You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@commons.apache.org by tn...@apache.org on 2015/02/16 23:39:47 UTC

[17/82] [partial] [math] Update for next development iteration: commons-math4

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Rotation.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Rotation.java b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Rotation.java
deleted file mode 100644
index 7945c7c..0000000
--- a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Rotation.java
+++ /dev/null
@@ -1,1053 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.commons.math3.geometry.euclidean.threed;
-
-import java.io.Serializable;
-
-import org.apache.commons.math3.exception.MathArithmeticException;
-import org.apache.commons.math3.exception.MathIllegalArgumentException;
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-import org.apache.commons.math3.util.FastMath;
-import org.apache.commons.math3.util.MathArrays;
-
-/**
- * This class implements rotations in a three-dimensional space.
- *
- * <p>Rotations can be represented by several different mathematical
- * entities (matrices, axe and angle, Cardan or Euler angles,
- * quaternions). This class presents an higher level abstraction, more
- * user-oriented and hiding this implementation details. Well, for the
- * curious, we use quaternions for the internal representation. The
- * user can build a rotation from any of these representations, and
- * any of these representations can be retrieved from a
- * <code>Rotation</code> instance (see the various constructors and
- * getters). In addition, a rotation can also be built implicitly
- * from a set of vectors and their image.</p>
- * <p>This implies that this class can be used to convert from one
- * representation to another one. For example, converting a rotation
- * matrix into a set of Cardan angles from can be done using the
- * following single line of code:</p>
- * <pre>
- * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
- * </pre>
- * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
- * underlying representation. Once it has been built, and regardless of its
- * internal representation, a rotation is an <em>operator</em> which basically
- * transforms three dimensional {@link Vector3D vectors} into other three
- * dimensional {@link Vector3D vectors}. Depending on the application, the
- * meaning of these vectors may vary and the semantics of the rotation also.</p>
- * <p>For example in an spacecraft attitude simulation tool, users will often
- * consider the vectors are fixed (say the Earth direction for example) and the
- * frames change. The rotation transforms the coordinates of the vector in inertial
- * frame into the coordinates of the same vector in satellite frame. In this
- * case, the rotation implicitly defines the relation between the two frames.</p>
- * <p>Another example could be a telescope control application, where the rotation
- * would transform the sighting direction at rest into the desired observing
- * direction when the telescope is pointed towards an object of interest. In this
- * case the rotation transforms the direction at rest in a topocentric frame
- * into the sighting direction in the same topocentric frame. This implies in this
- * case the frame is fixed and the vector moves.</p>
- * <p>In many case, both approaches will be combined. In our telescope example,
- * we will probably also need to transform the observing direction in the topocentric
- * frame into the observing direction in inertial frame taking into account the observatory
- * location and the Earth rotation, which would essentially be an application of the
- * first approach.</p>
- *
- * <p>These examples show that a rotation is what the user wants it to be. This
- * class does not push the user towards one specific definition and hence does not
- * provide methods like <code>projectVectorIntoDestinationFrame</code> or
- * <code>computeTransformedDirection</code>. It provides simpler and more generic
- * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
- * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
- *
- * <p>Since a rotation is basically a vectorial operator, several rotations can be
- * composed together and the composite operation <code>r = r<sub>1</sub> o
- * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
- * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
- * we can consider that in addition to vectors, a rotation can be applied to other
- * rotations as well (or to itself). With our previous notations, we would say we
- * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
- * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
- * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
- * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
- *
- * <p>Rotations are guaranteed to be immutable objects.</p>
- *
- * @see Vector3D
- * @see RotationOrder
- * @since 1.2
- */
-
-public class Rotation implements Serializable {
-
-  /** Identity rotation. */
-  public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);
-
-  /** Serializable version identifier */
-  private static final long serialVersionUID = -2153622329907944313L;
-
-  /** Scalar coordinate of the quaternion. */
-  private final double q0;
-
-  /** First coordinate of the vectorial part of the quaternion. */
-  private final double q1;
-
-  /** Second coordinate of the vectorial part of the quaternion. */
-  private final double q2;
-
-  /** Third coordinate of the vectorial part of the quaternion. */
-  private final double q3;
-
-  /** Build a rotation from the quaternion coordinates.
-   * <p>A rotation can be built from a <em>normalized</em> quaternion,
-   * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
-   * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
-   * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
-   * the constructor can normalize it in a preprocessing step.</p>
-   * <p>Note that some conventions put the scalar part of the quaternion
-   * as the 4<sup>th</sup> component and the vector part as the first three
-   * components. This is <em>not</em> our convention. We put the scalar part
-   * as the first component.</p>
-   * @param q0 scalar part of the quaternion
-   * @param q1 first coordinate of the vectorial part of the quaternion
-   * @param q2 second coordinate of the vectorial part of the quaternion
-   * @param q3 third coordinate of the vectorial part of the quaternion
-   * @param needsNormalization if true, the coordinates are considered
-   * not to be normalized, a normalization preprocessing step is performed
-   * before using them
-   */
-  public Rotation(double q0, double q1, double q2, double q3,
-                  boolean needsNormalization) {
-
-    if (needsNormalization) {
-      // normalization preprocessing
-      double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
-      q0 *= inv;
-      q1 *= inv;
-      q2 *= inv;
-      q3 *= inv;
-    }
-
-    this.q0 = q0;
-    this.q1 = q1;
-    this.q2 = q2;
-    this.q3 = q3;
-
-  }
-
-  /** Build a rotation from an axis and an angle.
-   * <p>We use the convention that angles are oriented according to
-   * the effect of the rotation on vectors around the axis. That means
-   * that if (i, j, k) is a direct frame and if we first provide +k as
-   * the axis and &pi;/2 as the angle to this constructor, and then
-   * {@link #applyTo(Vector3D) apply} the instance to +i, we will get
-   * +j.</p>
-   * <p>Another way to represent our convention is to say that a rotation
-   * of angle &theta; about the unit vector (x, y, z) is the same as the
-   * rotation build from quaternion components { cos(-&theta;/2),
-   * x * sin(-&theta;/2), y * sin(-&theta;/2), z * sin(-&theta;/2) }.
-   * Note the minus sign on the angle!</p>
-   * <p>On the one hand this convention is consistent with a vectorial
-   * perspective (moving vectors in fixed frames), on the other hand it
-   * is different from conventions with a frame perspective (fixed vectors
-   * viewed from different frames) like the ones used for example in spacecraft
-   * attitude community or in the graphics community.</p>
-   * @param axis axis around which to rotate
-   * @param angle rotation angle.
-   * @exception MathIllegalArgumentException if the axis norm is zero
-   */
-  public Rotation(Vector3D axis, double angle) throws MathIllegalArgumentException {
-
-    double norm = axis.getNorm();
-    if (norm == 0) {
-      throw new MathIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS);
-    }
-
-    double halfAngle = -0.5 * angle;
-    double coeff = FastMath.sin(halfAngle) / norm;
-
-    q0 = FastMath.cos (halfAngle);
-    q1 = coeff * axis.getX();
-    q2 = coeff * axis.getY();
-    q3 = coeff * axis.getZ();
-
-  }
-
-  /** Build a rotation from a 3X3 matrix.
-
-   * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
-   * (which are matrices for which m.m<sup>T</sup> = I) with real
-   * coefficients. The module of the determinant of unit matrices is
-   * 1, among the orthogonal 3X3 matrices, only the ones having a
-   * positive determinant (+1) are rotation matrices.</p>
-
-   * <p>When a rotation is defined by a matrix with truncated values
-   * (typically when it is extracted from a technical sheet where only
-   * four to five significant digits are available), the matrix is not
-   * orthogonal anymore. This constructor handles this case
-   * transparently by using a copy of the given matrix and applying a
-   * correction to the copy in order to perfect its orthogonality. If
-   * the Frobenius norm of the correction needed is above the given
-   * threshold, then the matrix is considered to be too far from a
-   * true rotation matrix and an exception is thrown.<p>
-
-   * @param m rotation matrix
-   * @param threshold convergence threshold for the iterative
-   * orthogonality correction (convergence is reached when the
-   * difference between two steps of the Frobenius norm of the
-   * correction is below this threshold)
-
-   * @exception NotARotationMatrixException if the matrix is not a 3X3
-   * matrix, or if it cannot be transformed into an orthogonal matrix
-   * with the given threshold, or if the determinant of the resulting
-   * orthogonal matrix is negative
-
-   */
-  public Rotation(double[][] m, double threshold)
-    throws NotARotationMatrixException {
-
-    // dimension check
-    if ((m.length != 3) || (m[0].length != 3) ||
-        (m[1].length != 3) || (m[2].length != 3)) {
-      throw new NotARotationMatrixException(
-              LocalizedFormats.ROTATION_MATRIX_DIMENSIONS,
-              m.length, m[0].length);
-    }
-
-    // compute a "close" orthogonal matrix
-    double[][] ort = orthogonalizeMatrix(m, threshold);
-
-    // check the sign of the determinant
-    double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
-                 ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
-                 ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
-    if (det < 0.0) {
-      throw new NotARotationMatrixException(
-              LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
-              det);
-    }
-
-    double[] quat = mat2quat(ort);
-    q0 = quat[0];
-    q1 = quat[1];
-    q2 = quat[2];
-    q3 = quat[3];
-
-  }
-
-  /** Build the rotation that transforms a pair of vector into another pair.
-
-   * <p>Except for possible scale factors, if the instance were applied to
-   * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
-   * (v<sub>1</sub>, v<sub>2</sub>).</p>
-
-   * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
-   * not the same as the angular separation between v<sub>1</sub> and
-   * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
-   * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
-   * v<sub>2</sub>) plane.</p>
-
-   * @param u1 first vector of the origin pair
-   * @param u2 second vector of the origin pair
-   * @param v1 desired image of u1 by the rotation
-   * @param v2 desired image of u2 by the rotation
-   * @exception MathArithmeticException if the norm of one of the vectors is zero,
-   * or if one of the pair is degenerated (i.e. the vectors of the pair are colinear)
-   */
-  public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2)
-      throws MathArithmeticException {
-
-      // build orthonormalized base from u1, u2
-      // this fails when vectors are null or colinear, which is forbidden to define a rotation
-      final Vector3D u3 = u1.crossProduct(u2).normalize();
-      u2 = u3.crossProduct(u1).normalize();
-      u1 = u1.normalize();
-
-      // build an orthonormalized base from v1, v2
-      // this fails when vectors are null or colinear, which is forbidden to define a rotation
-      final Vector3D v3 = v1.crossProduct(v2).normalize();
-      v2 = v3.crossProduct(v1).normalize();
-      v1 = v1.normalize();
-
-      // buid a matrix transforming the first base into the second one
-      final double[][] m = new double[][] {
-          {
-              MathArrays.linearCombination(u1.getX(), v1.getX(), u2.getX(), v2.getX(), u3.getX(), v3.getX()),
-              MathArrays.linearCombination(u1.getY(), v1.getX(), u2.getY(), v2.getX(), u3.getY(), v3.getX()),
-              MathArrays.linearCombination(u1.getZ(), v1.getX(), u2.getZ(), v2.getX(), u3.getZ(), v3.getX())
-          },
-          {
-              MathArrays.linearCombination(u1.getX(), v1.getY(), u2.getX(), v2.getY(), u3.getX(), v3.getY()),
-              MathArrays.linearCombination(u1.getY(), v1.getY(), u2.getY(), v2.getY(), u3.getY(), v3.getY()),
-              MathArrays.linearCombination(u1.getZ(), v1.getY(), u2.getZ(), v2.getY(), u3.getZ(), v3.getY())
-          },
-          {
-              MathArrays.linearCombination(u1.getX(), v1.getZ(), u2.getX(), v2.getZ(), u3.getX(), v3.getZ()),
-              MathArrays.linearCombination(u1.getY(), v1.getZ(), u2.getY(), v2.getZ(), u3.getY(), v3.getZ()),
-              MathArrays.linearCombination(u1.getZ(), v1.getZ(), u2.getZ(), v2.getZ(), u3.getZ(), v3.getZ())
-          }
-      };
-
-      double[] quat = mat2quat(m);
-      q0 = quat[0];
-      q1 = quat[1];
-      q2 = quat[2];
-      q3 = quat[3];
-
-  }
-
-  /** Build one of the rotations that transform one vector into another one.
-
-   * <p>Except for a possible scale factor, if the instance were
-   * applied to the vector u it will produce the vector v. There is an
-   * infinite number of such rotations, this constructor choose the
-   * one with the smallest associated angle (i.e. the one whose axis
-   * is orthogonal to the (u, v) plane). If u and v are colinear, an
-   * arbitrary rotation axis is chosen.</p>
-
-   * @param u origin vector
-   * @param v desired image of u by the rotation
-   * @exception MathArithmeticException if the norm of one of the vectors is zero
-   */
-  public Rotation(Vector3D u, Vector3D v) throws MathArithmeticException {
-
-    double normProduct = u.getNorm() * v.getNorm();
-    if (normProduct == 0) {
-        throw new MathArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
-    }
-
-    double dot = u.dotProduct(v);
-
-    if (dot < ((2.0e-15 - 1.0) * normProduct)) {
-      // special case u = -v: we select a PI angle rotation around
-      // an arbitrary vector orthogonal to u
-      Vector3D w = u.orthogonal();
-      q0 = 0.0;
-      q1 = -w.getX();
-      q2 = -w.getY();
-      q3 = -w.getZ();
-    } else {
-      // general case: (u, v) defines a plane, we select
-      // the shortest possible rotation: axis orthogonal to this plane
-      q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
-      double coeff = 1.0 / (2.0 * q0 * normProduct);
-      Vector3D q = v.crossProduct(u);
-      q1 = coeff * q.getX();
-      q2 = coeff * q.getY();
-      q3 = coeff * q.getZ();
-    }
-
-  }
-
-  /** Build a rotation from three Cardan or Euler elementary rotations.
-
-   * <p>Cardan rotations are three successive rotations around the
-   * canonical axes X, Y and Z, each axis being used once. There are
-   * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
-   * rotations are three successive rotations around the canonical
-   * axes X, Y and Z, the first and last rotations being around the
-   * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
-   * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
-   * <p>Beware that many people routinely use the term Euler angles even
-   * for what really are Cardan angles (this confusion is especially
-   * widespread in the aerospace business where Roll, Pitch and Yaw angles
-   * are often wrongly tagged as Euler angles).</p>
-
-   * @param order order of rotations to use
-   * @param alpha1 angle of the first elementary rotation
-   * @param alpha2 angle of the second elementary rotation
-   * @param alpha3 angle of the third elementary rotation
-   */
-  public Rotation(RotationOrder order,
-                  double alpha1, double alpha2, double alpha3) {
-      Rotation r1 = new Rotation(order.getA1(), alpha1);
-      Rotation r2 = new Rotation(order.getA2(), alpha2);
-      Rotation r3 = new Rotation(order.getA3(), alpha3);
-      Rotation composed = r1.applyTo(r2.applyTo(r3));
-      q0 = composed.q0;
-      q1 = composed.q1;
-      q2 = composed.q2;
-      q3 = composed.q3;
-  }
-
-  /** Convert an orthogonal rotation matrix to a quaternion.
-   * @param ort orthogonal rotation matrix
-   * @return quaternion corresponding to the matrix
-   */
-  private static double[] mat2quat(final double[][] ort) {
-
-      final double[] quat = new double[4];
-
-      // There are different ways to compute the quaternions elements
-      // from the matrix. They all involve computing one element from
-      // the diagonal of the matrix, and computing the three other ones
-      // using a formula involving a division by the first element,
-      // which unfortunately can be zero. Since the norm of the
-      // quaternion is 1, we know at least one element has an absolute
-      // value greater or equal to 0.5, so it is always possible to
-      // select the right formula and avoid division by zero and even
-      // numerical inaccuracy. Checking the elements in turn and using
-      // the first one greater than 0.45 is safe (this leads to a simple
-      // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
-      double s = ort[0][0] + ort[1][1] + ort[2][2];
-      if (s > -0.19) {
-          // compute q0 and deduce q1, q2 and q3
-          quat[0] = 0.5 * FastMath.sqrt(s + 1.0);
-          double inv = 0.25 / quat[0];
-          quat[1] = inv * (ort[1][2] - ort[2][1]);
-          quat[2] = inv * (ort[2][0] - ort[0][2]);
-          quat[3] = inv * (ort[0][1] - ort[1][0]);
-      } else {
-          s = ort[0][0] - ort[1][1] - ort[2][2];
-          if (s > -0.19) {
-              // compute q1 and deduce q0, q2 and q3
-              quat[1] = 0.5 * FastMath.sqrt(s + 1.0);
-              double inv = 0.25 / quat[1];
-              quat[0] = inv * (ort[1][2] - ort[2][1]);
-              quat[2] = inv * (ort[0][1] + ort[1][0]);
-              quat[3] = inv * (ort[0][2] + ort[2][0]);
-          } else {
-              s = ort[1][1] - ort[0][0] - ort[2][2];
-              if (s > -0.19) {
-                  // compute q2 and deduce q0, q1 and q3
-                  quat[2] = 0.5 * FastMath.sqrt(s + 1.0);
-                  double inv = 0.25 / quat[2];
-                  quat[0] = inv * (ort[2][0] - ort[0][2]);
-                  quat[1] = inv * (ort[0][1] + ort[1][0]);
-                  quat[3] = inv * (ort[2][1] + ort[1][2]);
-              } else {
-                  // compute q3 and deduce q0, q1 and q2
-                  s = ort[2][2] - ort[0][0] - ort[1][1];
-                  quat[3] = 0.5 * FastMath.sqrt(s + 1.0);
-                  double inv = 0.25 / quat[3];
-                  quat[0] = inv * (ort[0][1] - ort[1][0]);
-                  quat[1] = inv * (ort[0][2] + ort[2][0]);
-                  quat[2] = inv * (ort[2][1] + ort[1][2]);
-              }
-          }
-      }
-
-      return quat;
-
-  }
-
-  /** Revert a rotation.
-   * Build a rotation which reverse the effect of another
-   * rotation. This means that if r(u) = v, then r.revert(v) = u. The
-   * instance is not changed.
-   * @return a new rotation whose effect is the reverse of the effect
-   * of the instance
-   */
-  public Rotation revert() {
-    return new Rotation(-q0, q1, q2, q3, false);
-  }
-
-  /** Get the scalar coordinate of the quaternion.
-   * @return scalar coordinate of the quaternion
-   */
-  public double getQ0() {
-    return q0;
-  }
-
-  /** Get the first coordinate of the vectorial part of the quaternion.
-   * @return first coordinate of the vectorial part of the quaternion
-   */
-  public double getQ1() {
-    return q1;
-  }
-
-  /** Get the second coordinate of the vectorial part of the quaternion.
-   * @return second coordinate of the vectorial part of the quaternion
-   */
-  public double getQ2() {
-    return q2;
-  }
-
-  /** Get the third coordinate of the vectorial part of the quaternion.
-   * @return third coordinate of the vectorial part of the quaternion
-   */
-  public double getQ3() {
-    return q3;
-  }
-
-  /** Get the normalized axis of the rotation.
-   * @return normalized axis of the rotation
-   * @see #Rotation(Vector3D, double)
-   */
-  public Vector3D getAxis() {
-    double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
-    if (squaredSine == 0) {
-      return new Vector3D(1, 0, 0);
-    } else if (q0 < 0) {
-      double inverse = 1 / FastMath.sqrt(squaredSine);
-      return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
-    }
-    double inverse = -1 / FastMath.sqrt(squaredSine);
-    return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
-  }
-
-  /** Get the angle of the rotation.
-   * @return angle of the rotation (between 0 and &pi;)
-   * @see #Rotation(Vector3D, double)
-   */
-  public double getAngle() {
-    if ((q0 < -0.1) || (q0 > 0.1)) {
-      return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
-    } else if (q0 < 0) {
-      return 2 * FastMath.acos(-q0);
-    }
-    return 2 * FastMath.acos(q0);
-  }
-
-  /** Get the Cardan or Euler angles corresponding to the instance.
-
-   * <p>The equations show that each rotation can be defined by two
-   * different values of the Cardan or Euler angles set. For example
-   * if Cardan angles are used, the rotation defined by the angles
-   * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
-   * the rotation defined by the angles &pi; + a<sub>1</sub>, &pi;
-   * - a<sub>2</sub> and &pi; + a<sub>3</sub>. This method implements
-   * the following arbitrary choices:</p>
-   * <ul>
-   *   <li>for Cardan angles, the chosen set is the one for which the
-   *   second angle is between -&pi;/2 and &pi;/2 (i.e its cosine is
-   *   positive),</li>
-   *   <li>for Euler angles, the chosen set is the one for which the
-   *   second angle is between 0 and &pi; (i.e its sine is positive).</li>
-   * </ul>
-
-   * <p>Cardan and Euler angle have a very disappointing drawback: all
-   * of them have singularities. This means that if the instance is
-   * too close to the singularities corresponding to the given
-   * rotation order, it will be impossible to retrieve the angles. For
-   * Cardan angles, this is often called gimbal lock. There is
-   * <em>nothing</em> to do to prevent this, it is an intrinsic problem
-   * with Cardan and Euler representation (but not a problem with the
-   * rotation itself, which is perfectly well defined). For Cardan
-   * angles, singularities occur when the second angle is close to
-   * -&pi;/2 or +&pi;/2, for Euler angle singularities occur when the
-   * second angle is close to 0 or &pi;, this implies that the identity
-   * rotation is always singular for Euler angles!</p>
-
-   * @param order rotation order to use
-   * @return an array of three angles, in the order specified by the set
-   * @exception CardanEulerSingularityException if the rotation is
-   * singular with respect to the angles set specified
-   */
-  public double[] getAngles(RotationOrder order)
-    throws CardanEulerSingularityException {
-
-    if (order == RotationOrder.XYZ) {
-
-      // r (Vector3D.plusK) coordinates are :
-      //  sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi)
-      // (-r) (Vector3D.plusI) coordinates are :
-      // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta)
-      // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
-      Vector3D v1 = applyTo(Vector3D.PLUS_K);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
-      if  ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(true);
-      }
-      return new double[] {
-        FastMath.atan2(-(v1.getY()), v1.getZ()),
-        FastMath.asin(v2.getZ()),
-        FastMath.atan2(-(v2.getY()), v2.getX())
-      };
-
-    } else if (order == RotationOrder.XZY) {
-
-      // r (Vector3D.plusJ) coordinates are :
-      // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi)
-      // (-r) (Vector3D.plusI) coordinates are :
-      // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi)
-      // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
-      Vector3D v1 = applyTo(Vector3D.PLUS_J);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
-      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(true);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getZ(), v1.getY()),
-       -FastMath.asin(v2.getY()),
-        FastMath.atan2(v2.getZ(), v2.getX())
-      };
-
-    } else if (order == RotationOrder.YXZ) {
-
-      // r (Vector3D.plusK) coordinates are :
-      //  cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta)
-      // (-r) (Vector3D.plusJ) coordinates are :
-      // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi)
-      // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
-      Vector3D v1 = applyTo(Vector3D.PLUS_K);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
-      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(true);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getX(), v1.getZ()),
-       -FastMath.asin(v2.getZ()),
-        FastMath.atan2(v2.getX(), v2.getY())
-      };
-
-    } else if (order == RotationOrder.YZX) {
-
-      // r (Vector3D.plusI) coordinates are :
-      // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta)
-      // (-r) (Vector3D.plusJ) coordinates are :
-      // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi)
-      // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
-      Vector3D v1 = applyTo(Vector3D.PLUS_I);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
-      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(true);
-      }
-      return new double[] {
-        FastMath.atan2(-(v1.getZ()), v1.getX()),
-        FastMath.asin(v2.getX()),
-        FastMath.atan2(-(v2.getZ()), v2.getY())
-      };
-
-    } else if (order == RotationOrder.ZXY) {
-
-      // r (Vector3D.plusJ) coordinates are :
-      // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi)
-      // (-r) (Vector3D.plusK) coordinates are :
-      // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi)
-      // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
-      Vector3D v1 = applyTo(Vector3D.PLUS_J);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
-      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(true);
-      }
-      return new double[] {
-        FastMath.atan2(-(v1.getX()), v1.getY()),
-        FastMath.asin(v2.getY()),
-        FastMath.atan2(-(v2.getX()), v2.getZ())
-      };
-
-    } else if (order == RotationOrder.ZYX) {
-
-      // r (Vector3D.plusI) coordinates are :
-      //  cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta)
-      // (-r) (Vector3D.plusK) coordinates are :
-      // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta)
-      // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
-      Vector3D v1 = applyTo(Vector3D.PLUS_I);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
-      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(true);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getY(), v1.getX()),
-       -FastMath.asin(v2.getX()),
-        FastMath.atan2(v2.getY(), v2.getZ())
-      };
-
-    } else if (order == RotationOrder.XYX) {
-
-      // r (Vector3D.plusI) coordinates are :
-      //  cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta)
-      // (-r) (Vector3D.plusI) coordinates are :
-      // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2)
-      // and we can choose to have theta in the interval [0 ; PI]
-      Vector3D v1 = applyTo(Vector3D.PLUS_I);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
-      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(false);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getY(), -v1.getZ()),
-        FastMath.acos(v2.getX()),
-        FastMath.atan2(v2.getY(), v2.getZ())
-      };
-
-    } else if (order == RotationOrder.XZX) {
-
-      // r (Vector3D.plusI) coordinates are :
-      //  cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi)
-      // (-r) (Vector3D.plusI) coordinates are :
-      // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2)
-      // and we can choose to have psi in the interval [0 ; PI]
-      Vector3D v1 = applyTo(Vector3D.PLUS_I);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
-      if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(false);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getZ(), v1.getY()),
-        FastMath.acos(v2.getX()),
-        FastMath.atan2(v2.getZ(), -v2.getY())
-      };
-
-    } else if (order == RotationOrder.YXY) {
-
-      // r (Vector3D.plusJ) coordinates are :
-      //  sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi)
-      // (-r) (Vector3D.plusJ) coordinates are :
-      // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2)
-      // and we can choose to have phi in the interval [0 ; PI]
-      Vector3D v1 = applyTo(Vector3D.PLUS_J);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
-      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(false);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getX(), v1.getZ()),
-        FastMath.acos(v2.getY()),
-        FastMath.atan2(v2.getX(), -v2.getZ())
-      };
-
-    } else if (order == RotationOrder.YZY) {
-
-      // r (Vector3D.plusJ) coordinates are :
-      //  -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi)
-      // (-r) (Vector3D.plusJ) coordinates are :
-      // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2)
-      // and we can choose to have psi in the interval [0 ; PI]
-      Vector3D v1 = applyTo(Vector3D.PLUS_J);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
-      if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(false);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getZ(), -v1.getX()),
-        FastMath.acos(v2.getY()),
-        FastMath.atan2(v2.getZ(), v2.getX())
-      };
-
-    } else if (order == RotationOrder.ZXZ) {
-
-      // r (Vector3D.plusK) coordinates are :
-      //  sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi)
-      // (-r) (Vector3D.plusK) coordinates are :
-      // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi)
-      // and we can choose to have phi in the interval [0 ; PI]
-      Vector3D v1 = applyTo(Vector3D.PLUS_K);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
-      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(false);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getX(), -v1.getY()),
-        FastMath.acos(v2.getZ()),
-        FastMath.atan2(v2.getX(), v2.getY())
-      };
-
-    } else { // last possibility is ZYZ
-
-      // r (Vector3D.plusK) coordinates are :
-      //  cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta)
-      // (-r) (Vector3D.plusK) coordinates are :
-      // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta)
-      // and we can choose to have theta in the interval [0 ; PI]
-      Vector3D v1 = applyTo(Vector3D.PLUS_K);
-      Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
-      if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
-        throw new CardanEulerSingularityException(false);
-      }
-      return new double[] {
-        FastMath.atan2(v1.getY(), v1.getX()),
-        FastMath.acos(v2.getZ()),
-        FastMath.atan2(v2.getY(), -v2.getX())
-      };
-
-    }
-
-  }
-
-  /** Get the 3X3 matrix corresponding to the instance
-   * @return the matrix corresponding to the instance
-   */
-  public double[][] getMatrix() {
-
-    // products
-    double q0q0  = q0 * q0;
-    double q0q1  = q0 * q1;
-    double q0q2  = q0 * q2;
-    double q0q3  = q0 * q3;
-    double q1q1  = q1 * q1;
-    double q1q2  = q1 * q2;
-    double q1q3  = q1 * q3;
-    double q2q2  = q2 * q2;
-    double q2q3  = q2 * q3;
-    double q3q3  = q3 * q3;
-
-    // create the matrix
-    double[][] m = new double[3][];
-    m[0] = new double[3];
-    m[1] = new double[3];
-    m[2] = new double[3];
-
-    m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
-    m [1][0] = 2.0 * (q1q2 - q0q3);
-    m [2][0] = 2.0 * (q1q3 + q0q2);
-
-    m [0][1] = 2.0 * (q1q2 + q0q3);
-    m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
-    m [2][1] = 2.0 * (q2q3 - q0q1);
-
-    m [0][2] = 2.0 * (q1q3 - q0q2);
-    m [1][2] = 2.0 * (q2q3 + q0q1);
-    m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;
-
-    return m;
-
-  }
-
-  /** Apply the rotation to a vector.
-   * @param u vector to apply the rotation to
-   * @return a new vector which is the image of u by the rotation
-   */
-  public Vector3D applyTo(Vector3D u) {
-
-    double x = u.getX();
-    double y = u.getY();
-    double z = u.getZ();
-
-    double s = q1 * x + q2 * y + q3 * z;
-
-    return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
-                        2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
-                        2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);
-
-  }
-
-  /** Apply the rotation to a vector stored in an array.
-   * @param in an array with three items which stores vector to rotate
-   * @param out an array with three items to put result to (it can be the same
-   * array as in)
-   */
-  public void applyTo(final double[] in, final double[] out) {
-
-      final double x = in[0];
-      final double y = in[1];
-      final double z = in[2];
-
-      final double s = q1 * x + q2 * y + q3 * z;
-
-      out[0] = 2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x;
-      out[1] = 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y;
-      out[2] = 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z;
-
-  }
-
-  /** Apply the inverse of the rotation to a vector.
-   * @param u vector to apply the inverse of the rotation to
-   * @return a new vector which such that u is its image by the rotation
-   */
-  public Vector3D applyInverseTo(Vector3D u) {
-
-    double x = u.getX();
-    double y = u.getY();
-    double z = u.getZ();
-
-    double s = q1 * x + q2 * y + q3 * z;
-    double m0 = -q0;
-
-    return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
-                        2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
-                        2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);
-
-  }
-
-  /** Apply the inverse of the rotation to a vector stored in an array.
-   * @param in an array with three items which stores vector to rotate
-   * @param out an array with three items to put result to (it can be the same
-   * array as in)
-   */
-  public void applyInverseTo(final double[] in, final double[] out) {
-
-      final double x = in[0];
-      final double y = in[1];
-      final double z = in[2];
-
-      final double s = q1 * x + q2 * y + q3 * z;
-      final double m0 = -q0;
-
-      out[0] = 2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x;
-      out[1] = 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y;
-      out[2] = 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z;
-
-  }
-
-  /** Apply the instance to another rotation.
-   * Applying the instance to a rotation is computing the composition
-   * in an order compliant with the following rule : let u be any
-   * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image
-   * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u),
-   * where comp = applyTo(r).
-   * @param r rotation to apply the rotation to
-   * @return a new rotation which is the composition of r by the instance
-   */
-  public Rotation applyTo(Rotation r) {
-    return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
-                        r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
-                        r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
-                        r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
-                        false);
-  }
-
-  /** Apply the inverse of the instance to another rotation.
-   * Applying the inverse of the instance to a rotation is computing
-   * the composition in an order compliant with the following rule :
-   * let u be any vector and v its image by r (i.e. r.applyTo(u) = v),
-   * let w be the inverse image of v by the instance
-   * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where
-   * comp = applyInverseTo(r).
-   * @param r rotation to apply the rotation to
-   * @return a new rotation which is the composition of r by the inverse
-   * of the instance
-   */
-  public Rotation applyInverseTo(Rotation r) {
-    return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
-                        -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
-                        -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
-                        -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
-                        false);
-  }
-
-  /** Perfect orthogonality on a 3X3 matrix.
-   * @param m initial matrix (not exactly orthogonal)
-   * @param threshold convergence threshold for the iterative
-   * orthogonality correction (convergence is reached when the
-   * difference between two steps of the Frobenius norm of the
-   * correction is below this threshold)
-   * @return an orthogonal matrix close to m
-   * @exception NotARotationMatrixException if the matrix cannot be
-   * orthogonalized with the given threshold after 10 iterations
-   */
-  private double[][] orthogonalizeMatrix(double[][] m, double threshold)
-    throws NotARotationMatrixException {
-    double[] m0 = m[0];
-    double[] m1 = m[1];
-    double[] m2 = m[2];
-    double x00 = m0[0];
-    double x01 = m0[1];
-    double x02 = m0[2];
-    double x10 = m1[0];
-    double x11 = m1[1];
-    double x12 = m1[2];
-    double x20 = m2[0];
-    double x21 = m2[1];
-    double x22 = m2[2];
-    double fn = 0;
-    double fn1;
-
-    double[][] o = new double[3][3];
-    double[] o0 = o[0];
-    double[] o1 = o[1];
-    double[] o2 = o[2];
-
-    // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
-    int i = 0;
-    while (++i < 11) {
-
-      // Mt.Xn
-      double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
-      double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
-      double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
-      double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
-      double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
-      double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
-      double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
-      double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
-      double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;
-
-      // Xn+1
-      o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
-      o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
-      o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
-      o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
-      o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
-      o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
-      o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
-      o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
-      o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);
-
-      // correction on each elements
-      double corr00 = o0[0] - m0[0];
-      double corr01 = o0[1] - m0[1];
-      double corr02 = o0[2] - m0[2];
-      double corr10 = o1[0] - m1[0];
-      double corr11 = o1[1] - m1[1];
-      double corr12 = o1[2] - m1[2];
-      double corr20 = o2[0] - m2[0];
-      double corr21 = o2[1] - m2[1];
-      double corr22 = o2[2] - m2[2];
-
-      // Frobenius norm of the correction
-      fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
-            corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
-            corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
-
-      // convergence test
-      if (FastMath.abs(fn1 - fn) <= threshold) {
-          return o;
-      }
-
-      // prepare next iteration
-      x00 = o0[0];
-      x01 = o0[1];
-      x02 = o0[2];
-      x10 = o1[0];
-      x11 = o1[1];
-      x12 = o1[2];
-      x20 = o2[0];
-      x21 = o2[1];
-      x22 = o2[2];
-      fn  = fn1;
-
-    }
-
-    // the algorithm did not converge after 10 iterations
-    throw new NotARotationMatrixException(
-            LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
-            i - 1);
-  }
-
-  /** Compute the <i>distance</i> between two rotations.
-   * <p>The <i>distance</i> is intended here as a way to check if two
-   * rotations are almost similar (i.e. they transform vectors the same way)
-   * or very different. It is mathematically defined as the angle of
-   * the rotation r that prepended to one of the rotations gives the other
-   * one:</p>
-   * <pre>
-   *        r<sub>1</sub>(r) = r<sub>2</sub>
-   * </pre>
-   * <p>This distance is an angle between 0 and &pi;. Its value is the smallest
-   * possible upper bound of the angle in radians between r<sub>1</sub>(v)
-   * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
-   * reached for some v. The distance is equal to 0 if and only if the two
-   * rotations are identical.</p>
-   * <p>Comparing two rotations should always be done using this value rather
-   * than for example comparing the components of the quaternions. It is much
-   * more stable, and has a geometric meaning. Also comparing quaternions
-   * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
-   * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
-   * their components are different (they are exact opposites).</p>
-   * @param r1 first rotation
-   * @param r2 second rotation
-   * @return <i>distance</i> between r1 and r2
-   */
-  public static double distance(Rotation r1, Rotation r2) {
-      return r1.applyInverseTo(r2).getAngle();
-  }
-
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/RotationOrder.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/RotationOrder.java b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/RotationOrder.java
deleted file mode 100644
index 03bc1c2..0000000
--- a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/RotationOrder.java
+++ /dev/null
@@ -1,174 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.commons.math3.geometry.euclidean.threed;
-
-/**
- * This class is a utility representing a rotation order specification
- * for Cardan or Euler angles specification.
- *
- * This class cannot be instanciated by the user. He can only use one
- * of the twelve predefined supported orders as an argument to either
- * the {@link Rotation#Rotation(RotationOrder,double,double,double)}
- * constructor or the {@link Rotation#getAngles} method.
- *
- * @since 1.2
- */
-public final class RotationOrder {
-
-    /** Set of Cardan angles.
-     * this ordered set of rotations is around X, then around Y, then
-     * around Z
-     */
-    public static final RotationOrder XYZ =
-      new RotationOrder("XYZ", Vector3D.PLUS_I, Vector3D.PLUS_J, Vector3D.PLUS_K);
-
-    /** Set of Cardan angles.
-     * this ordered set of rotations is around X, then around Z, then
-     * around Y
-     */
-    public static final RotationOrder XZY =
-      new RotationOrder("XZY", Vector3D.PLUS_I, Vector3D.PLUS_K, Vector3D.PLUS_J);
-
-    /** Set of Cardan angles.
-     * this ordered set of rotations is around Y, then around X, then
-     * around Z
-     */
-    public static final RotationOrder YXZ =
-      new RotationOrder("YXZ", Vector3D.PLUS_J, Vector3D.PLUS_I, Vector3D.PLUS_K);
-
-    /** Set of Cardan angles.
-     * this ordered set of rotations is around Y, then around Z, then
-     * around X
-     */
-    public static final RotationOrder YZX =
-      new RotationOrder("YZX", Vector3D.PLUS_J, Vector3D.PLUS_K, Vector3D.PLUS_I);
-
-    /** Set of Cardan angles.
-     * this ordered set of rotations is around Z, then around X, then
-     * around Y
-     */
-    public static final RotationOrder ZXY =
-      new RotationOrder("ZXY", Vector3D.PLUS_K, Vector3D.PLUS_I, Vector3D.PLUS_J);
-
-    /** Set of Cardan angles.
-     * this ordered set of rotations is around Z, then around Y, then
-     * around X
-     */
-    public static final RotationOrder ZYX =
-      new RotationOrder("ZYX", Vector3D.PLUS_K, Vector3D.PLUS_J, Vector3D.PLUS_I);
-
-    /** Set of Euler angles.
-     * this ordered set of rotations is around X, then around Y, then
-     * around X
-     */
-    public static final RotationOrder XYX =
-      new RotationOrder("XYX", Vector3D.PLUS_I, Vector3D.PLUS_J, Vector3D.PLUS_I);
-
-    /** Set of Euler angles.
-     * this ordered set of rotations is around X, then around Z, then
-     * around X
-     */
-    public static final RotationOrder XZX =
-      new RotationOrder("XZX", Vector3D.PLUS_I, Vector3D.PLUS_K, Vector3D.PLUS_I);
-
-    /** Set of Euler angles.
-     * this ordered set of rotations is around Y, then around X, then
-     * around Y
-     */
-    public static final RotationOrder YXY =
-      new RotationOrder("YXY", Vector3D.PLUS_J, Vector3D.PLUS_I, Vector3D.PLUS_J);
-
-    /** Set of Euler angles.
-     * this ordered set of rotations is around Y, then around Z, then
-     * around Y
-     */
-    public static final RotationOrder YZY =
-      new RotationOrder("YZY", Vector3D.PLUS_J, Vector3D.PLUS_K, Vector3D.PLUS_J);
-
-    /** Set of Euler angles.
-     * this ordered set of rotations is around Z, then around X, then
-     * around Z
-     */
-    public static final RotationOrder ZXZ =
-      new RotationOrder("ZXZ", Vector3D.PLUS_K, Vector3D.PLUS_I, Vector3D.PLUS_K);
-
-    /** Set of Euler angles.
-     * this ordered set of rotations is around Z, then around Y, then
-     * around Z
-     */
-    public static final RotationOrder ZYZ =
-      new RotationOrder("ZYZ", Vector3D.PLUS_K, Vector3D.PLUS_J, Vector3D.PLUS_K);
-
-    /** Name of the rotations order. */
-    private final String name;
-
-    /** Axis of the first rotation. */
-    private final Vector3D a1;
-
-    /** Axis of the second rotation. */
-    private final Vector3D a2;
-
-    /** Axis of the third rotation. */
-    private final Vector3D a3;
-
-    /** Private constructor.
-     * This is a utility class that cannot be instantiated by the user,
-     * so its only constructor is private.
-     * @param name name of the rotation order
-     * @param a1 axis of the first rotation
-     * @param a2 axis of the second rotation
-     * @param a3 axis of the third rotation
-     */
-    private RotationOrder(final String name,
-                          final Vector3D a1, final Vector3D a2, final Vector3D a3) {
-        this.name = name;
-        this.a1   = a1;
-        this.a2   = a2;
-        this.a3   = a3;
-    }
-
-    /** Get a string representation of the instance.
-     * @return a string representation of the instance (in fact, its name)
-     */
-    @Override
-    public String toString() {
-        return name;
-    }
-
-    /** Get the axis of the first rotation.
-     * @return axis of the first rotation
-     */
-    public Vector3D getA1() {
-        return a1;
-    }
-
-    /** Get the axis of the second rotation.
-     * @return axis of the second rotation
-     */
-    public Vector3D getA2() {
-        return a2;
-    }
-
-    /** Get the axis of the second rotation.
-     * @return axis of the second rotation
-     */
-    public Vector3D getA3() {
-        return a3;
-    }
-
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Segment.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Segment.java b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Segment.java
deleted file mode 100644
index 200b462..0000000
--- a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/Segment.java
+++ /dev/null
@@ -1,66 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.geometry.euclidean.threed;
-
-
-/** Simple container for a two-points segment.
- * @since 3.0
- */
-public class Segment {
-
-    /** Start point of the segment. */
-    private final Vector3D start;
-
-    /** End point of the segments. */
-    private final Vector3D end;
-
-    /** Line containing the segment. */
-    private final Line     line;
-
-    /** Build a segment.
-     * @param start start point of the segment
-     * @param end end point of the segment
-     * @param line line containing the segment
-     */
-    public Segment(final Vector3D start, final Vector3D end, final Line line) {
-        this.start  = start;
-        this.end    = end;
-        this.line   = line;
-    }
-
-    /** Get the start point of the segment.
-     * @return start point of the segment
-     */
-    public Vector3D getStart() {
-        return start;
-    }
-
-    /** Get the end point of the segment.
-     * @return end point of the segment
-     */
-    public Vector3D getEnd() {
-        return end;
-    }
-
-    /** Get the line containing the segment.
-     * @return line containing the segment
-     */
-    public Line getLine() {
-        return line;
-    }
-
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SphereGenerator.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SphereGenerator.java b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SphereGenerator.java
deleted file mode 100644
index b553510..0000000
--- a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SphereGenerator.java
+++ /dev/null
@@ -1,152 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.geometry.euclidean.threed;
-
-import java.util.Arrays;
-import java.util.List;
-
-import org.apache.commons.math3.fraction.BigFraction;
-import org.apache.commons.math3.geometry.enclosing.EnclosingBall;
-import org.apache.commons.math3.geometry.enclosing.SupportBallGenerator;
-import org.apache.commons.math3.geometry.euclidean.twod.DiskGenerator;
-import org.apache.commons.math3.geometry.euclidean.twod.Euclidean2D;
-import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
-import org.apache.commons.math3.util.FastMath;
-
-/** Class generating an enclosing ball from its support points.
- * @since 3.3
- */
-public class SphereGenerator implements SupportBallGenerator<Euclidean3D, Vector3D> {
-
-    /** {@inheritDoc} */
-    public EnclosingBall<Euclidean3D, Vector3D> ballOnSupport(final List<Vector3D> support) {
-
-        if (support.size() < 1) {
-            return new EnclosingBall<Euclidean3D, Vector3D>(Vector3D.ZERO, Double.NEGATIVE_INFINITY);
-        } else {
-            final Vector3D vA = support.get(0);
-            if (support.size() < 2) {
-                return new EnclosingBall<Euclidean3D, Vector3D>(vA, 0, vA);
-            } else {
-                final Vector3D vB = support.get(1);
-                if (support.size() < 3) {
-                    return new EnclosingBall<Euclidean3D, Vector3D>(new Vector3D(0.5, vA, 0.5, vB),
-                                                                    0.5 * vA.distance(vB),
-                                                                    vA, vB);
-                } else {
-                    final Vector3D vC = support.get(2);
-                    if (support.size() < 4) {
-
-                        // delegate to 2D disk generator
-                        final Plane p = new Plane(vA, vB, vC,
-                                                  1.0e-10 * (vA.getNorm1() + vB.getNorm1() + vC.getNorm1()));
-                        final EnclosingBall<Euclidean2D, Vector2D> disk =
-                                new DiskGenerator().ballOnSupport(Arrays.asList(p.toSubSpace(vA),
-                                                                                p.toSubSpace(vB),
-                                                                                p.toSubSpace(vC)));
-
-                        // convert back to 3D
-                        return new EnclosingBall<Euclidean3D, Vector3D>(p.toSpace(disk.getCenter()),
-                                                                        disk.getRadius(), vA, vB, vC);
-
-                    } else {
-                        final Vector3D vD = support.get(3);
-                        // a sphere is 3D can be defined as:
-                        // (1)   (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2
-                        // which can be written:
-                        // (2)   (x^2 + y^2 + z^2) - 2 x_0 x - 2 y_0 y - 2 z_0 z + (x_0^2 + y_0^2 + z_0^2 - r^2) = 0
-                        // or simply:
-                        // (3)   (x^2 + y^2 + z^2) + a x + b y + c z + d = 0
-                        // with sphere center coordinates -a/2, -b/2, -c/2
-                        // If the sphere exists, a b, c and d are a non zero solution to
-                        // [ (x^2  + y^2  + z^2)    x    y   z    1 ]   [ 1 ]   [ 0 ]
-                        // [ (xA^2 + yA^2 + zA^2)   xA   yA  zA   1 ]   [ a ]   [ 0 ]
-                        // [ (xB^2 + yB^2 + zB^2)   xB   yB  zB   1 ] * [ b ] = [ 0 ]
-                        // [ (xC^2 + yC^2 + zC^2)   xC   yC  zC   1 ]   [ c ]   [ 0 ]
-                        // [ (xD^2 + yD^2 + zD^2)   xD   yD  zD   1 ]   [ d ]   [ 0 ]
-                        // So the determinant of the matrix is zero. Computing this determinant
-                        // by expanding it using the minors m_ij of first row leads to
-                        // (4)   m_11 (x^2 + y^2 + z^2) - m_12 x + m_13 y - m_14 z + m_15 = 0
-                        // So by identifying equations (2) and (4) we get the coordinates
-                        // of center as:
-                        //      x_0 = +m_12 / (2 m_11)
-                        //      y_0 = -m_13 / (2 m_11)
-                        //      z_0 = +m_14 / (2 m_11)
-                        // Note that the minors m_11, m_12, m_13 and m_14 all have the last column
-                        // filled with 1.0, hence simplifying the computation
-                        final BigFraction[] c2 = new BigFraction[] {
-                            new BigFraction(vA.getX()), new BigFraction(vB.getX()),
-                            new BigFraction(vC.getX()), new BigFraction(vD.getX())
-                        };
-                        final BigFraction[] c3 = new BigFraction[] {
-                            new BigFraction(vA.getY()), new BigFraction(vB.getY()),
-                            new BigFraction(vC.getY()), new BigFraction(vD.getY())
-                        };
-                        final BigFraction[] c4 = new BigFraction[] {
-                            new BigFraction(vA.getZ()), new BigFraction(vB.getZ()),
-                            new BigFraction(vC.getZ()), new BigFraction(vD.getZ())
-                        };
-                        final BigFraction[] c1 = new BigFraction[] {
-                            c2[0].multiply(c2[0]).add(c3[0].multiply(c3[0])).add(c4[0].multiply(c4[0])),
-                            c2[1].multiply(c2[1]).add(c3[1].multiply(c3[1])).add(c4[1].multiply(c4[1])),
-                            c2[2].multiply(c2[2]).add(c3[2].multiply(c3[2])).add(c4[2].multiply(c4[2])),
-                            c2[3].multiply(c2[3]).add(c3[3].multiply(c3[3])).add(c4[3].multiply(c4[3]))
-                        };
-                        final BigFraction twoM11  = minor(c2, c3, c4).multiply(2);
-                        final BigFraction m12     = minor(c1, c3, c4);
-                        final BigFraction m13     = minor(c1, c2, c4);
-                        final BigFraction m14     = minor(c1, c2, c3);
-                        final BigFraction centerX = m12.divide(twoM11);
-                        final BigFraction centerY = m13.divide(twoM11).negate();
-                        final BigFraction centerZ = m14.divide(twoM11);
-                        final BigFraction dx      = c2[0].subtract(centerX);
-                        final BigFraction dy      = c3[0].subtract(centerY);
-                        final BigFraction dz      = c4[0].subtract(centerZ);
-                        final BigFraction r2      = dx.multiply(dx).add(dy.multiply(dy)).add(dz.multiply(dz));
-                        return new EnclosingBall<Euclidean3D, Vector3D>(new Vector3D(centerX.doubleValue(),
-                                                                                     centerY.doubleValue(),
-                                                                                     centerZ.doubleValue()),
-                                                                        FastMath.sqrt(r2.doubleValue()),
-                                                                        vA, vB, vC, vD);
-                    }
-                }
-            }
-        }
-    }
-
-    /** Compute a dimension 4 minor, when 4<sup>th</sup> column is known to be filled with 1.0.
-     * @param c1 first column
-     * @param c2 second column
-     * @param c3 third column
-     * @return value of the minor computed has an exact fraction
-     */
-    private BigFraction minor(final BigFraction[] c1, final BigFraction[] c2, final BigFraction[] c3) {
-        return      c2[0].multiply(c3[1]).multiply(c1[2].subtract(c1[3])).
-                add(c2[0].multiply(c3[2]).multiply(c1[3].subtract(c1[1]))).
-                add(c2[0].multiply(c3[3]).multiply(c1[1].subtract(c1[2]))).
-                add(c2[1].multiply(c3[0]).multiply(c1[3].subtract(c1[2]))).
-                add(c2[1].multiply(c3[2]).multiply(c1[0].subtract(c1[3]))).
-                add(c2[1].multiply(c3[3]).multiply(c1[2].subtract(c1[0]))).
-                add(c2[2].multiply(c3[0]).multiply(c1[1].subtract(c1[3]))).
-                add(c2[2].multiply(c3[1]).multiply(c1[3].subtract(c1[0]))).
-                add(c2[2].multiply(c3[3]).multiply(c1[0].subtract(c1[1]))).
-                add(c2[3].multiply(c3[0]).multiply(c1[2].subtract(c1[1]))).
-                add(c2[3].multiply(c3[1]).multiply(c1[0].subtract(c1[2]))).
-                add(c2[3].multiply(c3[2]).multiply(c1[1].subtract(c1[0])));
-    }
-
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SphericalCoordinates.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SphericalCoordinates.java b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SphericalCoordinates.java
deleted file mode 100644
index 23d818e..0000000
--- a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SphericalCoordinates.java
+++ /dev/null
@@ -1,395 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.geometry.euclidean.threed;
-
-
-import java.io.Serializable;
-
-import org.apache.commons.math3.util.FastMath;
-
-/** This class provides conversions related to <a
- * href="http://mathworld.wolfram.com/SphericalCoordinates.html">spherical coordinates</a>.
- * <p>
- * The conventions used here are the mathematical ones, i.e. spherical coordinates are
- * related to Cartesian coordinates as follows:
- * </p>
- * <ul>
- *   <li>x = r cos(&theta;) sin(&Phi;)</li>
- *   <li>y = r sin(&theta;) sin(&Phi;)</li>
- *   <li>z = r cos(&Phi;)</li>
- * </ul>
- * <ul>
- *   <li>r       = &radic;(x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>)</li>
- *   <li>&theta; = atan2(y, x)</li>
- *   <li>&Phi;   = acos(z/r)</li>
- * </ul>
- * <p>
- * r is the radius, &theta; is the azimuthal angle in the x-y plane and &Phi; is the polar
- * (co-latitude) angle. These conventions are <em>different</em> from the conventions used
- * in physics (and in particular in spherical harmonics) where the meanings of &theta; and
- * &Phi; are reversed.
- * </p>
- * <p>
- * This class provides conversion of coordinates and also of gradient and Hessian
- * between spherical and Cartesian coordinates.
- * </p>
- * @since 3.2
- */
-public class SphericalCoordinates implements Serializable {
-
-    /** Serializable UID. */
-    private static final long serialVersionUID = 20130206L;
-
-    /** Cartesian coordinates. */
-    private final Vector3D v;
-
-    /** Radius. */
-    private final double r;
-
-    /** Azimuthal angle in the x-y plane &theta;. */
-    private final double theta;
-
-    /** Polar angle (co-latitude) &Phi;. */
-    private final double phi;
-
-    /** Jacobian of (r, &theta; &Phi). */
-    private double[][] jacobian;
-
-    /** Hessian of radius. */
-    private double[][] rHessian;
-
-    /** Hessian of azimuthal angle in the x-y plane &theta;. */
-    private double[][] thetaHessian;
-
-    /** Hessian of polar (co-latitude) angle &Phi;. */
-    private double[][] phiHessian;
-
-    /** Build a spherical coordinates transformer from Cartesian coordinates.
-     * @param v Cartesian coordinates
-     */
-    public SphericalCoordinates(final Vector3D v) {
-
-        // Cartesian coordinates
-        this.v = v;
-
-        // remaining spherical coordinates
-        this.r     = v.getNorm();
-        this.theta = v.getAlpha();
-        this.phi   = FastMath.acos(v.getZ() / r);
-
-    }
-
-    /** Build a spherical coordinates transformer from spherical coordinates.
-     * @param r radius
-     * @param theta azimuthal angle in x-y plane
-     * @param phi polar (co-latitude) angle
-     */
-    public SphericalCoordinates(final double r, final double theta, final double phi) {
-
-        final double cosTheta = FastMath.cos(theta);
-        final double sinTheta = FastMath.sin(theta);
-        final double cosPhi   = FastMath.cos(phi);
-        final double sinPhi   = FastMath.sin(phi);
-
-        // spherical coordinates
-        this.r     = r;
-        this.theta = theta;
-        this.phi   = phi;
-
-        // Cartesian coordinates
-        this.v  = new Vector3D(r * cosTheta * sinPhi,
-                               r * sinTheta * sinPhi,
-                               r * cosPhi);
-
-    }
-
-    /** Get the Cartesian coordinates.
-     * @return Cartesian coordinates
-     */
-    public Vector3D getCartesian() {
-        return v;
-    }
-
-    /** Get the radius.
-     * @return radius r
-     * @see #getTheta()
-     * @see #getPhi()
-     */
-    public double getR() {
-        return r;
-    }
-
-    /** Get the azimuthal angle in x-y plane.
-     * @return azimuthal angle in x-y plane &theta;
-     * @see #getR()
-     * @see #getPhi()
-     */
-    public double getTheta() {
-        return theta;
-    }
-
-    /** Get the polar (co-latitude) angle.
-     * @return polar (co-latitude) angle &Phi;
-     * @see #getR()
-     * @see #getTheta()
-     */
-    public double getPhi() {
-        return phi;
-    }
-
-    /** Convert a gradient with respect to spherical coordinates into a gradient
-     * with respect to Cartesian coordinates.
-     * @param sGradient gradient with respect to spherical coordinates
-     * {df/dr, df/d&theta;, df/d&Phi;}
-     * @return gradient with respect to Cartesian coordinates
-     * {df/dx, df/dy, df/dz}
-     */
-    public double[] toCartesianGradient(final double[] sGradient) {
-
-        // lazy evaluation of Jacobian
-        computeJacobian();
-
-        // compose derivatives as gradient^T . J
-        // the expressions have been simplified since we know jacobian[1][2] = dTheta/dZ = 0
-        return new double[] {
-            sGradient[0] * jacobian[0][0] + sGradient[1] * jacobian[1][0] + sGradient[2] * jacobian[2][0],
-            sGradient[0] * jacobian[0][1] + sGradient[1] * jacobian[1][1] + sGradient[2] * jacobian[2][1],
-            sGradient[0] * jacobian[0][2]                                 + sGradient[2] * jacobian[2][2]
-        };
-
-    }
-
-    /** Convert a Hessian with respect to spherical coordinates into a Hessian
-     * with respect to Cartesian coordinates.
-     * <p>
-     * As Hessian are always symmetric, we use only the lower left part of the provided
-     * spherical Hessian, so the upper part may not be initialized. However, we still
-     * do fill up the complete array we create, with guaranteed symmetry.
-     * </p>
-     * @param sHessian Hessian with respect to spherical coordinates
-     * {{d<sup>2</sup>f/dr<sup>2</sup>, d<sup>2</sup>f/drd&theta;, d<sup>2</sup>f/drd&Phi;},
-     *  {d<sup>2</sup>f/drd&theta;, d<sup>2</sup>f/d&theta;<sup>2</sup>, d<sup>2</sup>f/d&theta;d&Phi;},
-     *  {d<sup>2</sup>f/drd&Phi;, d<sup>2</sup>f/d&theta;d&Phi;, d<sup>2</sup>f/d&Phi;<sup>2</sup>}
-     * @param sGradient gradient with respect to spherical coordinates
-     * {df/dr, df/d&theta;, df/d&Phi;}
-     * @return Hessian with respect to Cartesian coordinates
-     * {{d<sup>2</sup>f/dx<sup>2</sup>, d<sup>2</sup>f/dxdy, d<sup>2</sup>f/dxdz},
-     *  {d<sup>2</sup>f/dxdy, d<sup>2</sup>f/dy<sup>2</sup>, d<sup>2</sup>f/dydz},
-     *  {d<sup>2</sup>f/dxdz, d<sup>2</sup>f/dydz, d<sup>2</sup>f/dz<sup>2</sup>}}
-     */
-    public double[][] toCartesianHessian(final double[][] sHessian, final double[] sGradient) {
-
-        computeJacobian();
-        computeHessians();
-
-        // compose derivative as J^T . H_f . J + df/dr H_r + df/dtheta H_theta + df/dphi H_phi
-        // the expressions have been simplified since we know jacobian[1][2] = dTheta/dZ = 0
-        // and H_theta is only a 2x2 matrix as it does not depend on z
-        final double[][] hj = new double[3][3];
-        final double[][] cHessian = new double[3][3];
-
-        // compute H_f . J
-        // beware we use ONLY the lower-left part of sHessian
-        hj[0][0] = sHessian[0][0] * jacobian[0][0] + sHessian[1][0] * jacobian[1][0] + sHessian[2][0] * jacobian[2][0];
-        hj[0][1] = sHessian[0][0] * jacobian[0][1] + sHessian[1][0] * jacobian[1][1] + sHessian[2][0] * jacobian[2][1];
-        hj[0][2] = sHessian[0][0] * jacobian[0][2]                                   + sHessian[2][0] * jacobian[2][2];
-        hj[1][0] = sHessian[1][0] * jacobian[0][0] + sHessian[1][1] * jacobian[1][0] + sHessian[2][1] * jacobian[2][0];
-        hj[1][1] = sHessian[1][0] * jacobian[0][1] + sHessian[1][1] * jacobian[1][1] + sHessian[2][1] * jacobian[2][1];
-        // don't compute hj[1][2] as it is not used below
-        hj[2][0] = sHessian[2][0] * jacobian[0][0] + sHessian[2][1] * jacobian[1][0] + sHessian[2][2] * jacobian[2][0];
-        hj[2][1] = sHessian[2][0] * jacobian[0][1] + sHessian[2][1] * jacobian[1][1] + sHessian[2][2] * jacobian[2][1];
-        hj[2][2] = sHessian[2][0] * jacobian[0][2]                                   + sHessian[2][2] * jacobian[2][2];
-
-        // compute lower-left part of J^T . H_f . J
-        cHessian[0][0] = jacobian[0][0] * hj[0][0] + jacobian[1][0] * hj[1][0] + jacobian[2][0] * hj[2][0];
-        cHessian[1][0] = jacobian[0][1] * hj[0][0] + jacobian[1][1] * hj[1][0] + jacobian[2][1] * hj[2][0];
-        cHessian[2][0] = jacobian[0][2] * hj[0][0]                             + jacobian[2][2] * hj[2][0];
-        cHessian[1][1] = jacobian[0][1] * hj[0][1] + jacobian[1][1] * hj[1][1] + jacobian[2][1] * hj[2][1];
-        cHessian[2][1] = jacobian[0][2] * hj[0][1]                             + jacobian[2][2] * hj[2][1];
-        cHessian[2][2] = jacobian[0][2] * hj[0][2]                             + jacobian[2][2] * hj[2][2];
-
-        // add gradient contribution
-        cHessian[0][0] += sGradient[0] * rHessian[0][0] + sGradient[1] * thetaHessian[0][0] + sGradient[2] * phiHessian[0][0];
-        cHessian[1][0] += sGradient[0] * rHessian[1][0] + sGradient[1] * thetaHessian[1][0] + sGradient[2] * phiHessian[1][0];
-        cHessian[2][0] += sGradient[0] * rHessian[2][0]                                     + sGradient[2] * phiHessian[2][0];
-        cHessian[1][1] += sGradient[0] * rHessian[1][1] + sGradient[1] * thetaHessian[1][1] + sGradient[2] * phiHessian[1][1];
-        cHessian[2][1] += sGradient[0] * rHessian[2][1]                                     + sGradient[2] * phiHessian[2][1];
-        cHessian[2][2] += sGradient[0] * rHessian[2][2]                                     + sGradient[2] * phiHessian[2][2];
-
-        // ensure symmetry
-        cHessian[0][1] = cHessian[1][0];
-        cHessian[0][2] = cHessian[2][0];
-        cHessian[1][2] = cHessian[2][1];
-
-        return cHessian;
-
-    }
-
-    /** Lazy evaluation of (r, &theta;, &phi;) Jacobian.
-     */
-    private void computeJacobian() {
-        if (jacobian == null) {
-
-            // intermediate variables
-            final double x    = v.getX();
-            final double y    = v.getY();
-            final double z    = v.getZ();
-            final double rho2 = x * x + y * y;
-            final double rho  = FastMath.sqrt(rho2);
-            final double r2   = rho2 + z * z;
-
-            jacobian = new double[3][3];
-
-            // row representing the gradient of r
-            jacobian[0][0] = x / r;
-            jacobian[0][1] = y / r;
-            jacobian[0][2] = z / r;
-
-            // row representing the gradient of theta
-            jacobian[1][0] = -y / rho2;
-            jacobian[1][1] =  x / rho2;
-            // jacobian[1][2] is already set to 0 at allocation time
-
-            // row representing the gradient of phi
-            jacobian[2][0] = x * z / (rho * r2);
-            jacobian[2][1] = y * z / (rho * r2);
-            jacobian[2][2] = -rho / r2;
-
-        }
-    }
-
-    /** Lazy evaluation of Hessians.
-     */
-    private void computeHessians() {
-
-        if (rHessian == null) {
-
-            // intermediate variables
-            final double x      = v.getX();
-            final double y      = v.getY();
-            final double z      = v.getZ();
-            final double x2     = x * x;
-            final double y2     = y * y;
-            final double z2     = z * z;
-            final double rho2   = x2 + y2;
-            final double rho    = FastMath.sqrt(rho2);
-            final double r2     = rho2 + z2;
-            final double xOr    = x / r;
-            final double yOr    = y / r;
-            final double zOr    = z / r;
-            final double xOrho2 = x / rho2;
-            final double yOrho2 = y / rho2;
-            final double xOr3   = xOr / r2;
-            final double yOr3   = yOr / r2;
-            final double zOr3   = zOr / r2;
-
-            // lower-left part of Hessian of r
-            rHessian = new double[3][3];
-            rHessian[0][0] = y * yOr3 + z * zOr3;
-            rHessian[1][0] = -x * yOr3;
-            rHessian[2][0] = -z * xOr3;
-            rHessian[1][1] = x * xOr3 + z * zOr3;
-            rHessian[2][1] = -y * zOr3;
-            rHessian[2][2] = x * xOr3 + y * yOr3;
-
-            // upper-right part is symmetric
-            rHessian[0][1] = rHessian[1][0];
-            rHessian[0][2] = rHessian[2][0];
-            rHessian[1][2] = rHessian[2][1];
-
-            // lower-left part of Hessian of azimuthal angle theta
-            thetaHessian = new double[2][2];
-            thetaHessian[0][0] = 2 * xOrho2 * yOrho2;
-            thetaHessian[1][0] = yOrho2 * yOrho2 - xOrho2 * xOrho2;
-            thetaHessian[1][1] = -2 * xOrho2 * yOrho2;
-
-            // upper-right part is symmetric
-            thetaHessian[0][1] = thetaHessian[1][0];
-
-            // lower-left part of Hessian of polar (co-latitude) angle phi
-            final double rhor2       = rho * r2;
-            final double rho2r2      = rho * rhor2;
-            final double rhor4       = rhor2 * r2;
-            final double rho3r4      = rhor4 * rho2;
-            final double r2P2rho2    = 3 * rho2 + z2;
-            phiHessian = new double[3][3];
-            phiHessian[0][0] = z * (rho2r2 - x2 * r2P2rho2) / rho3r4;
-            phiHessian[1][0] = -x * y * z * r2P2rho2 / rho3r4;
-            phiHessian[2][0] = x * (rho2 - z2) / rhor4;
-            phiHessian[1][1] = z * (rho2r2 - y2 * r2P2rho2) / rho3r4;
-            phiHessian[2][1] = y * (rho2 - z2) / rhor4;
-            phiHessian[2][2] = 2 * rho * zOr3 / r;
-
-            // upper-right part is symmetric
-            phiHessian[0][1] = phiHessian[1][0];
-            phiHessian[0][2] = phiHessian[2][0];
-            phiHessian[1][2] = phiHessian[2][1];
-
-        }
-
-    }
-
-    /**
-     * Replace the instance with a data transfer object for serialization.
-     * @return data transfer object that will be serialized
-     */
-    private Object writeReplace() {
-        return new DataTransferObject(v.getX(), v.getY(), v.getZ());
-    }
-
-    /** Internal class used only for serialization. */
-    private static class DataTransferObject implements Serializable {
-
-        /** Serializable UID. */
-        private static final long serialVersionUID = 20130206L;
-
-        /** Abscissa.
-         * @serial
-         */
-        private final double x;
-
-        /** Ordinate.
-         * @serial
-         */
-        private final double y;
-
-        /** Height.
-         * @serial
-         */
-        private final double z;
-
-        /** Simple constructor.
-         * @param x abscissa
-         * @param y ordinate
-         * @param z height
-         */
-        public DataTransferObject(final double x, final double y, final double z) {
-            this.x = x;
-            this.y = y;
-            this.z = z;
-        }
-
-        /** Replace the deserialized data transfer object with a {@link SphericalCoordinates}.
-         * @return replacement {@link SphericalCoordinates}
-         */
-        private Object readResolve() {
-            return new SphericalCoordinates(new Vector3D(x, y, z));
-        }
-
-    }
-
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SubLine.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SubLine.java b/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SubLine.java
deleted file mode 100644
index 2ac917f..0000000
--- a/src/main/java/org/apache/commons/math3/geometry/euclidean/threed/SubLine.java
+++ /dev/null
@@ -1,165 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.geometry.euclidean.threed;
-
-import java.util.ArrayList;
-import java.util.List;
-
-import org.apache.commons.math3.exception.MathIllegalArgumentException;
-import org.apache.commons.math3.geometry.Point;
-import org.apache.commons.math3.geometry.euclidean.oned.Euclidean1D;
-import org.apache.commons.math3.geometry.euclidean.oned.Interval;
-import org.apache.commons.math3.geometry.euclidean.oned.IntervalsSet;
-import org.apache.commons.math3.geometry.euclidean.oned.Vector1D;
-import org.apache.commons.math3.geometry.partitioning.Region.Location;
-
-/** This class represents a subset of a {@link Line}.
- * @since 3.0
- */
-public class SubLine {
-
-    /** Default value for tolerance. */
-    private static final double DEFAULT_TOLERANCE = 1.0e-10;
-
-    /** Underlying line. */
-    private final Line line;
-
-    /** Remaining region of the hyperplane. */
-    private final IntervalsSet remainingRegion;
-
-    /** Simple constructor.
-     * @param line underlying line
-     * @param remainingRegion remaining region of the line
-     */
-    public SubLine(final Line line, final IntervalsSet remainingRegion) {
-        this.line            = line;
-        this.remainingRegion = remainingRegion;
-    }
-
-    /** Create a sub-line from two endpoints.
-     * @param start start point
-     * @param end end point
-     * @param tolerance tolerance below which points are considered identical
-     * @exception MathIllegalArgumentException if the points are equal
-     * @since 3.3
-     */
-    public SubLine(final Vector3D start, final Vector3D end, final double tolerance)
-        throws MathIllegalArgumentException {
-        this(new Line(start, end, tolerance), buildIntervalSet(start, end, tolerance));
-    }
-
-    /** Create a sub-line from two endpoints.
-     * @param start start point
-     * @param end end point
-     * @exception MathIllegalArgumentException if the points are equal
-     * @deprecated as of 3.3, replaced with {@link #SubLine(Vector3D, Vector3D, double)}
-     */
-    public SubLine(final Vector3D start, final Vector3D end)
-        throws MathIllegalArgumentException {
-        this(start, end, DEFAULT_TOLERANCE);
-    }
-
-    /** Create a sub-line from a segment.
-     * @param segment single segment forming the sub-line
-     * @exception MathIllegalArgumentException if the segment endpoints are equal
-     */
-    public SubLine(final Segment segment) throws MathIllegalArgumentException {
-        this(segment.getLine(),
-             buildIntervalSet(segment.getStart(), segment.getEnd(), segment.getLine().getTolerance()));
-    }
-
-    /** Get the endpoints of the sub-line.
-     * <p>
-     * A subline may be any arbitrary number of disjoints segments, so the endpoints
-     * are provided as a list of endpoint pairs. Each element of the list represents
-     * one segment, and each segment contains a start point at index 0 and an end point
-     * at index 1. If the sub-line is unbounded in the negative infinity direction,
-     * the start point of the first segment will have infinite coordinates. If the
-     * sub-line is unbounded in the positive infinity direction, the end point of the
-     * last segment will have infinite coordinates. So a sub-line covering the whole
-     * line will contain just one row and both elements of this row will have infinite
-     * coordinates. If the sub-line is empty, the returned list will contain 0 segments.
-     * </p>
-     * @return list of segments endpoints
-     */
-    public List<Segment> getSegments() {
-
-        final List<Interval> list = remainingRegion.asList();
-        final List<Segment> segments = new ArrayList<Segment>(list.size());
-
-        for (final Interval interval : list) {
-            final Vector3D start = line.toSpace((Point<Euclidean1D>) new Vector1D(interval.getInf()));
-            final Vector3D end   = line.toSpace((Point<Euclidean1D>) new Vector1D(interval.getSup()));
-            segments.add(new Segment(start, end, line));
-        }
-
-        return segments;
-
-    }
-
-    /** Get the intersection of the instance and another sub-line.
-     * <p>
-     * This method is related to the {@link Line#intersection(Line)
-     * intersection} method in the {@link Line Line} class, but in addition
-     * to compute the point along infinite lines, it also checks the point
-     * lies on both sub-line ranges.
-     * </p>
-     * @param subLine other sub-line which may intersect instance
-     * @param includeEndPoints if true, endpoints are considered to belong to
-     * instance (i.e. they are closed sets) and may be returned, otherwise endpoints
-     * are considered to not belong to instance (i.e. they are open sets) and intersection
-     * occurring on endpoints lead to null being returned
-     * @return the intersection point if there is one, null if the sub-lines don't intersect
-     */
-    public Vector3D intersection(final SubLine subLine, final boolean includeEndPoints) {
-
-        // compute the intersection on infinite line
-        Vector3D v1D = line.intersection(subLine.line);
-        if (v1D == null) {
-            return null;
-        }
-
-        // check location of point with respect to first sub-line
-        Location loc1 = remainingRegion.checkPoint((Point<Euclidean1D>) line.toSubSpace((Point<Euclidean3D>) v1D));
-
-        // check location of point with respect to second sub-line
-        Location loc2 = subLine.remainingRegion.checkPoint((Point<Euclidean1D>) subLine.line.toSubSpace((Point<Euclidean3D>) v1D));
-
-        if (includeEndPoints) {
-            return ((loc1 != Location.OUTSIDE) && (loc2 != Location.OUTSIDE)) ? v1D : null;
-        } else {
-            return ((loc1 == Location.INSIDE) && (loc2 == Location.INSIDE)) ? v1D : null;
-        }
-
-    }
-
-    /** Build an interval set from two points.
-     * @param start start point
-     * @param end end point
-     * @return an interval set
-     * @param tolerance tolerance below which points are considered identical
-     * @exception MathIllegalArgumentException if the points are equal
-     */
-    private static IntervalsSet buildIntervalSet(final Vector3D start, final Vector3D end, final double tolerance)
-        throws MathIllegalArgumentException {
-        final Line line = new Line(start, end, tolerance);
-        return new IntervalsSet(line.toSubSpace((Point<Euclidean3D>) start).getX(),
-                                line.toSubSpace((Point<Euclidean3D>) end).getX(),
-                                tolerance);
-    }
-
-}