all, is basically a toy operating system. Even little
old ladies and grade school students can understand and use CP/M.


Unix is a lot more complicated of course-- the typical Unix hacker never can
remember what the PRINT command is called this week-- but when it gets right
down to it, Unix is a glorified video game. People don't do Serious Work on
Unix systems: they send jokes around the world on UUCP-net and write
Adventure games and research papers.


No, your Real Programmer uses OS/370. A good programmer can find and
understand the description of the IJK305I error he just got in his JCL
manual. A great programmer can write JCL without referring to the manual at
all. A truly outstanding programmer can find bugs buried in a 6 megabyte
core dump without using a hex calculator. (I have actually seen this done.)


OS is a truly remarkable operating system. It's possible to destroy days of
work with a single misplaced space, so alertness in the programming staff is
encouraged. The best way to approach the system is through a keypunch. Some
people claim there is a Time Sharing system that runs on OS/370, but after
careful study I have come to the conclusion that they were mistaken.


What kind of tools does a Real Programmer use? In theory, a Real Programmer
could run his programs by keying them into the front panel of the computer.
Back in the days when computers had front panels, this was actually done
occasionally. Your typical Real Programmer knew the entire bootstrap loader
by memory in hex, and toggled it in whenever it got destroyed by his
program. (Back then, memory was memory-- it didn't go away when the power
went off. Today, memory either forgets things when you don't want it to, or
remembers things long after they're better forgotten.) Legend has it that
Seymore Cray, inventor of the Cray I supercomputer and most of Control
Data's computers, actually toggled the first operating system for the
CDC7600 in on the front panel from memory when it was first powered on.
Seymore, needless to say, is a Real Programmer.


One of my favorite Real Programmers was a systems programmer for Texas
Instruments. One day, he got a long distance call from a user whose system
had crashed in the middle of saving some important work. Jim was able to
repair the damage over the phone, getting the user to toggle in disk I/O
instructions at the front panel, repairing system tables in hex, reading
register contents back over the phone. The moral of this story: while a Real
Programmer usually includes a keypunch and line printer in his toolkit, he
can get along with just a front panel and a telephone in emergencies.


In some companies, text editing no longer consists of ten engineers standing
in line to use an 029 keypunch. In fact, the building I work in doesn't
contain a single keypunch. The Real Programmer in this situation has to do
his work with a "text editor" program. Most systems supply several text
editors to select from, and the Real Programmer must be careful to pick one
that reflects his personal style. Many people believe that the best text
editors in the world were written at Xerox Palo Alto Research Center for use
on their Alto and Dorado computers[3]. Unfortunately, no Real Programmer
would ever use a computer whose operating system is called SmallTalk, and
would certainly not talk to the computer with a mouse.


Some of the concepts in these Xerox editors have been incorporated into
editors running on more reasonably named operating systems-- EMACS and VI
being two. The problem with these editors is that Real Programmers consider
"what you see is what you get" to be just as bad a concept in Text Editors
as it is in Women. No, the Real Programmer wants a "you asked for it, you
got it" text editor-- complicated, cryptic, powerful, unforgiving,
dangerous. TECO, to be precise.


It has been observed that a TECO command sequence more closely resembles
transmission line noise than readable text[4]. One of the more entertaining
games to play with TECO is to type your name in as a command line and try to
guess what it does. Just about any possible typing error while talking with
TECO will probably destroy your program, or even worse-- introduce subtle
and mysterious bugs in a once working subroutine.


For this reason, Real Programmers are reluctant to actually edit a program
that is close to working. They find it much easier to just patch the binary
object code directly, using a wonderful program called SUPERZAP (or its
equivalent on non-IBM machines). This works so well that many working
programs on IBM systems bear no relation to the original Fortran code. In
many cases, the original source code is no longer available. When it comes
time to fix a program like this, no manager would even think of sending
anything less than a Real Programmer to do the job-- no Quiche Eating
structured programmer would even know where to start. This is called "job
security".


Some programming tools NOT used by Real Programmers:



*	Fortran preprocessors like MORTRAN and RATFOR. The Cuisinarts of
programming-- great for making Quiche. See comments above on structured
programming.




*	Source language debuggers. Real Programmers can read core dumps.




*	Compilers with array bounds checking. They stifle creativity,
destroy most of the interesting uses for EQUIVALENCE, and make it impossible
to modify the operating system code with negative subscripts. Worst of all,
bounds checking is inefficient.




*	Source code maintenance systems. A Real Programmer keeps his code
locked up in a card file, because it implies that its owner cannot leave his
important programs unguarded [5].

Where does the typical Real Programmer work? What kind of programs are
worthy of the efforts of so talented an individual? You can be sure that no
Real Programmer would be caught dead writing accounts-receivable programs in
COBOL, or sorting mailing lists for People magazine. A Real Programmer wants
tasks of earth-shaking importance (literally!).



*	Real Programmers work for Los Alamos National Laboratory, writing
atomic bomb simulations to run on Cray I supercomputers.




*	Real Programmers work for the National Security Agency, decoding
Russian transmissions.




*	It was largely due to the efforts of thousands of Real Programmers
working for NASA that our boys got to the moon and back before the Russkies.





*	The computers in the Space Shuttle were programmed by Real
Programmers.




*	Real Programmers are at work for Boeing designing the operation
systems for cruise missiles.

Some of the most awesome Real Programmers of all work at the Jet Propulsion
Laboratory in California. Many of them know the entire operating system of
the Pioneer and Voyager spacecraft by heart. With a combination of large
ground-based Fortran programs and small spacecraft-based assembly language
programs, they are able to do incredible feats of navigation and
improvisation-- hitting ten-kilometer wide windows at Saturn after six years
in space, repairing or bypassing damaged sensor platforms, radios, and
batteries. Allegedly, one Real Programmer managed to tuck a pattern matching
program into a few hundred bytes of unused memory in a Voyager spacecraft
that searched for, located, and photographed a new moon of Jupiter.


The current plan for the Galileo spacecraft is to use a gravity assist
trajectory past Mars on the way to Jupiter. This trajectory passes within 80
+/- 3 kilometers of the surface of Mars. Nobody is going to trust a Pascal
program (or Pascal programmer) for navigation to these tolerances.


As you can tell, many of the world's Real Programmers work for the U.S.
Government-- mainly the Defense Department. This is as it should be.
Recently, however, a black cloud has formed on the Real Programmer horizon.
It seems that some highly placed Quiche Eaters at the Defense Department
decided that all Defense programs should be written in some grand unified
language called "ADA" ((C), DoD). For a while, it seemed that ADA was
destined to become a language that went against all the precepts of Real
Programming-- a language with structure, a language with data types, strong
typing, and semicolons. In short, a language designed to cripple the
creativity of the typical Real Programmer. Fortunately, the language adopted
by DoD had enough interesting features to make it approachable-- it's
incredibly complex, includes methods for messing with the operating system
and rearranging memory, and Edsger Dijkstra doesn't like it [6]. (Dijkstra,
as I'm sure you know, was the author of "GOTOs Considered Harmful"-- a
landmark work in programming methodology, applauded by Pascal Programmers
and Quiche Eaters alike.) Besides, the determined Real Programmer can write
Fortran programs in any language.


The Real Programmer might compromise his principles and work on something
slightly more trivial than the destruction of life as we know it. Providing
there's enough money in it. There are several Real Programmers building
video games at Atari, for example. (But not playing them-- a Real Programmer
knows how to beat the machine every time: no challenge in that.) Everyone
working at LucasFilm is a Real Programmer. (It would be crazy to turn down
the money of fifty million Star Trek fans.) The proportion of Real
Programmers in Computer Graphics is somewhat lower than the norm, mostly
because nobody has found a use for Computer Graphics yet. On the other hand,
all Computer Graphics is done in Fortran, so there are a fair number of
people doing Graphics in order to avoid having to write COBOL programs.


Generally, the Real Programmer plays the same way he works-- with computers.
He is constantly amazed that his employer actually pays him to do what he
would be doing for fun anyway (although he is careful not to express this
opinion out loud). Occasionally, the Real Programmer does step out of the
office for a breath of fresh air and a beer or two. Some tips on recognizing
Real Programmers away from the computer room:



*	At a party, the Real Programmers are the ones in the corner talking
about operating system security and how to get around it.




*	At a football game, the Real Programmer is the one comparing the
plays against his simulations printed on 11 by 14 fanfold paper.




*	At the beach, the Real Programmer is the one drawing flowcharts in
the sand.




*	At a funeral, the Real Programmer is the one saying "Poor George.
And he almost had the sort routine working before the coronary."




*	In a grocery store, the Real Programmer is the one who insists on
running the cans past the laser checkout scanner himself, because he never
could trust keypunch operators to get it right the first time.

What sort of environment does the Real Programmer function best in? This is
an important question for the managers of Real Programmers. Considering the
amount of money it costs to keep one on the staff, it's best to put him (or
her) in an environment where he can get his work done.


The typical Real Programmer lives in front of a computer terminal.
Surrounding this terminal are:



*	Listings of all programs the Real Programmer has ever worked on,
piled in roughly chronological order on every flat surface in the office.




*	Some half-dozen or so partly filled cups of cold coffee.
Occasionally, there will be cigarette butts floating in the coffee. In some
cases, the cups will contain Orange Crush.




*	Unless he is very good, there will be copies of the OS JCL manual
and the Principles of Operation open to some particularly interesting pages.





*	Taped to the wall is a line-printer Snoopy calendar for the year
1969.




*	Strewn about the floor are several wrappers for peanut butter filled
cheese bars-- the type that are made pre-stale at the bakery so they can't
get any worse while waiting in the vending machine.




*	Hiding in the top left-hand drawer of the desk is a stash of
double-stuff Oreos for special occasions.




*	Underneath the Oreos is a flow-charting template, left there by the
previous occupant of the office. (Real Programmers write programs, not
documentation. Leave that to the maintenence people.)

The Real Programmer is capable of working 30, 40, even 50 hours at a
stretch, under intense pressure. In fact, he prefers it that way. Bad
response time doesn't bother the Real Programmer-- it gives him a chance to
catch a little sleep between compiles. If there is not enough schedule
pressure on the Real Programmer, he tends to make things more challenging by
working on some small but interesting part of the problem for the first nine
weeks, then finishing the rest in the last week, in two or three 50-hour
marathons. This not only impresses the hell out of his manager, who was
despairing of ever getting the project done on time, but creates a
convenient excuse for not doing the documentation. In general:



*	No Real Programmer works 9 to 5. (Unless it's the ones at night.)




*	Real Programmers don't wear neckties.




*	Real Programmers don't wear high heeled shoes.




*	Real Programmers arrive at work in time for lunch.




*	A Real Programmer might or might not know his wife's name. He does,
however, know the entire ASCII (or EBCDIC) code table.




*	Real Programmers don't know how to cook. Grocery stores aren't open
at three in the morning. Real Programmers survive on Twinkies and coffee.

What of the future? It is a matter of some concern to Real Programmers that
the latest generation of computer programmers are not being brought up with
the same outlook on life as their elders. Many of them have never seen a
computer with a front panel. Hardly anyone graduating from school these days
can do hex arithmetic without a calculator. College graduates these days are
soft-- protected from the realities of programming by source level
debuggers, text editors that count parentheses, and "user friendly"
operating systems. Worst of all, some of these alleged "computer scientists"
manage to get degrees without ever learning Fortran! Are we destined to
become an industry of Unix hackers and Pascal programmers?


>>From my experience, I can only report that the future is bright for Real
Programmers everywhere. Neither OS/370 nor Fortran show any signs of dying
out, despite all the efforts of Pas- cal programmers the world over. Even
more subtle tricks, like adding structured coding constructs to Fortran,
have failed. Oh sure, some computer vendors have come out with Fortran 77
compilers, but every one of them has a way of converting itself back into a
Fortran 66 compiler at the drop of an option card-- to compile DO loops like
God meant them to be.


Even Unix might not be as bad on Real Programmers as it once was. The latest
release of Unix has the potential of an operating system worthy of any Real
Programmer-- two different and subtly incompatible user interfaces, an
arcane and complicated teletype driver, virtual memory. If you ignore the
fact that it's "structured", even 'C' programming can be appreciated by the
Real Programmer: after all, there's no type checking, variable names are
seven (ten? eight?) characters long, and the added bonus of the Pointer data
type is thrown in-- like having the best parts of Fortran and assembly
language in one place. (Not to mention some of the more creative uses for
#define.)


No, the future isn't all that bad. Why, in the past few years, the popular
press has even commented on the bright new crop of computer nerds and
hackers ([7] and [8]) leaving places like Stanford and MIT for the Real
World. From all evidence, the spirit of Real Programming lives on in these
young men and women. As long as there are ill-defined goals, bizarre bugs,
and unrealistic schedules, there will be Real Programmers willing to jump in
and Solve The Problem, saving the documentation for later. Long live
Fortran!



--
To unsubscribe, e-mail:   <ma...@jakarta.apache.org>
For additional commands, e-mail: <ma...@jakarta.apache.org>