You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@brooklyn.apache.org by ge...@apache.org on 2018/03/23 13:50:46 UTC

[19/25] brooklyn-client git commit: Add vendor file and remove glide from build/readme

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/blowfish/block.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/blowfish/block.go b/cli/vendor/golang.org/x/crypto/blowfish/block.go
new file mode 100644
index 0000000..9d80f19
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/blowfish/block.go
@@ -0,0 +1,159 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package blowfish
+
+// getNextWord returns the next big-endian uint32 value from the byte slice
+// at the given position in a circular manner, updating the position.
+func getNextWord(b []byte, pos *int) uint32 {
+	var w uint32
+	j := *pos
+	for i := 0; i < 4; i++ {
+		w = w<<8 | uint32(b[j])
+		j++
+		if j >= len(b) {
+			j = 0
+		}
+	}
+	*pos = j
+	return w
+}
+
+// ExpandKey performs a key expansion on the given *Cipher. Specifically, it
+// performs the Blowfish algorithm's key schedule which sets up the *Cipher's
+// pi and substitution tables for calls to Encrypt. This is used, primarily,
+// by the bcrypt package to reuse the Blowfish key schedule during its
+// set up. It's unlikely that you need to use this directly.
+func ExpandKey(key []byte, c *Cipher) {
+	j := 0
+	for i := 0; i < 18; i++ {
+		// Using inlined getNextWord for performance.
+		var d uint32
+		for k := 0; k < 4; k++ {
+			d = d<<8 | uint32(key[j])
+			j++
+			if j >= len(key) {
+				j = 0
+			}
+		}
+		c.p[i] ^= d
+	}
+
+	var l, r uint32
+	for i := 0; i < 18; i += 2 {
+		l, r = encryptBlock(l, r, c)
+		c.p[i], c.p[i+1] = l, r
+	}
+
+	for i := 0; i < 256; i += 2 {
+		l, r = encryptBlock(l, r, c)
+		c.s0[i], c.s0[i+1] = l, r
+	}
+	for i := 0; i < 256; i += 2 {
+		l, r = encryptBlock(l, r, c)
+		c.s1[i], c.s1[i+1] = l, r
+	}
+	for i := 0; i < 256; i += 2 {
+		l, r = encryptBlock(l, r, c)
+		c.s2[i], c.s2[i+1] = l, r
+	}
+	for i := 0; i < 256; i += 2 {
+		l, r = encryptBlock(l, r, c)
+		c.s3[i], c.s3[i+1] = l, r
+	}
+}
+
+// This is similar to ExpandKey, but folds the salt during the key
+// schedule. While ExpandKey is essentially expandKeyWithSalt with an all-zero
+// salt passed in, reusing ExpandKey turns out to be a place of inefficiency
+// and specializing it here is useful.
+func expandKeyWithSalt(key []byte, salt []byte, c *Cipher) {
+	j := 0
+	for i := 0; i < 18; i++ {
+		c.p[i] ^= getNextWord(key, &j)
+	}
+
+	j = 0
+	var l, r uint32
+	for i := 0; i < 18; i += 2 {
+		l ^= getNextWord(salt, &j)
+		r ^= getNextWord(salt, &j)
+		l, r = encryptBlock(l, r, c)
+		c.p[i], c.p[i+1] = l, r
+	}
+
+	for i := 0; i < 256; i += 2 {
+		l ^= getNextWord(salt, &j)
+		r ^= getNextWord(salt, &j)
+		l, r = encryptBlock(l, r, c)
+		c.s0[i], c.s0[i+1] = l, r
+	}
+
+	for i := 0; i < 256; i += 2 {
+		l ^= getNextWord(salt, &j)
+		r ^= getNextWord(salt, &j)
+		l, r = encryptBlock(l, r, c)
+		c.s1[i], c.s1[i+1] = l, r
+	}
+
+	for i := 0; i < 256; i += 2 {
+		l ^= getNextWord(salt, &j)
+		r ^= getNextWord(salt, &j)
+		l, r = encryptBlock(l, r, c)
+		c.s2[i], c.s2[i+1] = l, r
+	}
+
+	for i := 0; i < 256; i += 2 {
+		l ^= getNextWord(salt, &j)
+		r ^= getNextWord(salt, &j)
+		l, r = encryptBlock(l, r, c)
+		c.s3[i], c.s3[i+1] = l, r
+	}
+}
+
+func encryptBlock(l, r uint32, c *Cipher) (uint32, uint32) {
+	xl, xr := l, r
+	xl ^= c.p[0]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[1]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[2]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[3]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[4]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[5]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[6]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[7]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[8]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[9]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[10]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[11]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[12]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[13]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[14]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[15]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[16]
+	xr ^= c.p[17]
+	return xr, xl
+}
+
+func decryptBlock(l, r uint32, c *Cipher) (uint32, uint32) {
+	xl, xr := l, r
+	xl ^= c.p[17]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[16]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[15]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[14]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[13]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[12]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[11]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[10]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[9]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[8]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[7]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[6]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[5]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[4]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[3]
+	xr ^= ((c.s0[byte(xl>>24)] + c.s1[byte(xl>>16)]) ^ c.s2[byte(xl>>8)]) + c.s3[byte(xl)] ^ c.p[2]
+	xl ^= ((c.s0[byte(xr>>24)] + c.s1[byte(xr>>16)]) ^ c.s2[byte(xr>>8)]) + c.s3[byte(xr)] ^ c.p[1]
+	xr ^= c.p[0]
+	return xr, xl
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/blowfish/blowfish_test.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/blowfish/blowfish_test.go b/cli/vendor/golang.org/x/crypto/blowfish/blowfish_test.go
new file mode 100644
index 0000000..7afa1fd
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/blowfish/blowfish_test.go
@@ -0,0 +1,274 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package blowfish
+
+import "testing"
+
+type CryptTest struct {
+	key []byte
+	in  []byte
+	out []byte
+}
+
+// Test vector values are from http://www.schneier.com/code/vectors.txt.
+var encryptTests = []CryptTest{
+	{
+		[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+		[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+		[]byte{0x4E, 0xF9, 0x97, 0x45, 0x61, 0x98, 0xDD, 0x78}},
+	{
+		[]byte{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
+		[]byte{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
+		[]byte{0x51, 0x86, 0x6F, 0xD5, 0xB8, 0x5E, 0xCB, 0x8A}},
+	{
+		[]byte{0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+		[]byte{0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
+		[]byte{0x7D, 0x85, 0x6F, 0x9A, 0x61, 0x30, 0x63, 0xF2}},
+	{
+		[]byte{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11},
+		[]byte{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11},
+		[]byte{0x24, 0x66, 0xDD, 0x87, 0x8B, 0x96, 0x3C, 0x9D}},
+
+	{
+		[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
+		[]byte{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11},
+		[]byte{0x61, 0xF9, 0xC3, 0x80, 0x22, 0x81, 0xB0, 0x96}},
+	{
+		[]byte{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11},
+		[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
+		[]byte{0x7D, 0x0C, 0xC6, 0x30, 0xAF, 0xDA, 0x1E, 0xC7}},
+	{
+		[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+		[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+		[]byte{0x4E, 0xF9, 0x97, 0x45, 0x61, 0x98, 0xDD, 0x78}},
+	{
+		[]byte{0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10},
+		[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
+		[]byte{0x0A, 0xCE, 0xAB, 0x0F, 0xC6, 0xA0, 0xA2, 0x8D}},
+	{
+		[]byte{0x7C, 0xA1, 0x10, 0x45, 0x4A, 0x1A, 0x6E, 0x57},
+		[]byte{0x01, 0xA1, 0xD6, 0xD0, 0x39, 0x77, 0x67, 0x42},
+		[]byte{0x59, 0xC6, 0x82, 0x45, 0xEB, 0x05, 0x28, 0x2B}},
+	{
+		[]byte{0x01, 0x31, 0xD9, 0x61, 0x9D, 0xC1, 0x37, 0x6E},
+		[]byte{0x5C, 0xD5, 0x4C, 0xA8, 0x3D, 0xEF, 0x57, 0xDA},
+		[]byte{0xB1, 0xB8, 0xCC, 0x0B, 0x25, 0x0F, 0x09, 0xA0}},
+	{
+		[]byte{0x07, 0xA1, 0x13, 0x3E, 0x4A, 0x0B, 0x26, 0x86},
+		[]byte{0x02, 0x48, 0xD4, 0x38, 0x06, 0xF6, 0x71, 0x72},
+		[]byte{0x17, 0x30, 0xE5, 0x77, 0x8B, 0xEA, 0x1D, 0xA4}},
+	{
+		[]byte{0x38, 0x49, 0x67, 0x4C, 0x26, 0x02, 0x31, 0x9E},
+		[]byte{0x51, 0x45, 0x4B, 0x58, 0x2D, 0xDF, 0x44, 0x0A},
+		[]byte{0xA2, 0x5E, 0x78, 0x56, 0xCF, 0x26, 0x51, 0xEB}},
+	{
+		[]byte{0x04, 0xB9, 0x15, 0xBA, 0x43, 0xFE, 0xB5, 0xB6},
+		[]byte{0x42, 0xFD, 0x44, 0x30, 0x59, 0x57, 0x7F, 0xA2},
+		[]byte{0x35, 0x38, 0x82, 0xB1, 0x09, 0xCE, 0x8F, 0x1A}},
+	{
+		[]byte{0x01, 0x13, 0xB9, 0x70, 0xFD, 0x34, 0xF2, 0xCE},
+		[]byte{0x05, 0x9B, 0x5E, 0x08, 0x51, 0xCF, 0x14, 0x3A},
+		[]byte{0x48, 0xF4, 0xD0, 0x88, 0x4C, 0x37, 0x99, 0x18}},
+	{
+		[]byte{0x01, 0x70, 0xF1, 0x75, 0x46, 0x8F, 0xB5, 0xE6},
+		[]byte{0x07, 0x56, 0xD8, 0xE0, 0x77, 0x47, 0x61, 0xD2},
+		[]byte{0x43, 0x21, 0x93, 0xB7, 0x89, 0x51, 0xFC, 0x98}},
+	{
+		[]byte{0x43, 0x29, 0x7F, 0xAD, 0x38, 0xE3, 0x73, 0xFE},
+		[]byte{0x76, 0x25, 0x14, 0xB8, 0x29, 0xBF, 0x48, 0x6A},
+		[]byte{0x13, 0xF0, 0x41, 0x54, 0xD6, 0x9D, 0x1A, 0xE5}},
+	{
+		[]byte{0x07, 0xA7, 0x13, 0x70, 0x45, 0xDA, 0x2A, 0x16},
+		[]byte{0x3B, 0xDD, 0x11, 0x90, 0x49, 0x37, 0x28, 0x02},
+		[]byte{0x2E, 0xED, 0xDA, 0x93, 0xFF, 0xD3, 0x9C, 0x79}},
+	{
+		[]byte{0x04, 0x68, 0x91, 0x04, 0xC2, 0xFD, 0x3B, 0x2F},
+		[]byte{0x26, 0x95, 0x5F, 0x68, 0x35, 0xAF, 0x60, 0x9A},
+		[]byte{0xD8, 0x87, 0xE0, 0x39, 0x3C, 0x2D, 0xA6, 0xE3}},
+	{
+		[]byte{0x37, 0xD0, 0x6B, 0xB5, 0x16, 0xCB, 0x75, 0x46},
+		[]byte{0x16, 0x4D, 0x5E, 0x40, 0x4F, 0x27, 0x52, 0x32},
+		[]byte{0x5F, 0x99, 0xD0, 0x4F, 0x5B, 0x16, 0x39, 0x69}},
+	{
+		[]byte{0x1F, 0x08, 0x26, 0x0D, 0x1A, 0xC2, 0x46, 0x5E},
+		[]byte{0x6B, 0x05, 0x6E, 0x18, 0x75, 0x9F, 0x5C, 0xCA},
+		[]byte{0x4A, 0x05, 0x7A, 0x3B, 0x24, 0xD3, 0x97, 0x7B}},
+	{
+		[]byte{0x58, 0x40, 0x23, 0x64, 0x1A, 0xBA, 0x61, 0x76},
+		[]byte{0x00, 0x4B, 0xD6, 0xEF, 0x09, 0x17, 0x60, 0x62},
+		[]byte{0x45, 0x20, 0x31, 0xC1, 0xE4, 0xFA, 0xDA, 0x8E}},
+	{
+		[]byte{0x02, 0x58, 0x16, 0x16, 0x46, 0x29, 0xB0, 0x07},
+		[]byte{0x48, 0x0D, 0x39, 0x00, 0x6E, 0xE7, 0x62, 0xF2},
+		[]byte{0x75, 0x55, 0xAE, 0x39, 0xF5, 0x9B, 0x87, 0xBD}},
+	{
+		[]byte{0x49, 0x79, 0x3E, 0xBC, 0x79, 0xB3, 0x25, 0x8F},
+		[]byte{0x43, 0x75, 0x40, 0xC8, 0x69, 0x8F, 0x3C, 0xFA},
+		[]byte{0x53, 0xC5, 0x5F, 0x9C, 0xB4, 0x9F, 0xC0, 0x19}},
+	{
+		[]byte{0x4F, 0xB0, 0x5E, 0x15, 0x15, 0xAB, 0x73, 0xA7},
+		[]byte{0x07, 0x2D, 0x43, 0xA0, 0x77, 0x07, 0x52, 0x92},
+		[]byte{0x7A, 0x8E, 0x7B, 0xFA, 0x93, 0x7E, 0x89, 0xA3}},
+	{
+		[]byte{0x49, 0xE9, 0x5D, 0x6D, 0x4C, 0xA2, 0x29, 0xBF},
+		[]byte{0x02, 0xFE, 0x55, 0x77, 0x81, 0x17, 0xF1, 0x2A},
+		[]byte{0xCF, 0x9C, 0x5D, 0x7A, 0x49, 0x86, 0xAD, 0xB5}},
+	{
+		[]byte{0x01, 0x83, 0x10, 0xDC, 0x40, 0x9B, 0x26, 0xD6},
+		[]byte{0x1D, 0x9D, 0x5C, 0x50, 0x18, 0xF7, 0x28, 0xC2},
+		[]byte{0xD1, 0xAB, 0xB2, 0x90, 0x65, 0x8B, 0xC7, 0x78}},
+	{
+		[]byte{0x1C, 0x58, 0x7F, 0x1C, 0x13, 0x92, 0x4F, 0xEF},
+		[]byte{0x30, 0x55, 0x32, 0x28, 0x6D, 0x6F, 0x29, 0x5A},
+		[]byte{0x55, 0xCB, 0x37, 0x74, 0xD1, 0x3E, 0xF2, 0x01}},
+	{
+		[]byte{0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},
+		[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
+		[]byte{0xFA, 0x34, 0xEC, 0x48, 0x47, 0xB2, 0x68, 0xB2}},
+	{
+		[]byte{0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E},
+		[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
+		[]byte{0xA7, 0x90, 0x79, 0x51, 0x08, 0xEA, 0x3C, 0xAE}},
+	{
+		[]byte{0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE},
+		[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
+		[]byte{0xC3, 0x9E, 0x07, 0x2D, 0x9F, 0xAC, 0x63, 0x1D}},
+	{
+		[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+		[]byte{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
+		[]byte{0x01, 0x49, 0x33, 0xE0, 0xCD, 0xAF, 0xF6, 0xE4}},
+	{
+		[]byte{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
+		[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+		[]byte{0xF2, 0x1E, 0x9A, 0x77, 0xB7, 0x1C, 0x49, 0xBC}},
+	{
+		[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
+		[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+		[]byte{0x24, 0x59, 0x46, 0x88, 0x57, 0x54, 0x36, 0x9A}},
+	{
+		[]byte{0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10},
+		[]byte{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
+		[]byte{0x6B, 0x5C, 0x5A, 0x9C, 0x5D, 0x9E, 0x0A, 0x5A}},
+}
+
+func TestCipherEncrypt(t *testing.T) {
+	for i, tt := range encryptTests {
+		c, err := NewCipher(tt.key)
+		if err != nil {
+			t.Errorf("NewCipher(%d bytes) = %s", len(tt.key), err)
+			continue
+		}
+		ct := make([]byte, len(tt.out))
+		c.Encrypt(ct, tt.in)
+		for j, v := range ct {
+			if v != tt.out[j] {
+				t.Errorf("Cipher.Encrypt, test vector #%d: cipher-text[%d] = %#x, expected %#x", i, j, v, tt.out[j])
+				break
+			}
+		}
+	}
+}
+
+func TestCipherDecrypt(t *testing.T) {
+	for i, tt := range encryptTests {
+		c, err := NewCipher(tt.key)
+		if err != nil {
+			t.Errorf("NewCipher(%d bytes) = %s", len(tt.key), err)
+			continue
+		}
+		pt := make([]byte, len(tt.in))
+		c.Decrypt(pt, tt.out)
+		for j, v := range pt {
+			if v != tt.in[j] {
+				t.Errorf("Cipher.Decrypt, test vector #%d: plain-text[%d] = %#x, expected %#x", i, j, v, tt.in[j])
+				break
+			}
+		}
+	}
+}
+
+func TestSaltedCipherKeyLength(t *testing.T) {
+	if _, err := NewSaltedCipher(nil, []byte{'a'}); err != KeySizeError(0) {
+		t.Errorf("NewSaltedCipher with short key, gave error %#v, expected %#v", err, KeySizeError(0))
+	}
+
+	// A 57-byte key. One over the typical blowfish restriction.
+	key := []byte("012345678901234567890123456789012345678901234567890123456")
+	if _, err := NewSaltedCipher(key, []byte{'a'}); err != nil {
+		t.Errorf("NewSaltedCipher with long key, gave error %#v", err)
+	}
+}
+
+// Test vectors generated with Blowfish from OpenSSH.
+var saltedVectors = [][8]byte{
+	{0x0c, 0x82, 0x3b, 0x7b, 0x8d, 0x01, 0x4b, 0x7e},
+	{0xd1, 0xe1, 0x93, 0xf0, 0x70, 0xa6, 0xdb, 0x12},
+	{0xfc, 0x5e, 0xba, 0xde, 0xcb, 0xf8, 0x59, 0xad},
+	{0x8a, 0x0c, 0x76, 0xe7, 0xdd, 0x2c, 0xd3, 0xa8},
+	{0x2c, 0xcb, 0x7b, 0xee, 0xac, 0x7b, 0x7f, 0xf8},
+	{0xbb, 0xf6, 0x30, 0x6f, 0xe1, 0x5d, 0x62, 0xbf},
+	{0x97, 0x1e, 0xc1, 0x3d, 0x3d, 0xe0, 0x11, 0xe9},
+	{0x06, 0xd7, 0x4d, 0xb1, 0x80, 0xa3, 0xb1, 0x38},
+	{0x67, 0xa1, 0xa9, 0x75, 0x0e, 0x5b, 0xc6, 0xb4},
+	{0x51, 0x0f, 0x33, 0x0e, 0x4f, 0x67, 0xd2, 0x0c},
+	{0xf1, 0x73, 0x7e, 0xd8, 0x44, 0xea, 0xdb, 0xe5},
+	{0x14, 0x0e, 0x16, 0xce, 0x7f, 0x4a, 0x9c, 0x7b},
+	{0x4b, 0xfe, 0x43, 0xfd, 0xbf, 0x36, 0x04, 0x47},
+	{0xb1, 0xeb, 0x3e, 0x15, 0x36, 0xa7, 0xbb, 0xe2},
+	{0x6d, 0x0b, 0x41, 0xdd, 0x00, 0x98, 0x0b, 0x19},
+	{0xd3, 0xce, 0x45, 0xce, 0x1d, 0x56, 0xb7, 0xfc},
+	{0xd9, 0xf0, 0xfd, 0xda, 0xc0, 0x23, 0xb7, 0x93},
+	{0x4c, 0x6f, 0xa1, 0xe4, 0x0c, 0xa8, 0xca, 0x57},
+	{0xe6, 0x2f, 0x28, 0xa7, 0x0c, 0x94, 0x0d, 0x08},
+	{0x8f, 0xe3, 0xf0, 0xb6, 0x29, 0xe3, 0x44, 0x03},
+	{0xff, 0x98, 0xdd, 0x04, 0x45, 0xb4, 0x6d, 0x1f},
+	{0x9e, 0x45, 0x4d, 0x18, 0x40, 0x53, 0xdb, 0xef},
+	{0xb7, 0x3b, 0xef, 0x29, 0xbe, 0xa8, 0x13, 0x71},
+	{0x02, 0x54, 0x55, 0x41, 0x8e, 0x04, 0xfc, 0xad},
+	{0x6a, 0x0a, 0xee, 0x7c, 0x10, 0xd9, 0x19, 0xfe},
+	{0x0a, 0x22, 0xd9, 0x41, 0xcc, 0x23, 0x87, 0x13},
+	{0x6e, 0xff, 0x1f, 0xff, 0x36, 0x17, 0x9c, 0xbe},
+	{0x79, 0xad, 0xb7, 0x40, 0xf4, 0x9f, 0x51, 0xa6},
+	{0x97, 0x81, 0x99, 0xa4, 0xde, 0x9e, 0x9f, 0xb6},
+	{0x12, 0x19, 0x7a, 0x28, 0xd0, 0xdc, 0xcc, 0x92},
+	{0x81, 0xda, 0x60, 0x1e, 0x0e, 0xdd, 0x65, 0x56},
+	{0x7d, 0x76, 0x20, 0xb2, 0x73, 0xc9, 0x9e, 0xee},
+}
+
+func TestSaltedCipher(t *testing.T) {
+	var key, salt [32]byte
+	for i := range key {
+		key[i] = byte(i)
+		salt[i] = byte(i + 32)
+	}
+	for i, v := range saltedVectors {
+		c, err := NewSaltedCipher(key[:], salt[:i])
+		if err != nil {
+			t.Fatal(err)
+		}
+		var buf [8]byte
+		c.Encrypt(buf[:], buf[:])
+		if v != buf {
+			t.Errorf("%d: expected %x, got %x", i, v, buf)
+		}
+	}
+}
+
+func BenchmarkExpandKeyWithSalt(b *testing.B) {
+	key := make([]byte, 32)
+	salt := make([]byte, 16)
+	c, _ := NewCipher(key)
+	for i := 0; i < b.N; i++ {
+		expandKeyWithSalt(key, salt, c)
+	}
+}
+
+func BenchmarkExpandKey(b *testing.B) {
+	key := make([]byte, 32)
+	c, _ := NewCipher(key)
+	for i := 0; i < b.N; i++ {
+		ExpandKey(key, c)
+	}
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/blowfish/cipher.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/blowfish/cipher.go b/cli/vendor/golang.org/x/crypto/blowfish/cipher.go
new file mode 100644
index 0000000..542984a
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/blowfish/cipher.go
@@ -0,0 +1,91 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package blowfish implements Bruce Schneier's Blowfish encryption algorithm.
+package blowfish // import "golang.org/x/crypto/blowfish"
+
+// The code is a port of Bruce Schneier's C implementation.
+// See http://www.schneier.com/blowfish.html.
+
+import "strconv"
+
+// The Blowfish block size in bytes.
+const BlockSize = 8
+
+// A Cipher is an instance of Blowfish encryption using a particular key.
+type Cipher struct {
+	p              [18]uint32
+	s0, s1, s2, s3 [256]uint32
+}
+
+type KeySizeError int
+
+func (k KeySizeError) Error() string {
+	return "crypto/blowfish: invalid key size " + strconv.Itoa(int(k))
+}
+
+// NewCipher creates and returns a Cipher.
+// The key argument should be the Blowfish key, from 1 to 56 bytes.
+func NewCipher(key []byte) (*Cipher, error) {
+	var result Cipher
+	if k := len(key); k < 1 || k > 56 {
+		return nil, KeySizeError(k)
+	}
+	initCipher(&result)
+	ExpandKey(key, &result)
+	return &result, nil
+}
+
+// NewSaltedCipher creates a returns a Cipher that folds a salt into its key
+// schedule. For most purposes, NewCipher, instead of NewSaltedCipher, is
+// sufficient and desirable. For bcrypt compatiblity, the key can be over 56
+// bytes.
+func NewSaltedCipher(key, salt []byte) (*Cipher, error) {
+	if len(salt) == 0 {
+		return NewCipher(key)
+	}
+	var result Cipher
+	if k := len(key); k < 1 {
+		return nil, KeySizeError(k)
+	}
+	initCipher(&result)
+	expandKeyWithSalt(key, salt, &result)
+	return &result, nil
+}
+
+// BlockSize returns the Blowfish block size, 8 bytes.
+// It is necessary to satisfy the Block interface in the
+// package "crypto/cipher".
+func (c *Cipher) BlockSize() int { return BlockSize }
+
+// Encrypt encrypts the 8-byte buffer src using the key k
+// and stores the result in dst.
+// Note that for amounts of data larger than a block,
+// it is not safe to just call Encrypt on successive blocks;
+// instead, use an encryption mode like CBC (see crypto/cipher/cbc.go).
+func (c *Cipher) Encrypt(dst, src []byte) {
+	l := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
+	r := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
+	l, r = encryptBlock(l, r, c)
+	dst[0], dst[1], dst[2], dst[3] = byte(l>>24), byte(l>>16), byte(l>>8), byte(l)
+	dst[4], dst[5], dst[6], dst[7] = byte(r>>24), byte(r>>16), byte(r>>8), byte(r)
+}
+
+// Decrypt decrypts the 8-byte buffer src using the key k
+// and stores the result in dst.
+func (c *Cipher) Decrypt(dst, src []byte) {
+	l := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
+	r := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
+	l, r = decryptBlock(l, r, c)
+	dst[0], dst[1], dst[2], dst[3] = byte(l>>24), byte(l>>16), byte(l>>8), byte(l)
+	dst[4], dst[5], dst[6], dst[7] = byte(r>>24), byte(r>>16), byte(r>>8), byte(r)
+}
+
+func initCipher(c *Cipher) {
+	copy(c.p[0:], p[0:])
+	copy(c.s0[0:], s0[0:])
+	copy(c.s1[0:], s1[0:])
+	copy(c.s2[0:], s2[0:])
+	copy(c.s3[0:], s3[0:])
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/blowfish/const.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/blowfish/const.go b/cli/vendor/golang.org/x/crypto/blowfish/const.go
new file mode 100644
index 0000000..8c5ee4c
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/blowfish/const.go
@@ -0,0 +1,199 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// The startup permutation array and substitution boxes.
+// They are the hexadecimal digits of PI; see:
+// http://www.schneier.com/code/constants.txt.
+
+package blowfish
+
+var s0 = [256]uint32{
+	0xd1310ba6, 0x98dfb5ac, 0x2ffd72db, 0xd01adfb7, 0xb8e1afed, 0x6a267e96,
+	0xba7c9045, 0xf12c7f99, 0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efc16,
+	0x636920d8, 0x71574e69, 0xa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658,
+	0x718bcd58, 0x82154aee, 0x7b54a41d, 0xc25a59b5, 0x9c30d539, 0x2af26013,
+	0xc5d1b023, 0x286085f0, 0xca417918, 0xb8db38ef, 0x8e79dcb0, 0x603a180e,
+	0x6c9e0e8b, 0xb01e8a3e, 0xd71577c1, 0xbd314b27, 0x78af2fda, 0x55605c60,
+	0xe65525f3, 0xaa55ab94, 0x57489862, 0x63e81440, 0x55ca396a, 0x2aab10b6,
+	0xb4cc5c34, 0x1141e8ce, 0xa15486af, 0x7c72e993, 0xb3ee1411, 0x636fbc2a,
+	0x2ba9c55d, 0x741831f6, 0xce5c3e16, 0x9b87931e, 0xafd6ba33, 0x6c24cf5c,
+	0x7a325381, 0x28958677, 0x3b8f4898, 0x6b4bb9af, 0xc4bfe81b, 0x66282193,
+	0x61d809cc, 0xfb21a991, 0x487cac60, 0x5dec8032, 0xef845d5d, 0xe98575b1,
+	0xdc262302, 0xeb651b88, 0x23893e81, 0xd396acc5, 0x0f6d6ff3, 0x83f44239,
+	0x2e0b4482, 0xa4842004, 0x69c8f04a, 0x9e1f9b5e, 0x21c66842, 0xf6e96c9a,
+	0x670c9c61, 0xabd388f0, 0x6a51a0d2, 0xd8542f68, 0x960fa728, 0xab5133a3,
+	0x6eef0b6c, 0x137a3be4, 0xba3bf050, 0x7efb2a98, 0xa1f1651d, 0x39af0176,
+	0x66ca593e, 0x82430e88, 0x8cee8619, 0x456f9fb4, 0x7d84a5c3, 0x3b8b5ebe,
+	0xe06f75d8, 0x85c12073, 0x401a449f, 0x56c16aa6, 0x4ed3aa62, 0x363f7706,
+	0x1bfedf72, 0x429b023d, 0x37d0d724, 0xd00a1248, 0xdb0fead3, 0x49f1c09b,
+	0x075372c9, 0x80991b7b, 0x25d479d8, 0xf6e8def7, 0xe3fe501a, 0xb6794c3b,
+	0x976ce0bd, 0x04c006ba, 0xc1a94fb6, 0x409f60c4, 0x5e5c9ec2, 0x196a2463,
+	0x68fb6faf, 0x3e6c53b5, 0x1339b2eb, 0x3b52ec6f, 0x6dfc511f, 0x9b30952c,
+	0xcc814544, 0xaf5ebd09, 0xbee3d004, 0xde334afd, 0x660f2807, 0x192e4bb3,
+	0xc0cba857, 0x45c8740f, 0xd20b5f39, 0xb9d3fbdb, 0x5579c0bd, 0x1a60320a,
+	0xd6a100c6, 0x402c7279, 0x679f25fe, 0xfb1fa3cc, 0x8ea5e9f8, 0xdb3222f8,
+	0x3c7516df, 0xfd616b15, 0x2f501ec8, 0xad0552ab, 0x323db5fa, 0xfd238760,
+	0x53317b48, 0x3e00df82, 0x9e5c57bb, 0xca6f8ca0, 0x1a87562e, 0xdf1769db,
+	0xd542a8f6, 0x287effc3, 0xac6732c6, 0x8c4f5573, 0x695b27b0, 0xbbca58c8,
+	0xe1ffa35d, 0xb8f011a0, 0x10fa3d98, 0xfd2183b8, 0x4afcb56c, 0x2dd1d35b,
+	0x9a53e479, 0xb6f84565, 0xd28e49bc, 0x4bfb9790, 0xe1ddf2da, 0xa4cb7e33,
+	0x62fb1341, 0xcee4c6e8, 0xef20cada, 0x36774c01, 0xd07e9efe, 0x2bf11fb4,
+	0x95dbda4d, 0xae909198, 0xeaad8e71, 0x6b93d5a0, 0xd08ed1d0, 0xafc725e0,
+	0x8e3c5b2f, 0x8e7594b7, 0x8ff6e2fb, 0xf2122b64, 0x8888b812, 0x900df01c,
+	0x4fad5ea0, 0x688fc31c, 0xd1cff191, 0xb3a8c1ad, 0x2f2f2218, 0xbe0e1777,
+	0xea752dfe, 0x8b021fa1, 0xe5a0cc0f, 0xb56f74e8, 0x18acf3d6, 0xce89e299,
+	0xb4a84fe0, 0xfd13e0b7, 0x7cc43b81, 0xd2ada8d9, 0x165fa266, 0x80957705,
+	0x93cc7314, 0x211a1477, 0xe6ad2065, 0x77b5fa86, 0xc75442f5, 0xfb9d35cf,
+	0xebcdaf0c, 0x7b3e89a0, 0xd6411bd3, 0xae1e7e49, 0x00250e2d, 0x2071b35e,
+	0x226800bb, 0x57b8e0af, 0x2464369b, 0xf009b91e, 0x5563911d, 0x59dfa6aa,
+	0x78c14389, 0xd95a537f, 0x207d5ba2, 0x02e5b9c5, 0x83260376, 0x6295cfa9,
+	0x11c81968, 0x4e734a41, 0xb3472dca, 0x7b14a94a, 0x1b510052, 0x9a532915,
+	0xd60f573f, 0xbc9bc6e4, 0x2b60a476, 0x81e67400, 0x08ba6fb5, 0x571be91f,
+	0xf296ec6b, 0x2a0dd915, 0xb6636521, 0xe7b9f9b6, 0xff34052e, 0xc5855664,
+	0x53b02d5d, 0xa99f8fa1, 0x08ba4799, 0x6e85076a,
+}
+
+var s1 = [256]uint32{
+	0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623, 0xad6ea6b0, 0x49a7df7d,
+	0x9cee60b8, 0x8fedb266, 0xecaa8c71, 0x699a17ff, 0x5664526c, 0xc2b19ee1,
+	0x193602a5, 0x75094c29, 0xa0591340, 0xe4183a3e, 0x3f54989a, 0x5b429d65,
+	0x6b8fe4d6, 0x99f73fd6, 0xa1d29c07, 0xefe830f5, 0x4d2d38e6, 0xf0255dc1,
+	0x4cdd2086, 0x8470eb26, 0x6382e9c6, 0x021ecc5e, 0x09686b3f, 0x3ebaefc9,
+	0x3c971814, 0x6b6a70a1, 0x687f3584, 0x52a0e286, 0xb79c5305, 0xaa500737,
+	0x3e07841c, 0x7fdeae5c, 0x8e7d44ec, 0x5716f2b8, 0xb03ada37, 0xf0500c0d,
+	0xf01c1f04, 0x0200b3ff, 0xae0cf51a, 0x3cb574b2, 0x25837a58, 0xdc0921bd,
+	0xd19113f9, 0x7ca92ff6, 0x94324773, 0x22f54701, 0x3ae5e581, 0x37c2dadc,
+	0xc8b57634, 0x9af3dda7, 0xa9446146, 0x0fd0030e, 0xecc8c73e, 0xa4751e41,
+	0xe238cd99, 0x3bea0e2f, 0x3280bba1, 0x183eb331, 0x4e548b38, 0x4f6db908,
+	0x6f420d03, 0xf60a04bf, 0x2cb81290, 0x24977c79, 0x5679b072, 0xbcaf89af,
+	0xde9a771f, 0xd9930810, 0xb38bae12, 0xdccf3f2e, 0x5512721f, 0x2e6b7124,
+	0x501adde6, 0x9f84cd87, 0x7a584718, 0x7408da17, 0xbc9f9abc, 0xe94b7d8c,
+	0xec7aec3a, 0xdb851dfa, 0x63094366, 0xc464c3d2, 0xef1c1847, 0x3215d908,
+	0xdd433b37, 0x24c2ba16, 0x12a14d43, 0x2a65c451, 0x50940002, 0x133ae4dd,
+	0x71dff89e, 0x10314e55, 0x81ac77d6, 0x5f11199b, 0x043556f1, 0xd7a3c76b,
+	0x3c11183b, 0x5924a509, 0xf28fe6ed, 0x97f1fbfa, 0x9ebabf2c, 0x1e153c6e,
+	0x86e34570, 0xeae96fb1, 0x860e5e0a, 0x5a3e2ab3, 0x771fe71c, 0x4e3d06fa,
+	0x2965dcb9, 0x99e71d0f, 0x803e89d6, 0x5266c825, 0x2e4cc978, 0x9c10b36a,
+	0xc6150eba, 0x94e2ea78, 0xa5fc3c53, 0x1e0a2df4, 0xf2f74ea7, 0x361d2b3d,
+	0x1939260f, 0x19c27960, 0x5223a708, 0xf71312b6, 0xebadfe6e, 0xeac31f66,
+	0xe3bc4595, 0xa67bc883, 0xb17f37d1, 0x018cff28, 0xc332ddef, 0xbe6c5aa5,
+	0x65582185, 0x68ab9802, 0xeecea50f, 0xdb2f953b, 0x2aef7dad, 0x5b6e2f84,
+	0x1521b628, 0x29076170, 0xecdd4775, 0x619f1510, 0x13cca830, 0xeb61bd96,
+	0x0334fe1e, 0xaa0363cf, 0xb5735c90, 0x4c70a239, 0xd59e9e0b, 0xcbaade14,
+	0xeecc86bc, 0x60622ca7, 0x9cab5cab, 0xb2f3846e, 0x648b1eaf, 0x19bdf0ca,
+	0xa02369b9, 0x655abb50, 0x40685a32, 0x3c2ab4b3, 0x319ee9d5, 0xc021b8f7,
+	0x9b540b19, 0x875fa099, 0x95f7997e, 0x623d7da8, 0xf837889a, 0x97e32d77,
+	0x11ed935f, 0x16681281, 0x0e358829, 0xc7e61fd6, 0x96dedfa1, 0x7858ba99,
+	0x57f584a5, 0x1b227263, 0x9b83c3ff, 0x1ac24696, 0xcdb30aeb, 0x532e3054,
+	0x8fd948e4, 0x6dbc3128, 0x58ebf2ef, 0x34c6ffea, 0xfe28ed61, 0xee7c3c73,
+	0x5d4a14d9, 0xe864b7e3, 0x42105d14, 0x203e13e0, 0x45eee2b6, 0xa3aaabea,
+	0xdb6c4f15, 0xfacb4fd0, 0xc742f442, 0xef6abbb5, 0x654f3b1d, 0x41cd2105,
+	0xd81e799e, 0x86854dc7, 0xe44b476a, 0x3d816250, 0xcf62a1f2, 0x5b8d2646,
+	0xfc8883a0, 0xc1c7b6a3, 0x7f1524c3, 0x69cb7492, 0x47848a0b, 0x5692b285,
+	0x095bbf00, 0xad19489d, 0x1462b174, 0x23820e00, 0x58428d2a, 0x0c55f5ea,
+	0x1dadf43e, 0x233f7061, 0x3372f092, 0x8d937e41, 0xd65fecf1, 0x6c223bdb,
+	0x7cde3759, 0xcbee7460, 0x4085f2a7, 0xce77326e, 0xa6078084, 0x19f8509e,
+	0xe8efd855, 0x61d99735, 0xa969a7aa, 0xc50c06c2, 0x5a04abfc, 0x800bcadc,
+	0x9e447a2e, 0xc3453484, 0xfdd56705, 0x0e1e9ec9, 0xdb73dbd3, 0x105588cd,
+	0x675fda79, 0xe3674340, 0xc5c43465, 0x713e38d8, 0x3d28f89e, 0xf16dff20,
+	0x153e21e7, 0x8fb03d4a, 0xe6e39f2b, 0xdb83adf7,
+}
+
+var s2 = [256]uint32{
+	0xe93d5a68, 0x948140f7, 0xf64c261c, 0x94692934, 0x411520f7, 0x7602d4f7,
+	0xbcf46b2e, 0xd4a20068, 0xd4082471, 0x3320f46a, 0x43b7d4b7, 0x500061af,
+	0x1e39f62e, 0x97244546, 0x14214f74, 0xbf8b8840, 0x4d95fc1d, 0x96b591af,
+	0x70f4ddd3, 0x66a02f45, 0xbfbc09ec, 0x03bd9785, 0x7fac6dd0, 0x31cb8504,
+	0x96eb27b3, 0x55fd3941, 0xda2547e6, 0xabca0a9a, 0x28507825, 0x530429f4,
+	0x0a2c86da, 0xe9b66dfb, 0x68dc1462, 0xd7486900, 0x680ec0a4, 0x27a18dee,
+	0x4f3ffea2, 0xe887ad8c, 0xb58ce006, 0x7af4d6b6, 0xaace1e7c, 0xd3375fec,
+	0xce78a399, 0x406b2a42, 0x20fe9e35, 0xd9f385b9, 0xee39d7ab, 0x3b124e8b,
+	0x1dc9faf7, 0x4b6d1856, 0x26a36631, 0xeae397b2, 0x3a6efa74, 0xdd5b4332,
+	0x6841e7f7, 0xca7820fb, 0xfb0af54e, 0xd8feb397, 0x454056ac, 0xba489527,
+	0x55533a3a, 0x20838d87, 0xfe6ba9b7, 0xd096954b, 0x55a867bc, 0xa1159a58,
+	0xcca92963, 0x99e1db33, 0xa62a4a56, 0x3f3125f9, 0x5ef47e1c, 0x9029317c,
+	0xfdf8e802, 0x04272f70, 0x80bb155c, 0x05282ce3, 0x95c11548, 0xe4c66d22,
+	0x48c1133f, 0xc70f86dc, 0x07f9c9ee, 0x41041f0f, 0x404779a4, 0x5d886e17,
+	0x325f51eb, 0xd59bc0d1, 0xf2bcc18f, 0x41113564, 0x257b7834, 0x602a9c60,
+	0xdff8e8a3, 0x1f636c1b, 0x0e12b4c2, 0x02e1329e, 0xaf664fd1, 0xcad18115,
+	0x6b2395e0, 0x333e92e1, 0x3b240b62, 0xeebeb922, 0x85b2a20e, 0xe6ba0d99,
+	0xde720c8c, 0x2da2f728, 0xd0127845, 0x95b794fd, 0x647d0862, 0xe7ccf5f0,
+	0x5449a36f, 0x877d48fa, 0xc39dfd27, 0xf33e8d1e, 0x0a476341, 0x992eff74,
+	0x3a6f6eab, 0xf4f8fd37, 0xa812dc60, 0xa1ebddf8, 0x991be14c, 0xdb6e6b0d,
+	0xc67b5510, 0x6d672c37, 0x2765d43b, 0xdcd0e804, 0xf1290dc7, 0xcc00ffa3,
+	0xb5390f92, 0x690fed0b, 0x667b9ffb, 0xcedb7d9c, 0xa091cf0b, 0xd9155ea3,
+	0xbb132f88, 0x515bad24, 0x7b9479bf, 0x763bd6eb, 0x37392eb3, 0xcc115979,
+	0x8026e297, 0xf42e312d, 0x6842ada7, 0xc66a2b3b, 0x12754ccc, 0x782ef11c,
+	0x6a124237, 0xb79251e7, 0x06a1bbe6, 0x4bfb6350, 0x1a6b1018, 0x11caedfa,
+	0x3d25bdd8, 0xe2e1c3c9, 0x44421659, 0x0a121386, 0xd90cec6e, 0xd5abea2a,
+	0x64af674e, 0xda86a85f, 0xbebfe988, 0x64e4c3fe, 0x9dbc8057, 0xf0f7c086,
+	0x60787bf8, 0x6003604d, 0xd1fd8346, 0xf6381fb0, 0x7745ae04, 0xd736fccc,
+	0x83426b33, 0xf01eab71, 0xb0804187, 0x3c005e5f, 0x77a057be, 0xbde8ae24,
+	0x55464299, 0xbf582e61, 0x4e58f48f, 0xf2ddfda2, 0xf474ef38, 0x8789bdc2,
+	0x5366f9c3, 0xc8b38e74, 0xb475f255, 0x46fcd9b9, 0x7aeb2661, 0x8b1ddf84,
+	0x846a0e79, 0x915f95e2, 0x466e598e, 0x20b45770, 0x8cd55591, 0xc902de4c,
+	0xb90bace1, 0xbb8205d0, 0x11a86248, 0x7574a99e, 0xb77f19b6, 0xe0a9dc09,
+	0x662d09a1, 0xc4324633, 0xe85a1f02, 0x09f0be8c, 0x4a99a025, 0x1d6efe10,
+	0x1ab93d1d, 0x0ba5a4df, 0xa186f20f, 0x2868f169, 0xdcb7da83, 0x573906fe,
+	0xa1e2ce9b, 0x4fcd7f52, 0x50115e01, 0xa70683fa, 0xa002b5c4, 0x0de6d027,
+	0x9af88c27, 0x773f8641, 0xc3604c06, 0x61a806b5, 0xf0177a28, 0xc0f586e0,
+	0x006058aa, 0x30dc7d62, 0x11e69ed7, 0x2338ea63, 0x53c2dd94, 0xc2c21634,
+	0xbbcbee56, 0x90bcb6de, 0xebfc7da1, 0xce591d76, 0x6f05e409, 0x4b7c0188,
+	0x39720a3d, 0x7c927c24, 0x86e3725f, 0x724d9db9, 0x1ac15bb4, 0xd39eb8fc,
+	0xed545578, 0x08fca5b5, 0xd83d7cd3, 0x4dad0fc4, 0x1e50ef5e, 0xb161e6f8,
+	0xa28514d9, 0x6c51133c, 0x6fd5c7e7, 0x56e14ec4, 0x362abfce, 0xddc6c837,
+	0xd79a3234, 0x92638212, 0x670efa8e, 0x406000e0,
+}
+
+var s3 = [256]uint32{
+	0x3a39ce37, 0xd3faf5cf, 0xabc27737, 0x5ac52d1b, 0x5cb0679e, 0x4fa33742,
+	0xd3822740, 0x99bc9bbe, 0xd5118e9d, 0xbf0f7315, 0xd62d1c7e, 0xc700c47b,
+	0xb78c1b6b, 0x21a19045, 0xb26eb1be, 0x6a366eb4, 0x5748ab2f, 0xbc946e79,
+	0xc6a376d2, 0x6549c2c8, 0x530ff8ee, 0x468dde7d, 0xd5730a1d, 0x4cd04dc6,
+	0x2939bbdb, 0xa9ba4650, 0xac9526e8, 0xbe5ee304, 0xa1fad5f0, 0x6a2d519a,
+	0x63ef8ce2, 0x9a86ee22, 0xc089c2b8, 0x43242ef6, 0xa51e03aa, 0x9cf2d0a4,
+	0x83c061ba, 0x9be96a4d, 0x8fe51550, 0xba645bd6, 0x2826a2f9, 0xa73a3ae1,
+	0x4ba99586, 0xef5562e9, 0xc72fefd3, 0xf752f7da, 0x3f046f69, 0x77fa0a59,
+	0x80e4a915, 0x87b08601, 0x9b09e6ad, 0x3b3ee593, 0xe990fd5a, 0x9e34d797,
+	0x2cf0b7d9, 0x022b8b51, 0x96d5ac3a, 0x017da67d, 0xd1cf3ed6, 0x7c7d2d28,
+	0x1f9f25cf, 0xadf2b89b, 0x5ad6b472, 0x5a88f54c, 0xe029ac71, 0xe019a5e6,
+	0x47b0acfd, 0xed93fa9b, 0xe8d3c48d, 0x283b57cc, 0xf8d56629, 0x79132e28,
+	0x785f0191, 0xed756055, 0xf7960e44, 0xe3d35e8c, 0x15056dd4, 0x88f46dba,
+	0x03a16125, 0x0564f0bd, 0xc3eb9e15, 0x3c9057a2, 0x97271aec, 0xa93a072a,
+	0x1b3f6d9b, 0x1e6321f5, 0xf59c66fb, 0x26dcf319, 0x7533d928, 0xb155fdf5,
+	0x03563482, 0x8aba3cbb, 0x28517711, 0xc20ad9f8, 0xabcc5167, 0xccad925f,
+	0x4de81751, 0x3830dc8e, 0x379d5862, 0x9320f991, 0xea7a90c2, 0xfb3e7bce,
+	0x5121ce64, 0x774fbe32, 0xa8b6e37e, 0xc3293d46, 0x48de5369, 0x6413e680,
+	0xa2ae0810, 0xdd6db224, 0x69852dfd, 0x09072166, 0xb39a460a, 0x6445c0dd,
+	0x586cdecf, 0x1c20c8ae, 0x5bbef7dd, 0x1b588d40, 0xccd2017f, 0x6bb4e3bb,
+	0xdda26a7e, 0x3a59ff45, 0x3e350a44, 0xbcb4cdd5, 0x72eacea8, 0xfa6484bb,
+	0x8d6612ae, 0xbf3c6f47, 0xd29be463, 0x542f5d9e, 0xaec2771b, 0xf64e6370,
+	0x740e0d8d, 0xe75b1357, 0xf8721671, 0xaf537d5d, 0x4040cb08, 0x4eb4e2cc,
+	0x34d2466a, 0x0115af84, 0xe1b00428, 0x95983a1d, 0x06b89fb4, 0xce6ea048,
+	0x6f3f3b82, 0x3520ab82, 0x011a1d4b, 0x277227f8, 0x611560b1, 0xe7933fdc,
+	0xbb3a792b, 0x344525bd, 0xa08839e1, 0x51ce794b, 0x2f32c9b7, 0xa01fbac9,
+	0xe01cc87e, 0xbcc7d1f6, 0xcf0111c3, 0xa1e8aac7, 0x1a908749, 0xd44fbd9a,
+	0xd0dadecb, 0xd50ada38, 0x0339c32a, 0xc6913667, 0x8df9317c, 0xe0b12b4f,
+	0xf79e59b7, 0x43f5bb3a, 0xf2d519ff, 0x27d9459c, 0xbf97222c, 0x15e6fc2a,
+	0x0f91fc71, 0x9b941525, 0xfae59361, 0xceb69ceb, 0xc2a86459, 0x12baa8d1,
+	0xb6c1075e, 0xe3056a0c, 0x10d25065, 0xcb03a442, 0xe0ec6e0e, 0x1698db3b,
+	0x4c98a0be, 0x3278e964, 0x9f1f9532, 0xe0d392df, 0xd3a0342b, 0x8971f21e,
+	0x1b0a7441, 0x4ba3348c, 0xc5be7120, 0xc37632d8, 0xdf359f8d, 0x9b992f2e,
+	0xe60b6f47, 0x0fe3f11d, 0xe54cda54, 0x1edad891, 0xce6279cf, 0xcd3e7e6f,
+	0x1618b166, 0xfd2c1d05, 0x848fd2c5, 0xf6fb2299, 0xf523f357, 0xa6327623,
+	0x93a83531, 0x56cccd02, 0xacf08162, 0x5a75ebb5, 0x6e163697, 0x88d273cc,
+	0xde966292, 0x81b949d0, 0x4c50901b, 0x71c65614, 0xe6c6c7bd, 0x327a140a,
+	0x45e1d006, 0xc3f27b9a, 0xc9aa53fd, 0x62a80f00, 0xbb25bfe2, 0x35bdd2f6,
+	0x71126905, 0xb2040222, 0xb6cbcf7c, 0xcd769c2b, 0x53113ec0, 0x1640e3d3,
+	0x38abbd60, 0x2547adf0, 0xba38209c, 0xf746ce76, 0x77afa1c5, 0x20756060,
+	0x85cbfe4e, 0x8ae88dd8, 0x7aaaf9b0, 0x4cf9aa7e, 0x1948c25c, 0x02fb8a8c,
+	0x01c36ae4, 0xd6ebe1f9, 0x90d4f869, 0xa65cdea0, 0x3f09252d, 0xc208e69f,
+	0xb74e6132, 0xce77e25b, 0x578fdfe3, 0x3ac372e6,
+}
+
+var p = [18]uint32{
+	0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344, 0xa4093822, 0x299f31d0,
+	0x082efa98, 0xec4e6c89, 0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
+	0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917, 0x9216d5d9, 0x8979fb1b,
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/bn256.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/bn256.go b/cli/vendor/golang.org/x/crypto/bn256/bn256.go
new file mode 100644
index 0000000..014f8b3
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/bn256.go
@@ -0,0 +1,404 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package bn256 implements a particular bilinear group at the 128-bit security level.
+//
+// Bilinear groups are the basis of many of the new cryptographic protocols
+// that have been proposed over the past decade. They consist of a triplet of
+// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
+// (where gₓ is a generator of the respective group). That function is called
+// a pairing function.
+//
+// This package specifically implements the Optimal Ate pairing over a 256-bit
+// Barreto-Naehrig curve as described in
+// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
+// with the implementation described in that paper.
+package bn256 // import "golang.org/x/crypto/bn256"
+
+import (
+	"crypto/rand"
+	"io"
+	"math/big"
+)
+
+// BUG(agl): this implementation is not constant time.
+// TODO(agl): keep GF(p²) elements in Mongomery form.
+
+// G1 is an abstract cyclic group. The zero value is suitable for use as the
+// output of an operation, but cannot be used as an input.
+type G1 struct {
+	p *curvePoint
+}
+
+// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
+func RandomG1(r io.Reader) (*big.Int, *G1, error) {
+	var k *big.Int
+	var err error
+
+	for {
+		k, err = rand.Int(r, Order)
+		if err != nil {
+			return nil, nil, err
+		}
+		if k.Sign() > 0 {
+			break
+		}
+	}
+
+	return k, new(G1).ScalarBaseMult(k), nil
+}
+
+func (g *G1) String() string {
+	return "bn256.G1" + g.p.String()
+}
+
+// ScalarBaseMult sets e to g*k where g is the generator of the group and
+// then returns e.
+func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
+	if e.p == nil {
+		e.p = newCurvePoint(nil)
+	}
+	e.p.Mul(curveGen, k, new(bnPool))
+	return e
+}
+
+// ScalarMult sets e to a*k and then returns e.
+func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
+	if e.p == nil {
+		e.p = newCurvePoint(nil)
+	}
+	e.p.Mul(a.p, k, new(bnPool))
+	return e
+}
+
+// Add sets e to a+b and then returns e.
+// BUG(agl): this function is not complete: a==b fails.
+func (e *G1) Add(a, b *G1) *G1 {
+	if e.p == nil {
+		e.p = newCurvePoint(nil)
+	}
+	e.p.Add(a.p, b.p, new(bnPool))
+	return e
+}
+
+// Neg sets e to -a and then returns e.
+func (e *G1) Neg(a *G1) *G1 {
+	if e.p == nil {
+		e.p = newCurvePoint(nil)
+	}
+	e.p.Negative(a.p)
+	return e
+}
+
+// Marshal converts n to a byte slice.
+func (n *G1) Marshal() []byte {
+	n.p.MakeAffine(nil)
+
+	xBytes := new(big.Int).Mod(n.p.x, p).Bytes()
+	yBytes := new(big.Int).Mod(n.p.y, p).Bytes()
+
+	// Each value is a 256-bit number.
+	const numBytes = 256 / 8
+
+	ret := make([]byte, numBytes*2)
+	copy(ret[1*numBytes-len(xBytes):], xBytes)
+	copy(ret[2*numBytes-len(yBytes):], yBytes)
+
+	return ret
+}
+
+// Unmarshal sets e to the result of converting the output of Marshal back into
+// a group element and then returns e.
+func (e *G1) Unmarshal(m []byte) (*G1, bool) {
+	// Each value is a 256-bit number.
+	const numBytes = 256 / 8
+
+	if len(m) != 2*numBytes {
+		return nil, false
+	}
+
+	if e.p == nil {
+		e.p = newCurvePoint(nil)
+	}
+
+	e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
+	e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
+
+	if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
+		// This is the point at infinity.
+		e.p.y.SetInt64(1)
+		e.p.z.SetInt64(0)
+		e.p.t.SetInt64(0)
+	} else {
+		e.p.z.SetInt64(1)
+		e.p.t.SetInt64(1)
+
+		if !e.p.IsOnCurve() {
+			return nil, false
+		}
+	}
+
+	return e, true
+}
+
+// G2 is an abstract cyclic group. The zero value is suitable for use as the
+// output of an operation, but cannot be used as an input.
+type G2 struct {
+	p *twistPoint
+}
+
+// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
+func RandomG2(r io.Reader) (*big.Int, *G2, error) {
+	var k *big.Int
+	var err error
+
+	for {
+		k, err = rand.Int(r, Order)
+		if err != nil {
+			return nil, nil, err
+		}
+		if k.Sign() > 0 {
+			break
+		}
+	}
+
+	return k, new(G2).ScalarBaseMult(k), nil
+}
+
+func (g *G2) String() string {
+	return "bn256.G2" + g.p.String()
+}
+
+// ScalarBaseMult sets e to g*k where g is the generator of the group and
+// then returns out.
+func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
+	if e.p == nil {
+		e.p = newTwistPoint(nil)
+	}
+	e.p.Mul(twistGen, k, new(bnPool))
+	return e
+}
+
+// ScalarMult sets e to a*k and then returns e.
+func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
+	if e.p == nil {
+		e.p = newTwistPoint(nil)
+	}
+	e.p.Mul(a.p, k, new(bnPool))
+	return e
+}
+
+// Add sets e to a+b and then returns e.
+// BUG(agl): this function is not complete: a==b fails.
+func (e *G2) Add(a, b *G2) *G2 {
+	if e.p == nil {
+		e.p = newTwistPoint(nil)
+	}
+	e.p.Add(a.p, b.p, new(bnPool))
+	return e
+}
+
+// Marshal converts n into a byte slice.
+func (n *G2) Marshal() []byte {
+	n.p.MakeAffine(nil)
+
+	xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes()
+	xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes()
+	yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes()
+	yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes()
+
+	// Each value is a 256-bit number.
+	const numBytes = 256 / 8
+
+	ret := make([]byte, numBytes*4)
+	copy(ret[1*numBytes-len(xxBytes):], xxBytes)
+	copy(ret[2*numBytes-len(xyBytes):], xyBytes)
+	copy(ret[3*numBytes-len(yxBytes):], yxBytes)
+	copy(ret[4*numBytes-len(yyBytes):], yyBytes)
+
+	return ret
+}
+
+// Unmarshal sets e to the result of converting the output of Marshal back into
+// a group element and then returns e.
+func (e *G2) Unmarshal(m []byte) (*G2, bool) {
+	// Each value is a 256-bit number.
+	const numBytes = 256 / 8
+
+	if len(m) != 4*numBytes {
+		return nil, false
+	}
+
+	if e.p == nil {
+		e.p = newTwistPoint(nil)
+	}
+
+	e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
+	e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
+	e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
+	e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
+
+	if e.p.x.x.Sign() == 0 &&
+		e.p.x.y.Sign() == 0 &&
+		e.p.y.x.Sign() == 0 &&
+		e.p.y.y.Sign() == 0 {
+		// This is the point at infinity.
+		e.p.y.SetOne()
+		e.p.z.SetZero()
+		e.p.t.SetZero()
+	} else {
+		e.p.z.SetOne()
+		e.p.t.SetOne()
+
+		if !e.p.IsOnCurve() {
+			return nil, false
+		}
+	}
+
+	return e, true
+}
+
+// GT is an abstract cyclic group. The zero value is suitable for use as the
+// output of an operation, but cannot be used as an input.
+type GT struct {
+	p *gfP12
+}
+
+func (g *GT) String() string {
+	return "bn256.GT" + g.p.String()
+}
+
+// ScalarMult sets e to a*k and then returns e.
+func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
+	if e.p == nil {
+		e.p = newGFp12(nil)
+	}
+	e.p.Exp(a.p, k, new(bnPool))
+	return e
+}
+
+// Add sets e to a+b and then returns e.
+func (e *GT) Add(a, b *GT) *GT {
+	if e.p == nil {
+		e.p = newGFp12(nil)
+	}
+	e.p.Mul(a.p, b.p, new(bnPool))
+	return e
+}
+
+// Neg sets e to -a and then returns e.
+func (e *GT) Neg(a *GT) *GT {
+	if e.p == nil {
+		e.p = newGFp12(nil)
+	}
+	e.p.Invert(a.p, new(bnPool))
+	return e
+}
+
+// Marshal converts n into a byte slice.
+func (n *GT) Marshal() []byte {
+	n.p.Minimal()
+
+	xxxBytes := n.p.x.x.x.Bytes()
+	xxyBytes := n.p.x.x.y.Bytes()
+	xyxBytes := n.p.x.y.x.Bytes()
+	xyyBytes := n.p.x.y.y.Bytes()
+	xzxBytes := n.p.x.z.x.Bytes()
+	xzyBytes := n.p.x.z.y.Bytes()
+	yxxBytes := n.p.y.x.x.Bytes()
+	yxyBytes := n.p.y.x.y.Bytes()
+	yyxBytes := n.p.y.y.x.Bytes()
+	yyyBytes := n.p.y.y.y.Bytes()
+	yzxBytes := n.p.y.z.x.Bytes()
+	yzyBytes := n.p.y.z.y.Bytes()
+
+	// Each value is a 256-bit number.
+	const numBytes = 256 / 8
+
+	ret := make([]byte, numBytes*12)
+	copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
+	copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
+	copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
+	copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
+	copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
+	copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
+	copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
+	copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
+	copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
+	copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
+	copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
+	copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
+
+	return ret
+}
+
+// Unmarshal sets e to the result of converting the output of Marshal back into
+// a group element and then returns e.
+func (e *GT) Unmarshal(m []byte) (*GT, bool) {
+	// Each value is a 256-bit number.
+	const numBytes = 256 / 8
+
+	if len(m) != 12*numBytes {
+		return nil, false
+	}
+
+	if e.p == nil {
+		e.p = newGFp12(nil)
+	}
+
+	e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
+	e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
+	e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
+	e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
+	e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
+	e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
+	e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
+	e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
+	e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
+	e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
+	e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
+	e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
+
+	return e, true
+}
+
+// Pair calculates an Optimal Ate pairing.
+func Pair(g1 *G1, g2 *G2) *GT {
+	return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
+}
+
+// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
+// number of allocations made during processing.
+type bnPool struct {
+	bns   []*big.Int
+	count int
+}
+
+func (pool *bnPool) Get() *big.Int {
+	if pool == nil {
+		return new(big.Int)
+	}
+
+	pool.count++
+	l := len(pool.bns)
+	if l == 0 {
+		return new(big.Int)
+	}
+
+	bn := pool.bns[l-1]
+	pool.bns = pool.bns[:l-1]
+	return bn
+}
+
+func (pool *bnPool) Put(bn *big.Int) {
+	if pool == nil {
+		return
+	}
+	pool.bns = append(pool.bns, bn)
+	pool.count--
+}
+
+func (pool *bnPool) Count() int {
+	return pool.count
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/bn256_test.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/bn256_test.go b/cli/vendor/golang.org/x/crypto/bn256/bn256_test.go
new file mode 100644
index 0000000..1cec388
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/bn256_test.go
@@ -0,0 +1,304 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+import (
+	"bytes"
+	"crypto/rand"
+	"math/big"
+	"testing"
+)
+
+func TestGFp2Invert(t *testing.T) {
+	pool := new(bnPool)
+
+	a := newGFp2(pool)
+	a.x.SetString("23423492374", 10)
+	a.y.SetString("12934872398472394827398470", 10)
+
+	inv := newGFp2(pool)
+	inv.Invert(a, pool)
+
+	b := newGFp2(pool).Mul(inv, a, pool)
+	if b.x.Int64() != 0 || b.y.Int64() != 1 {
+		t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y)
+	}
+
+	a.Put(pool)
+	b.Put(pool)
+	inv.Put(pool)
+
+	if c := pool.Count(); c > 0 {
+		t.Errorf("Pool count non-zero: %d\n", c)
+	}
+}
+
+func isZero(n *big.Int) bool {
+	return new(big.Int).Mod(n, p).Int64() == 0
+}
+
+func isOne(n *big.Int) bool {
+	return new(big.Int).Mod(n, p).Int64() == 1
+}
+
+func TestGFp6Invert(t *testing.T) {
+	pool := new(bnPool)
+
+	a := newGFp6(pool)
+	a.x.x.SetString("239487238491", 10)
+	a.x.y.SetString("2356249827341", 10)
+	a.y.x.SetString("082659782", 10)
+	a.y.y.SetString("182703523765", 10)
+	a.z.x.SetString("978236549263", 10)
+	a.z.y.SetString("64893242", 10)
+
+	inv := newGFp6(pool)
+	inv.Invert(a, pool)
+
+	b := newGFp6(pool).Mul(inv, a, pool)
+	if !isZero(b.x.x) ||
+		!isZero(b.x.y) ||
+		!isZero(b.y.x) ||
+		!isZero(b.y.y) ||
+		!isZero(b.z.x) ||
+		!isOne(b.z.y) {
+		t.Fatalf("bad result for a^-1*a: %s", b)
+	}
+
+	a.Put(pool)
+	b.Put(pool)
+	inv.Put(pool)
+
+	if c := pool.Count(); c > 0 {
+		t.Errorf("Pool count non-zero: %d\n", c)
+	}
+}
+
+func TestGFp12Invert(t *testing.T) {
+	pool := new(bnPool)
+
+	a := newGFp12(pool)
+	a.x.x.x.SetString("239846234862342323958623", 10)
+	a.x.x.y.SetString("2359862352529835623", 10)
+	a.x.y.x.SetString("928836523", 10)
+	a.x.y.y.SetString("9856234", 10)
+	a.x.z.x.SetString("235635286", 10)
+	a.x.z.y.SetString("5628392833", 10)
+	a.y.x.x.SetString("252936598265329856238956532167968", 10)
+	a.y.x.y.SetString("23596239865236954178968", 10)
+	a.y.y.x.SetString("95421692834", 10)
+	a.y.y.y.SetString("236548", 10)
+	a.y.z.x.SetString("924523", 10)
+	a.y.z.y.SetString("12954623", 10)
+
+	inv := newGFp12(pool)
+	inv.Invert(a, pool)
+
+	b := newGFp12(pool).Mul(inv, a, pool)
+	if !isZero(b.x.x.x) ||
+		!isZero(b.x.x.y) ||
+		!isZero(b.x.y.x) ||
+		!isZero(b.x.y.y) ||
+		!isZero(b.x.z.x) ||
+		!isZero(b.x.z.y) ||
+		!isZero(b.y.x.x) ||
+		!isZero(b.y.x.y) ||
+		!isZero(b.y.y.x) ||
+		!isZero(b.y.y.y) ||
+		!isZero(b.y.z.x) ||
+		!isOne(b.y.z.y) {
+		t.Fatalf("bad result for a^-1*a: %s", b)
+	}
+
+	a.Put(pool)
+	b.Put(pool)
+	inv.Put(pool)
+
+	if c := pool.Count(); c > 0 {
+		t.Errorf("Pool count non-zero: %d\n", c)
+	}
+}
+
+func TestCurveImpl(t *testing.T) {
+	pool := new(bnPool)
+
+	g := &curvePoint{
+		pool.Get().SetInt64(1),
+		pool.Get().SetInt64(-2),
+		pool.Get().SetInt64(1),
+		pool.Get().SetInt64(0),
+	}
+
+	x := pool.Get().SetInt64(32498273234)
+	X := newCurvePoint(pool).Mul(g, x, pool)
+
+	y := pool.Get().SetInt64(98732423523)
+	Y := newCurvePoint(pool).Mul(g, y, pool)
+
+	s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool)
+	s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool)
+
+	if s1.x.Cmp(s2.x) != 0 ||
+		s2.x.Cmp(s1.x) != 0 {
+		t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y)
+	}
+
+	pool.Put(x)
+	X.Put(pool)
+	pool.Put(y)
+	Y.Put(pool)
+	s1.Put(pool)
+	s2.Put(pool)
+	g.Put(pool)
+
+	if c := pool.Count(); c > 0 {
+		t.Errorf("Pool count non-zero: %d\n", c)
+	}
+}
+
+func TestOrderG1(t *testing.T) {
+	g := new(G1).ScalarBaseMult(Order)
+	if !g.p.IsInfinity() {
+		t.Error("G1 has incorrect order")
+	}
+
+	one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
+	g.Add(g, one)
+	g.p.MakeAffine(nil)
+	if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 {
+		t.Errorf("1+0 != 1 in G1")
+	}
+}
+
+func TestOrderG2(t *testing.T) {
+	g := new(G2).ScalarBaseMult(Order)
+	if !g.p.IsInfinity() {
+		t.Error("G2 has incorrect order")
+	}
+
+	one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
+	g.Add(g, one)
+	g.p.MakeAffine(nil)
+	if g.p.x.x.Cmp(one.p.x.x) != 0 ||
+		g.p.x.y.Cmp(one.p.x.y) != 0 ||
+		g.p.y.x.Cmp(one.p.y.x) != 0 ||
+		g.p.y.y.Cmp(one.p.y.y) != 0 {
+		t.Errorf("1+0 != 1 in G2")
+	}
+}
+
+func TestOrderGT(t *testing.T) {
+	gt := Pair(&G1{curveGen}, &G2{twistGen})
+	g := new(GT).ScalarMult(gt, Order)
+	if !g.p.IsOne() {
+		t.Error("GT has incorrect order")
+	}
+}
+
+func TestBilinearity(t *testing.T) {
+	for i := 0; i < 2; i++ {
+		a, p1, _ := RandomG1(rand.Reader)
+		b, p2, _ := RandomG2(rand.Reader)
+		e1 := Pair(p1, p2)
+
+		e2 := Pair(&G1{curveGen}, &G2{twistGen})
+		e2.ScalarMult(e2, a)
+		e2.ScalarMult(e2, b)
+
+		minusE2 := new(GT).Neg(e2)
+		e1.Add(e1, minusE2)
+
+		if !e1.p.IsOne() {
+			t.Fatalf("bad pairing result: %s", e1)
+		}
+	}
+}
+
+func TestG1Marshal(t *testing.T) {
+	g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
+	form := g.Marshal()
+	_, ok := new(G1).Unmarshal(form)
+	if !ok {
+		t.Fatalf("failed to unmarshal")
+	}
+
+	g.ScalarBaseMult(Order)
+	form = g.Marshal()
+	g2, ok := new(G1).Unmarshal(form)
+	if !ok {
+		t.Fatalf("failed to unmarshal ∞")
+	}
+	if !g2.p.IsInfinity() {
+		t.Fatalf("∞ unmarshaled incorrectly")
+	}
+}
+
+func TestG2Marshal(t *testing.T) {
+	g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
+	form := g.Marshal()
+	_, ok := new(G2).Unmarshal(form)
+	if !ok {
+		t.Fatalf("failed to unmarshal")
+	}
+
+	g.ScalarBaseMult(Order)
+	form = g.Marshal()
+	g2, ok := new(G2).Unmarshal(form)
+	if !ok {
+		t.Fatalf("failed to unmarshal ∞")
+	}
+	if !g2.p.IsInfinity() {
+		t.Fatalf("∞ unmarshaled incorrectly")
+	}
+}
+
+func TestG1Identity(t *testing.T) {
+	g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0))
+	if !g.p.IsInfinity() {
+		t.Error("failure")
+	}
+}
+
+func TestG2Identity(t *testing.T) {
+	g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0))
+	if !g.p.IsInfinity() {
+		t.Error("failure")
+	}
+}
+
+func TestTripartiteDiffieHellman(t *testing.T) {
+	a, _ := rand.Int(rand.Reader, Order)
+	b, _ := rand.Int(rand.Reader, Order)
+	c, _ := rand.Int(rand.Reader, Order)
+
+	pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
+	qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
+	pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
+	qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
+	pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
+	qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
+
+	k1 := Pair(pb, qc)
+	k1.ScalarMult(k1, a)
+	k1Bytes := k1.Marshal()
+
+	k2 := Pair(pc, qa)
+	k2.ScalarMult(k2, b)
+	k2Bytes := k2.Marshal()
+
+	k3 := Pair(pa, qb)
+	k3.ScalarMult(k3, c)
+	k3Bytes := k3.Marshal()
+
+	if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
+		t.Errorf("keys didn't agree")
+	}
+}
+
+func BenchmarkPairing(b *testing.B) {
+	for i := 0; i < b.N; i++ {
+		Pair(&G1{curveGen}, &G2{twistGen})
+	}
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/constants.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/constants.go b/cli/vendor/golang.org/x/crypto/bn256/constants.go
new file mode 100644
index 0000000..08ccfdf
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/constants.go
@@ -0,0 +1,44 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+import (
+	"math/big"
+)
+
+func bigFromBase10(s string) *big.Int {
+	n, _ := new(big.Int).SetString(s, 10)
+	return n
+}
+
+// u is the BN parameter that determines the prime: 1868033³.
+var u = bigFromBase10("6518589491078791937")
+
+// p is a prime over which we form a basic field: 36u⁴+36u³+24u³+6u+1.
+var p = bigFromBase10("65000549695646603732796438742359905742825358107623003571877145026864184071783")
+
+// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u³+6u+1.
+var Order = bigFromBase10("65000549695646603732796438742359905742570406053903786389881062969044166799969")
+
+// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+3.
+var xiToPMinus1Over6 = &gfP2{bigFromBase10("8669379979083712429711189836753509758585994370025260553045152614783263110636"), bigFromBase10("19998038925833620163537568958541907098007303196759855091367510456613536016040")}
+
+// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+3.
+var xiToPMinus1Over3 = &gfP2{bigFromBase10("26098034838977895781559542626833399156321265654106457577426020397262786167059"), bigFromBase10("15931493369629630809226283458085260090334794394361662678240713231519278691715")}
+
+// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+3.
+var xiToPMinus1Over2 = &gfP2{bigFromBase10("50997318142241922852281555961173165965672272825141804376761836765206060036244"), bigFromBase10("38665955945962842195025998234511023902832543644254935982879660597356748036009")}
+
+// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+3.
+var xiToPSquaredMinus1Over3 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437752")
+
+// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+3 (a cubic root of unity, mod p).
+var xiTo2PSquaredMinus2Over3 = bigFromBase10("4985783334309134261147736404674766913742361673560802634030")
+
+// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+3 (a cubic root of -1, mod p).
+var xiToPSquaredMinus1Over6 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437753")
+
+// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+3.
+var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19885131339612776214803633203834694332692106372356013117629940868870585019582"), bigFromBase10("21645619881471562101905880913352894726728173167203616652430647841922248593627")}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/curve.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/curve.go b/cli/vendor/golang.org/x/crypto/bn256/curve.go
new file mode 100644
index 0000000..55b7063
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/curve.go
@@ -0,0 +1,278 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+import (
+	"math/big"
+)
+
+// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
+// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
+// GF(p).
+type curvePoint struct {
+	x, y, z, t *big.Int
+}
+
+var curveB = new(big.Int).SetInt64(3)
+
+// curveGen is the generator of G₁.
+var curveGen = &curvePoint{
+	new(big.Int).SetInt64(1),
+	new(big.Int).SetInt64(-2),
+	new(big.Int).SetInt64(1),
+	new(big.Int).SetInt64(1),
+}
+
+func newCurvePoint(pool *bnPool) *curvePoint {
+	return &curvePoint{
+		pool.Get(),
+		pool.Get(),
+		pool.Get(),
+		pool.Get(),
+	}
+}
+
+func (c *curvePoint) String() string {
+	c.MakeAffine(new(bnPool))
+	return "(" + c.x.String() + ", " + c.y.String() + ")"
+}
+
+func (c *curvePoint) Put(pool *bnPool) {
+	pool.Put(c.x)
+	pool.Put(c.y)
+	pool.Put(c.z)
+	pool.Put(c.t)
+}
+
+func (c *curvePoint) Set(a *curvePoint) {
+	c.x.Set(a.x)
+	c.y.Set(a.y)
+	c.z.Set(a.z)
+	c.t.Set(a.t)
+}
+
+// IsOnCurve returns true iff c is on the curve where c must be in affine form.
+func (c *curvePoint) IsOnCurve() bool {
+	yy := new(big.Int).Mul(c.y, c.y)
+	xxx := new(big.Int).Mul(c.x, c.x)
+	xxx.Mul(xxx, c.x)
+	yy.Sub(yy, xxx)
+	yy.Sub(yy, curveB)
+	if yy.Sign() < 0 || yy.Cmp(p) >= 0 {
+		yy.Mod(yy, p)
+	}
+	return yy.Sign() == 0
+}
+
+func (c *curvePoint) SetInfinity() {
+	c.z.SetInt64(0)
+}
+
+func (c *curvePoint) IsInfinity() bool {
+	return c.z.Sign() == 0
+}
+
+func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
+	if a.IsInfinity() {
+		c.Set(b)
+		return
+	}
+	if b.IsInfinity() {
+		c.Set(a)
+		return
+	}
+
+	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
+
+	// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
+	// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
+	// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
+	z1z1 := pool.Get().Mul(a.z, a.z)
+	z1z1.Mod(z1z1, p)
+	z2z2 := pool.Get().Mul(b.z, b.z)
+	z2z2.Mod(z2z2, p)
+	u1 := pool.Get().Mul(a.x, z2z2)
+	u1.Mod(u1, p)
+	u2 := pool.Get().Mul(b.x, z1z1)
+	u2.Mod(u2, p)
+
+	t := pool.Get().Mul(b.z, z2z2)
+	t.Mod(t, p)
+	s1 := pool.Get().Mul(a.y, t)
+	s1.Mod(s1, p)
+
+	t.Mul(a.z, z1z1)
+	t.Mod(t, p)
+	s2 := pool.Get().Mul(b.y, t)
+	s2.Mod(s2, p)
+
+	// Compute x = (2h)²(s²-u1-u2)
+	// where s = (s2-s1)/(u2-u1) is the slope of the line through
+	// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
+	// This is also:
+	// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
+	//                        = r² - j - 2v
+	// with the notations below.
+	h := pool.Get().Sub(u2, u1)
+	xEqual := h.Sign() == 0
+
+	t.Add(h, h)
+	// i = 4h²
+	i := pool.Get().Mul(t, t)
+	i.Mod(i, p)
+	// j = 4h³
+	j := pool.Get().Mul(h, i)
+	j.Mod(j, p)
+
+	t.Sub(s2, s1)
+	yEqual := t.Sign() == 0
+	if xEqual && yEqual {
+		c.Double(a, pool)
+		return
+	}
+	r := pool.Get().Add(t, t)
+
+	v := pool.Get().Mul(u1, i)
+	v.Mod(v, p)
+
+	// t4 = 4(s2-s1)²
+	t4 := pool.Get().Mul(r, r)
+	t4.Mod(t4, p)
+	t.Add(v, v)
+	t6 := pool.Get().Sub(t4, j)
+	c.x.Sub(t6, t)
+
+	// Set y = -(2h)³(s1 + s*(x/4h²-u1))
+	// This is also
+	// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
+	t.Sub(v, c.x) // t7
+	t4.Mul(s1, j) // t8
+	t4.Mod(t4, p)
+	t6.Add(t4, t4) // t9
+	t4.Mul(r, t)   // t10
+	t4.Mod(t4, p)
+	c.y.Sub(t4, t6)
+
+	// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
+	t.Add(a.z, b.z) // t11
+	t4.Mul(t, t)    // t12
+	t4.Mod(t4, p)
+	t.Sub(t4, z1z1) // t13
+	t4.Sub(t, z2z2) // t14
+	c.z.Mul(t4, h)
+	c.z.Mod(c.z, p)
+
+	pool.Put(z1z1)
+	pool.Put(z2z2)
+	pool.Put(u1)
+	pool.Put(u2)
+	pool.Put(t)
+	pool.Put(s1)
+	pool.Put(s2)
+	pool.Put(h)
+	pool.Put(i)
+	pool.Put(j)
+	pool.Put(r)
+	pool.Put(v)
+	pool.Put(t4)
+	pool.Put(t6)
+}
+
+func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
+	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
+	A := pool.Get().Mul(a.x, a.x)
+	A.Mod(A, p)
+	B := pool.Get().Mul(a.y, a.y)
+	B.Mod(B, p)
+	C := pool.Get().Mul(B, B)
+	C.Mod(C, p)
+
+	t := pool.Get().Add(a.x, B)
+	t2 := pool.Get().Mul(t, t)
+	t2.Mod(t2, p)
+	t.Sub(t2, A)
+	t2.Sub(t, C)
+	d := pool.Get().Add(t2, t2)
+	t.Add(A, A)
+	e := pool.Get().Add(t, A)
+	f := pool.Get().Mul(e, e)
+	f.Mod(f, p)
+
+	t.Add(d, d)
+	c.x.Sub(f, t)
+
+	t.Add(C, C)
+	t2.Add(t, t)
+	t.Add(t2, t2)
+	c.y.Sub(d, c.x)
+	t2.Mul(e, c.y)
+	t2.Mod(t2, p)
+	c.y.Sub(t2, t)
+
+	t.Mul(a.y, a.z)
+	t.Mod(t, p)
+	c.z.Add(t, t)
+
+	pool.Put(A)
+	pool.Put(B)
+	pool.Put(C)
+	pool.Put(t)
+	pool.Put(t2)
+	pool.Put(d)
+	pool.Put(e)
+	pool.Put(f)
+}
+
+func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
+	sum := newCurvePoint(pool)
+	sum.SetInfinity()
+	t := newCurvePoint(pool)
+
+	for i := scalar.BitLen(); i >= 0; i-- {
+		t.Double(sum, pool)
+		if scalar.Bit(i) != 0 {
+			sum.Add(t, a, pool)
+		} else {
+			sum.Set(t)
+		}
+	}
+
+	c.Set(sum)
+	sum.Put(pool)
+	t.Put(pool)
+	return c
+}
+
+func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
+	if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
+		return c
+	}
+
+	zInv := pool.Get().ModInverse(c.z, p)
+	t := pool.Get().Mul(c.y, zInv)
+	t.Mod(t, p)
+	zInv2 := pool.Get().Mul(zInv, zInv)
+	zInv2.Mod(zInv2, p)
+	c.y.Mul(t, zInv2)
+	c.y.Mod(c.y, p)
+	t.Mul(c.x, zInv2)
+	t.Mod(t, p)
+	c.x.Set(t)
+	c.z.SetInt64(1)
+	c.t.SetInt64(1)
+
+	pool.Put(zInv)
+	pool.Put(t)
+	pool.Put(zInv2)
+
+	return c
+}
+
+func (c *curvePoint) Negative(a *curvePoint) {
+	c.x.Set(a.x)
+	c.y.Neg(a.y)
+	c.z.Set(a.z)
+	c.t.SetInt64(0)
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/example_test.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/example_test.go b/cli/vendor/golang.org/x/crypto/bn256/example_test.go
new file mode 100644
index 0000000..b2d1980
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/example_test.go
@@ -0,0 +1,43 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+import (
+	"crypto/rand"
+)
+
+func ExamplePair() {
+	// This implements the tripartite Diffie-Hellman algorithm from "A One
+	// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
+	// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
+
+	// Each of three parties, a, b and c, generate a private value.
+	a, _ := rand.Int(rand.Reader, Order)
+	b, _ := rand.Int(rand.Reader, Order)
+	c, _ := rand.Int(rand.Reader, Order)
+
+	// Then each party calculates g₁ and g₂ times their private value.
+	pa := new(G1).ScalarBaseMult(a)
+	qa := new(G2).ScalarBaseMult(a)
+
+	pb := new(G1).ScalarBaseMult(b)
+	qb := new(G2).ScalarBaseMult(b)
+
+	pc := new(G1).ScalarBaseMult(c)
+	qc := new(G2).ScalarBaseMult(c)
+
+	// Now each party exchanges its public values with the other two and
+	// all parties can calculate the shared key.
+	k1 := Pair(pb, qc)
+	k1.ScalarMult(k1, a)
+
+	k2 := Pair(pc, qa)
+	k2.ScalarMult(k2, b)
+
+	k3 := Pair(pa, qb)
+	k3.ScalarMult(k3, c)
+
+	// k1, k2 and k3 will all be equal.
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/gfp12.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/gfp12.go b/cli/vendor/golang.org/x/crypto/bn256/gfp12.go
new file mode 100644
index 0000000..f084edd
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/gfp12.go
@@ -0,0 +1,200 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+// For details of the algorithms used, see "Multiplication and Squaring on
+// Pairing-Friendly Fields, Devegili et al.
+// http://eprint.iacr.org/2006/471.pdf.
+
+import (
+	"math/big"
+)
+
+// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
+// where ω²=τ.
+type gfP12 struct {
+	x, y *gfP6 // value is xω + y
+}
+
+func newGFp12(pool *bnPool) *gfP12 {
+	return &gfP12{newGFp6(pool), newGFp6(pool)}
+}
+
+func (e *gfP12) String() string {
+	return "(" + e.x.String() + "," + e.y.String() + ")"
+}
+
+func (e *gfP12) Put(pool *bnPool) {
+	e.x.Put(pool)
+	e.y.Put(pool)
+}
+
+func (e *gfP12) Set(a *gfP12) *gfP12 {
+	e.x.Set(a.x)
+	e.y.Set(a.y)
+	return e
+}
+
+func (e *gfP12) SetZero() *gfP12 {
+	e.x.SetZero()
+	e.y.SetZero()
+	return e
+}
+
+func (e *gfP12) SetOne() *gfP12 {
+	e.x.SetZero()
+	e.y.SetOne()
+	return e
+}
+
+func (e *gfP12) Minimal() {
+	e.x.Minimal()
+	e.y.Minimal()
+}
+
+func (e *gfP12) IsZero() bool {
+	e.Minimal()
+	return e.x.IsZero() && e.y.IsZero()
+}
+
+func (e *gfP12) IsOne() bool {
+	e.Minimal()
+	return e.x.IsZero() && e.y.IsOne()
+}
+
+func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
+	e.x.Negative(a.x)
+	e.y.Set(a.y)
+	return a
+}
+
+func (e *gfP12) Negative(a *gfP12) *gfP12 {
+	e.x.Negative(a.x)
+	e.y.Negative(a.y)
+	return e
+}
+
+// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
+func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 {
+	e.x.Frobenius(a.x, pool)
+	e.y.Frobenius(a.y, pool)
+	e.x.MulScalar(e.x, xiToPMinus1Over6, pool)
+	return e
+}
+
+// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
+func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 {
+	e.x.FrobeniusP2(a.x)
+	e.x.MulGFP(e.x, xiToPSquaredMinus1Over6)
+	e.y.FrobeniusP2(a.y)
+	return e
+}
+
+func (e *gfP12) Add(a, b *gfP12) *gfP12 {
+	e.x.Add(a.x, b.x)
+	e.y.Add(a.y, b.y)
+	return e
+}
+
+func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
+	e.x.Sub(a.x, b.x)
+	e.y.Sub(a.y, b.y)
+	return e
+}
+
+func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 {
+	tx := newGFp6(pool)
+	tx.Mul(a.x, b.y, pool)
+	t := newGFp6(pool)
+	t.Mul(b.x, a.y, pool)
+	tx.Add(tx, t)
+
+	ty := newGFp6(pool)
+	ty.Mul(a.y, b.y, pool)
+	t.Mul(a.x, b.x, pool)
+	t.MulTau(t, pool)
+	e.y.Add(ty, t)
+	e.x.Set(tx)
+
+	tx.Put(pool)
+	ty.Put(pool)
+	t.Put(pool)
+	return e
+}
+
+func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 {
+	e.x.Mul(e.x, b, pool)
+	e.y.Mul(e.y, b, pool)
+	return e
+}
+
+func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 {
+	sum := newGFp12(pool)
+	sum.SetOne()
+	t := newGFp12(pool)
+
+	for i := power.BitLen() - 1; i >= 0; i-- {
+		t.Square(sum, pool)
+		if power.Bit(i) != 0 {
+			sum.Mul(t, a, pool)
+		} else {
+			sum.Set(t)
+		}
+	}
+
+	c.Set(sum)
+
+	sum.Put(pool)
+	t.Put(pool)
+
+	return c
+}
+
+func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 {
+	// Complex squaring algorithm
+	v0 := newGFp6(pool)
+	v0.Mul(a.x, a.y, pool)
+
+	t := newGFp6(pool)
+	t.MulTau(a.x, pool)
+	t.Add(a.y, t)
+	ty := newGFp6(pool)
+	ty.Add(a.x, a.y)
+	ty.Mul(ty, t, pool)
+	ty.Sub(ty, v0)
+	t.MulTau(v0, pool)
+	ty.Sub(ty, t)
+
+	e.y.Set(ty)
+	e.x.Double(v0)
+
+	v0.Put(pool)
+	t.Put(pool)
+	ty.Put(pool)
+
+	return e
+}
+
+func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 {
+	// See "Implementing cryptographic pairings", M. Scott, section 3.2.
+	// ftp://136.206.11.249/pub/crypto/pairings.pdf
+	t1 := newGFp6(pool)
+	t2 := newGFp6(pool)
+
+	t1.Square(a.x, pool)
+	t2.Square(a.y, pool)
+	t1.MulTau(t1, pool)
+	t1.Sub(t2, t1)
+	t2.Invert(t1, pool)
+
+	e.x.Negative(a.x)
+	e.y.Set(a.y)
+	e.MulScalar(e, t2, pool)
+
+	t1.Put(pool)
+	t2.Put(pool)
+
+	return e
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/gfp2.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/gfp2.go b/cli/vendor/golang.org/x/crypto/bn256/gfp2.go
new file mode 100644
index 0000000..97f3f1f
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/gfp2.go
@@ -0,0 +1,219 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+// For details of the algorithms used, see "Multiplication and Squaring on
+// Pairing-Friendly Fields, Devegili et al.
+// http://eprint.iacr.org/2006/471.pdf.
+
+import (
+	"math/big"
+)
+
+// gfP2 implements a field of size p² as a quadratic extension of the base
+// field where i²=-1.
+type gfP2 struct {
+	x, y *big.Int // value is xi+y.
+}
+
+func newGFp2(pool *bnPool) *gfP2 {
+	return &gfP2{pool.Get(), pool.Get()}
+}
+
+func (e *gfP2) String() string {
+	x := new(big.Int).Mod(e.x, p)
+	y := new(big.Int).Mod(e.y, p)
+	return "(" + x.String() + "," + y.String() + ")"
+}
+
+func (e *gfP2) Put(pool *bnPool) {
+	pool.Put(e.x)
+	pool.Put(e.y)
+}
+
+func (e *gfP2) Set(a *gfP2) *gfP2 {
+	e.x.Set(a.x)
+	e.y.Set(a.y)
+	return e
+}
+
+func (e *gfP2) SetZero() *gfP2 {
+	e.x.SetInt64(0)
+	e.y.SetInt64(0)
+	return e
+}
+
+func (e *gfP2) SetOne() *gfP2 {
+	e.x.SetInt64(0)
+	e.y.SetInt64(1)
+	return e
+}
+
+func (e *gfP2) Minimal() {
+	if e.x.Sign() < 0 || e.x.Cmp(p) >= 0 {
+		e.x.Mod(e.x, p)
+	}
+	if e.y.Sign() < 0 || e.y.Cmp(p) >= 0 {
+		e.y.Mod(e.y, p)
+	}
+}
+
+func (e *gfP2) IsZero() bool {
+	return e.x.Sign() == 0 && e.y.Sign() == 0
+}
+
+func (e *gfP2) IsOne() bool {
+	if e.x.Sign() != 0 {
+		return false
+	}
+	words := e.y.Bits()
+	return len(words) == 1 && words[0] == 1
+}
+
+func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
+	e.y.Set(a.y)
+	e.x.Neg(a.x)
+	return e
+}
+
+func (e *gfP2) Negative(a *gfP2) *gfP2 {
+	e.x.Neg(a.x)
+	e.y.Neg(a.y)
+	return e
+}
+
+func (e *gfP2) Add(a, b *gfP2) *gfP2 {
+	e.x.Add(a.x, b.x)
+	e.y.Add(a.y, b.y)
+	return e
+}
+
+func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
+	e.x.Sub(a.x, b.x)
+	e.y.Sub(a.y, b.y)
+	return e
+}
+
+func (e *gfP2) Double(a *gfP2) *gfP2 {
+	e.x.Lsh(a.x, 1)
+	e.y.Lsh(a.y, 1)
+	return e
+}
+
+func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
+	sum := newGFp2(pool)
+	sum.SetOne()
+	t := newGFp2(pool)
+
+	for i := power.BitLen() - 1; i >= 0; i-- {
+		t.Square(sum, pool)
+		if power.Bit(i) != 0 {
+			sum.Mul(t, a, pool)
+		} else {
+			sum.Set(t)
+		}
+	}
+
+	c.Set(sum)
+
+	sum.Put(pool)
+	t.Put(pool)
+
+	return c
+}
+
+// See "Multiplication and Squaring in Pairing-Friendly Fields",
+// http://eprint.iacr.org/2006/471.pdf
+func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
+	tx := pool.Get().Mul(a.x, b.y)
+	t := pool.Get().Mul(b.x, a.y)
+	tx.Add(tx, t)
+	tx.Mod(tx, p)
+
+	ty := pool.Get().Mul(a.y, b.y)
+	t.Mul(a.x, b.x)
+	ty.Sub(ty, t)
+	e.y.Mod(ty, p)
+	e.x.Set(tx)
+
+	pool.Put(tx)
+	pool.Put(ty)
+	pool.Put(t)
+
+	return e
+}
+
+func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
+	e.x.Mul(a.x, b)
+	e.y.Mul(a.y, b)
+	return e
+}
+
+// MulXi sets e=ξa where ξ=i+3 and then returns e.
+func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
+	// (xi+y)(i+3) = (3x+y)i+(3y-x)
+	tx := pool.Get().Lsh(a.x, 1)
+	tx.Add(tx, a.x)
+	tx.Add(tx, a.y)
+
+	ty := pool.Get().Lsh(a.y, 1)
+	ty.Add(ty, a.y)
+	ty.Sub(ty, a.x)
+
+	e.x.Set(tx)
+	e.y.Set(ty)
+
+	pool.Put(tx)
+	pool.Put(ty)
+
+	return e
+}
+
+func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
+	// Complex squaring algorithm:
+	// (xi+b)² = (x+y)(y-x) + 2*i*x*y
+	t1 := pool.Get().Sub(a.y, a.x)
+	t2 := pool.Get().Add(a.x, a.y)
+	ty := pool.Get().Mul(t1, t2)
+	ty.Mod(ty, p)
+
+	t1.Mul(a.x, a.y)
+	t1.Lsh(t1, 1)
+
+	e.x.Mod(t1, p)
+	e.y.Set(ty)
+
+	pool.Put(t1)
+	pool.Put(t2)
+	pool.Put(ty)
+
+	return e
+}
+
+func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
+	// See "Implementing cryptographic pairings", M. Scott, section 3.2.
+	// ftp://136.206.11.249/pub/crypto/pairings.pdf
+	t := pool.Get()
+	t.Mul(a.y, a.y)
+	t2 := pool.Get()
+	t2.Mul(a.x, a.x)
+	t.Add(t, t2)
+
+	inv := pool.Get()
+	inv.ModInverse(t, p)
+
+	e.x.Neg(a.x)
+	e.x.Mul(e.x, inv)
+	e.x.Mod(e.x, p)
+
+	e.y.Mul(a.y, inv)
+	e.y.Mod(e.y, p)
+
+	pool.Put(t)
+	pool.Put(t2)
+	pool.Put(inv)
+
+	return e
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/gfp6.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/gfp6.go b/cli/vendor/golang.org/x/crypto/bn256/gfp6.go
new file mode 100644
index 0000000..f98ae78
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/gfp6.go
@@ -0,0 +1,296 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+// For details of the algorithms used, see "Multiplication and Squaring on
+// Pairing-Friendly Fields, Devegili et al.
+// http://eprint.iacr.org/2006/471.pdf.
+
+import (
+	"math/big"
+)
+
+// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
+// and ξ=i+3.
+type gfP6 struct {
+	x, y, z *gfP2 // value is xτ² + yτ + z
+}
+
+func newGFp6(pool *bnPool) *gfP6 {
+	return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
+}
+
+func (e *gfP6) String() string {
+	return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
+}
+
+func (e *gfP6) Put(pool *bnPool) {
+	e.x.Put(pool)
+	e.y.Put(pool)
+	e.z.Put(pool)
+}
+
+func (e *gfP6) Set(a *gfP6) *gfP6 {
+	e.x.Set(a.x)
+	e.y.Set(a.y)
+	e.z.Set(a.z)
+	return e
+}
+
+func (e *gfP6) SetZero() *gfP6 {
+	e.x.SetZero()
+	e.y.SetZero()
+	e.z.SetZero()
+	return e
+}
+
+func (e *gfP6) SetOne() *gfP6 {
+	e.x.SetZero()
+	e.y.SetZero()
+	e.z.SetOne()
+	return e
+}
+
+func (e *gfP6) Minimal() {
+	e.x.Minimal()
+	e.y.Minimal()
+	e.z.Minimal()
+}
+
+func (e *gfP6) IsZero() bool {
+	return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
+}
+
+func (e *gfP6) IsOne() bool {
+	return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
+}
+
+func (e *gfP6) Negative(a *gfP6) *gfP6 {
+	e.x.Negative(a.x)
+	e.y.Negative(a.y)
+	e.z.Negative(a.z)
+	return e
+}
+
+func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
+	e.x.Conjugate(a.x)
+	e.y.Conjugate(a.y)
+	e.z.Conjugate(a.z)
+
+	e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
+	e.y.Mul(e.y, xiToPMinus1Over3, pool)
+	return e
+}
+
+// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
+func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
+	// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
+	e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
+	// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
+	e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
+	e.z.Set(a.z)
+	return e
+}
+
+func (e *gfP6) Add(a, b *gfP6) *gfP6 {
+	e.x.Add(a.x, b.x)
+	e.y.Add(a.y, b.y)
+	e.z.Add(a.z, b.z)
+	return e
+}
+
+func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
+	e.x.Sub(a.x, b.x)
+	e.y.Sub(a.y, b.y)
+	e.z.Sub(a.z, b.z)
+	return e
+}
+
+func (e *gfP6) Double(a *gfP6) *gfP6 {
+	e.x.Double(a.x)
+	e.y.Double(a.y)
+	e.z.Double(a.z)
+	return e
+}
+
+func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
+	// "Multiplication and Squaring on Pairing-Friendly Fields"
+	// Section 4, Karatsuba method.
+	// http://eprint.iacr.org/2006/471.pdf
+
+	v0 := newGFp2(pool)
+	v0.Mul(a.z, b.z, pool)
+	v1 := newGFp2(pool)
+	v1.Mul(a.y, b.y, pool)
+	v2 := newGFp2(pool)
+	v2.Mul(a.x, b.x, pool)
+
+	t0 := newGFp2(pool)
+	t0.Add(a.x, a.y)
+	t1 := newGFp2(pool)
+	t1.Add(b.x, b.y)
+	tz := newGFp2(pool)
+	tz.Mul(t0, t1, pool)
+
+	tz.Sub(tz, v1)
+	tz.Sub(tz, v2)
+	tz.MulXi(tz, pool)
+	tz.Add(tz, v0)
+
+	t0.Add(a.y, a.z)
+	t1.Add(b.y, b.z)
+	ty := newGFp2(pool)
+	ty.Mul(t0, t1, pool)
+	ty.Sub(ty, v0)
+	ty.Sub(ty, v1)
+	t0.MulXi(v2, pool)
+	ty.Add(ty, t0)
+
+	t0.Add(a.x, a.z)
+	t1.Add(b.x, b.z)
+	tx := newGFp2(pool)
+	tx.Mul(t0, t1, pool)
+	tx.Sub(tx, v0)
+	tx.Add(tx, v1)
+	tx.Sub(tx, v2)
+
+	e.x.Set(tx)
+	e.y.Set(ty)
+	e.z.Set(tz)
+
+	t0.Put(pool)
+	t1.Put(pool)
+	tx.Put(pool)
+	ty.Put(pool)
+	tz.Put(pool)
+	v0.Put(pool)
+	v1.Put(pool)
+	v2.Put(pool)
+	return e
+}
+
+func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
+	e.x.Mul(a.x, b, pool)
+	e.y.Mul(a.y, b, pool)
+	e.z.Mul(a.z, b, pool)
+	return e
+}
+
+func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
+	e.x.MulScalar(a.x, b)
+	e.y.MulScalar(a.y, b)
+	e.z.MulScalar(a.z, b)
+	return e
+}
+
+// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
+func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
+	tz := newGFp2(pool)
+	tz.MulXi(a.x, pool)
+	ty := newGFp2(pool)
+	ty.Set(a.y)
+	e.y.Set(a.z)
+	e.x.Set(ty)
+	e.z.Set(tz)
+	tz.Put(pool)
+	ty.Put(pool)
+}
+
+func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
+	v0 := newGFp2(pool).Square(a.z, pool)
+	v1 := newGFp2(pool).Square(a.y, pool)
+	v2 := newGFp2(pool).Square(a.x, pool)
+
+	c0 := newGFp2(pool).Add(a.x, a.y)
+	c0.Square(c0, pool)
+	c0.Sub(c0, v1)
+	c0.Sub(c0, v2)
+	c0.MulXi(c0, pool)
+	c0.Add(c0, v0)
+
+	c1 := newGFp2(pool).Add(a.y, a.z)
+	c1.Square(c1, pool)
+	c1.Sub(c1, v0)
+	c1.Sub(c1, v1)
+	xiV2 := newGFp2(pool).MulXi(v2, pool)
+	c1.Add(c1, xiV2)
+
+	c2 := newGFp2(pool).Add(a.x, a.z)
+	c2.Square(c2, pool)
+	c2.Sub(c2, v0)
+	c2.Add(c2, v1)
+	c2.Sub(c2, v2)
+
+	e.x.Set(c2)
+	e.y.Set(c1)
+	e.z.Set(c0)
+
+	v0.Put(pool)
+	v1.Put(pool)
+	v2.Put(pool)
+	c0.Put(pool)
+	c1.Put(pool)
+	c2.Put(pool)
+	xiV2.Put(pool)
+
+	return e
+}
+
+func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
+	// See "Implementing cryptographic pairings", M. Scott, section 3.2.
+	// ftp://136.206.11.249/pub/crypto/pairings.pdf
+
+	// Here we can give a short explanation of how it works: let j be a cubic root of
+	// unity in GF(p²) so that 1+j+j²=0.
+	// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
+	// = (xτ² + yτ + z)(Cτ²+Bτ+A)
+	// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
+	//
+	// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
+	// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
+	//
+	// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
+	t1 := newGFp2(pool)
+
+	A := newGFp2(pool)
+	A.Square(a.z, pool)
+	t1.Mul(a.x, a.y, pool)
+	t1.MulXi(t1, pool)
+	A.Sub(A, t1)
+
+	B := newGFp2(pool)
+	B.Square(a.x, pool)
+	B.MulXi(B, pool)
+	t1.Mul(a.y, a.z, pool)
+	B.Sub(B, t1)
+
+	C := newGFp2(pool)
+	C.Square(a.y, pool)
+	t1.Mul(a.x, a.z, pool)
+	C.Sub(C, t1)
+
+	F := newGFp2(pool)
+	F.Mul(C, a.y, pool)
+	F.MulXi(F, pool)
+	t1.Mul(A, a.z, pool)
+	F.Add(F, t1)
+	t1.Mul(B, a.x, pool)
+	t1.MulXi(t1, pool)
+	F.Add(F, t1)
+
+	F.Invert(F, pool)
+
+	e.x.Mul(C, F, pool)
+	e.y.Mul(B, F, pool)
+	e.z.Mul(A, F, pool)
+
+	t1.Put(pool)
+	A.Put(pool)
+	B.Put(pool)
+	C.Put(pool)
+	F.Put(pool)
+
+	return e
+}

http://git-wip-us.apache.org/repos/asf/brooklyn-client/blob/799e9ccb/cli/vendor/golang.org/x/crypto/bn256/optate.go
----------------------------------------------------------------------
diff --git a/cli/vendor/golang.org/x/crypto/bn256/optate.go b/cli/vendor/golang.org/x/crypto/bn256/optate.go
new file mode 100644
index 0000000..7ae0746
--- /dev/null
+++ b/cli/vendor/golang.org/x/crypto/bn256/optate.go
@@ -0,0 +1,395 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package bn256
+
+func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
+	// See the mixed addition algorithm from "Faster Computation of the
+	// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
+
+	B := newGFp2(pool).Mul(p.x, r.t, pool)
+
+	D := newGFp2(pool).Add(p.y, r.z)
+	D.Square(D, pool)
+	D.Sub(D, r2)
+	D.Sub(D, r.t)
+	D.Mul(D, r.t, pool)
+
+	H := newGFp2(pool).Sub(B, r.x)
+	I := newGFp2(pool).Square(H, pool)
+
+	E := newGFp2(pool).Add(I, I)
+	E.Add(E, E)
+
+	J := newGFp2(pool).Mul(H, E, pool)
+
+	L1 := newGFp2(pool).Sub(D, r.y)
+	L1.Sub(L1, r.y)
+
+	V := newGFp2(pool).Mul(r.x, E, pool)
+
+	rOut = newTwistPoint(pool)
+	rOut.x.Square(L1, pool)
+	rOut.x.Sub(rOut.x, J)
+	rOut.x.Sub(rOut.x, V)
+	rOut.x.Sub(rOut.x, V)
+
+	rOut.z.Add(r.z, H)
+	rOut.z.Square(rOut.z, pool)
+	rOut.z.Sub(rOut.z, r.t)
+	rOut.z.Sub(rOut.z, I)
+
+	t := newGFp2(pool).Sub(V, rOut.x)
+	t.Mul(t, L1, pool)
+	t2 := newGFp2(pool).Mul(r.y, J, pool)
+	t2.Add(t2, t2)
+	rOut.y.Sub(t, t2)
+
+	rOut.t.Square(rOut.z, pool)
+
+	t.Add(p.y, rOut.z)
+	t.Square(t, pool)
+	t.Sub(t, r2)
+	t.Sub(t, rOut.t)
+
+	t2.Mul(L1, p.x, pool)
+	t2.Add(t2, t2)
+	a = newGFp2(pool)
+	a.Sub(t2, t)
+
+	c = newGFp2(pool)
+	c.MulScalar(rOut.z, q.y)
+	c.Add(c, c)
+
+	b = newGFp2(pool)
+	b.SetZero()
+	b.Sub(b, L1)
+	b.MulScalar(b, q.x)
+	b.Add(b, b)
+
+	B.Put(pool)
+	D.Put(pool)
+	H.Put(pool)
+	I.Put(pool)
+	E.Put(pool)
+	J.Put(pool)
+	L1.Put(pool)
+	V.Put(pool)
+	t.Put(pool)
+	t2.Put(pool)
+
+	return
+}
+
+func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
+	// See the doubling algorithm for a=0 from "Faster Computation of the
+	// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
+
+	A := newGFp2(pool).Square(r.x, pool)
+	B := newGFp2(pool).Square(r.y, pool)
+	C := newGFp2(pool).Square(B, pool)
+
+	D := newGFp2(pool).Add(r.x, B)
+	D.Square(D, pool)
+	D.Sub(D, A)
+	D.Sub(D, C)
+	D.Add(D, D)
+
+	E := newGFp2(pool).Add(A, A)
+	E.Add(E, A)
+
+	G := newGFp2(pool).Square(E, pool)
+
+	rOut = newTwistPoint(pool)
+	rOut.x.Sub(G, D)
+	rOut.x.Sub(rOut.x, D)
+
+	rOut.z.Add(r.y, r.z)
+	rOut.z.Square(rOut.z, pool)
+	rOut.z.Sub(rOut.z, B)
+	rOut.z.Sub(rOut.z, r.t)
+
+	rOut.y.Sub(D, rOut.x)
+	rOut.y.Mul(rOut.y, E, pool)
+	t := newGFp2(pool).Add(C, C)
+	t.Add(t, t)
+	t.Add(t, t)
+	rOut.y.Sub(rOut.y, t)
+
+	rOut.t.Square(rOut.z, pool)
+
+	t.Mul(E, r.t, pool)
+	t.Add(t, t)
+	b = newGFp2(pool)
+	b.SetZero()
+	b.Sub(b, t)
+	b.MulScalar(b, q.x)
+
+	a = newGFp2(pool)
+	a.Add(r.x, E)
+	a.Square(a, pool)
+	a.Sub(a, A)
+	a.Sub(a, G)
+	t.Add(B, B)
+	t.Add(t, t)
+	a.Sub(a, t)
+
+	c = newGFp2(pool)
+	c.Mul(rOut.z, r.t, pool)
+	c.Add(c, c)
+	c.MulScalar(c, q.y)
+
+	A.Put(pool)
+	B.Put(pool)
+	C.Put(pool)
+	D.Put(pool)
+	E.Put(pool)
+	G.Put(pool)
+	t.Put(pool)
+
+	return
+}
+
+func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
+	a2 := newGFp6(pool)
+	a2.x.SetZero()
+	a2.y.Set(a)
+	a2.z.Set(b)
+	a2.Mul(a2, ret.x, pool)
+	t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
+
+	t := newGFp2(pool)
+	t.Add(b, c)
+	t2 := newGFp6(pool)
+	t2.x.SetZero()
+	t2.y.Set(a)
+	t2.z.Set(t)
+	ret.x.Add(ret.x, ret.y)
+
+	ret.y.Set(t3)
+
+	ret.x.Mul(ret.x, t2, pool)
+	ret.x.Sub(ret.x, a2)
+	ret.x.Sub(ret.x, ret.y)
+	a2.MulTau(a2, pool)
+	ret.y.Add(ret.y, a2)
+
+	a2.Put(pool)
+	t3.Put(pool)
+	t2.Put(pool)
+	t.Put(pool)
+}
+
+// sixuPlus2NAF is 6u+2 in non-adjacent form.
+var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 1}
+
+// miller implements the Miller loop for calculating the Optimal Ate pairing.
+// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
+func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
+	ret := newGFp12(pool)
+	ret.SetOne()
+
+	aAffine := newTwistPoint(pool)
+	aAffine.Set(q)
+	aAffine.MakeAffine(pool)
+
+	bAffine := newCurvePoint(pool)
+	bAffine.Set(p)
+	bAffine.MakeAffine(pool)
+
+	minusA := newTwistPoint(pool)
+	minusA.Negative(aAffine, pool)
+
+	r := newTwistPoint(pool)
+	r.Set(aAffine)
+
+	r2 := newGFp2(pool)
+	r2.Square(aAffine.y, pool)
+
+	for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
+		a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
+		if i != len(sixuPlus2NAF)-1 {
+			ret.Square(ret, pool)
+		}
+
+		mulLine(ret, a, b, c, pool)
+		a.Put(pool)
+		b.Put(pool)
+		c.Put(pool)
+		r.Put(pool)
+		r = newR
+
+		switch sixuPlus2NAF[i-1] {
+		case 1:
+			a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
+		case -1:
+			a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
+		default:
+			continue
+		}
+
+		mulLine(ret, a, b, c, pool)
+		a.Put(pool)
+		b.Put(pool)
+		c.Put(pool)
+		r.Put(pool)
+		r = newR
+	}
+
+	// In order to calculate Q1 we have to convert q from the sextic twist
+	// to the full GF(p^12) group, apply the Frobenius there, and convert
+	// back.
+	//
+	// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
+	// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
+	// where x̄ is the conjugate of x. If we are going to apply the inverse
+	// isomorphism we need a value with a single coefficient of ω² so we
+	// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
+	// p, 2p-2 is a multiple of six. Therefore we can rewrite as
+	// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
+	// ω².
+	//
+	// A similar argument can be made for the y value.
+
+	q1 := newTwistPoint(pool)
+	q1.x.Conjugate(aAffine.x)
+	q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
+	q1.y.Conjugate(aAffine.y)
+	q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
+	q1.z.SetOne()
+	q1.t.SetOne()
+
+	// For Q2 we are applying the p² Frobenius. The two conjugations cancel
+	// out and we are left only with the factors from the isomorphism. In
+	// the case of x, we end up with a pure number which is why
+	// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
+	// ignore this to end up with -Q2.
+
+	minusQ2 := newTwistPoint(pool)
+	minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
+	minusQ2.y.Set(aAffine.y)
+	minusQ2.z.SetOne()
+	minusQ2.t.SetOne()
+
+	r2.Square(q1.y, pool)
+	a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
+	mulLine(ret, a, b, c, pool)
+	a.Put(pool)
+	b.Put(pool)
+	c.Put(pool)
+	r.Put(pool)
+	r = newR
+
+	r2.Square(minusQ2.y, pool)
+	a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
+	mulLine(ret, a, b, c, pool)
+	a.Put(pool)
+	b.Put(pool)
+	c.Put(pool)
+	r.Put(pool)
+	r = newR
+
+	aAffine.Put(pool)
+	bAffine.Put(pool)
+	minusA.Put(pool)
+	r.Put(pool)
+	r2.Put(pool)
+
+	return ret
+}
+
+// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
+// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
+// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
+func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
+	t1 := newGFp12(pool)
+
+	// This is the p^6-Frobenius
+	t1.x.Negative(in.x)
+	t1.y.Set(in.y)
+
+	inv := newGFp12(pool)
+	inv.Invert(in, pool)
+	t1.Mul(t1, inv, pool)
+
+	t2 := newGFp12(pool).FrobeniusP2(t1, pool)
+	t1.Mul(t1, t2, pool)
+
+	fp := newGFp12(pool).Frobenius(t1, pool)
+	fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
+	fp3 := newGFp12(pool).Frobenius(fp2, pool)
+
+	fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
+	fu.Exp(t1, u, pool)
+	fu2.Exp(fu, u, pool)
+	fu3.Exp(fu2, u, pool)
+
+	y3 := newGFp12(pool).Frobenius(fu, pool)
+	fu2p := newGFp12(pool).Frobenius(fu2, pool)
+	fu3p := newGFp12(pool).Frobenius(fu3, pool)
+	y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
+
+	y0 := newGFp12(pool)
+	y0.Mul(fp, fp2, pool)
+	y0.Mul(y0, fp3, pool)
+
+	y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
+	y1.Conjugate(t1)
+	y5.Conjugate(fu2)
+	y3.Conjugate(y3)
+	y4.Mul(fu, fu2p, pool)
+	y4.Conjugate(y4)
+
+	y6 := newGFp12(pool)
+	y6.Mul(fu3, fu3p, pool)
+	y6.Conjugate(y6)
+
+	t0 := newGFp12(pool)
+	t0.Square(y6, pool)
+	t0.Mul(t0, y4, pool)
+	t0.Mul(t0, y5, pool)
+	t1.Mul(y3, y5, pool)
+	t1.Mul(t1, t0, pool)
+	t0.Mul(t0, y2, pool)
+	t1.Square(t1, pool)
+	t1.Mul(t1, t0, pool)
+	t1.Square(t1, pool)
+	t0.Mul(t1, y1, pool)
+	t1.Mul(t1, y0, pool)
+	t0.Square(t0, pool)
+	t0.Mul(t0, t1, pool)
+
+	inv.Put(pool)
+	t1.Put(pool)
+	t2.Put(pool)
+	fp.Put(pool)
+	fp2.Put(pool)
+	fp3.Put(pool)
+	fu.Put(pool)
+	fu2.Put(pool)
+	fu3.Put(pool)
+	fu2p.Put(pool)
+	fu3p.Put(pool)
+	y0.Put(pool)
+	y1.Put(pool)
+	y2.Put(pool)
+	y3.Put(pool)
+	y4.Put(pool)
+	y5.Put(pool)
+	y6.Put(pool)
+
+	return t0
+}
+
+func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
+	e := miller(a, b, pool)
+	ret := finalExponentiation(e, pool)
+	e.Put(pool)
+
+	if a.IsInfinity() || b.IsInfinity() {
+		ret.SetOne()
+	}
+
+	return ret
+}