You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@commons.apache.org by er...@apache.org on 2013/09/07 22:37:49 UTC

svn commit: r1520807 - in /commons/proper/math/trunk/src: main/java/org/apache/commons/math3/fitting/ test/java/org/apache/commons/math3/fitting/

Author: erans
Date: Sat Sep  7 20:37:49 2013
New Revision: 1520807

URL: http://svn.apache.org/r1520807
Log:
MATH-1014
Created "HarmonicCurveFitter" as a replacement for "HarmonicFitter".

Added:
    commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicCurveFitter.java   (with props)
    commons/proper/math/trunk/src/test/java/org/apache/commons/math3/fitting/HarmonicCurveFitterTest.java   (with props)
Modified:
    commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java

Added: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicCurveFitter.java
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicCurveFitter.java?rev=1520807&view=auto
==============================================================================
--- commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicCurveFitter.java (added)
+++ commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicCurveFitter.java Sat Sep  7 20:37:49 2013
@@ -0,0 +1,439 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.fitting;
+
+import java.util.Collection;
+import java.util.List;
+import java.util.ArrayList;
+import org.apache.commons.math3.analysis.function.HarmonicOscillator;
+import org.apache.commons.math3.exception.ZeroException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
+import org.apache.commons.math3.fitting.leastsquares.WithStartPoint;
+import org.apache.commons.math3.fitting.leastsquares.WithMaxIterations;
+import org.apache.commons.math3.linear.DiagonalMatrix;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Fits points to a {@link
+ * org.apache.commons.math3.analysis.function.HarmonicOscillator.Parametric harmonic oscillator}
+ * function.
+ * <br/>
+ * The {@link #withStartPoint(double[]) initial guess values} must be passed
+ * in the following order:
+ * <ul>
+ *  <li>Amplitude</li>
+ *  <li>Angular frequency</li>
+ *  <li>phase</li>
+ * </ul>
+ * The optimal values will be returned in the same order.
+ *
+ * @version $Id$
+ * @since 3.3
+ */
+public class HarmonicCurveFitter extends AbstractCurveFitter<LevenbergMarquardtOptimizer>
+    implements WithStartPoint<HarmonicCurveFitter>,
+               WithMaxIterations<HarmonicCurveFitter> {
+    /** Parametric function to be fitted. */
+    private static final HarmonicOscillator.Parametric FUNCTION = new HarmonicOscillator.Parametric();
+    /** Initial guess. */
+    private final double[] initialGuess;
+    /** Maximum number of iterations of the optimization algorithm. */
+    private final int maxIter;
+
+    /**
+     * Contructor used by the factory methods.
+     *
+     * @param initialGuess Initial guess. If set to {@code null}, the initial guess
+     * will be estimated using the {@link ParameterGuesser}.
+     * @param maxIter Maximum number of iterations of the optimization algorithm.
+     */
+    private HarmonicCurveFitter(double[] initialGuess,
+                                int maxIter) {
+        this.initialGuess = initialGuess;
+        this.maxIter = maxIter;
+    }
+
+    /**
+     * Creates a default curve fitter.
+     * The initial guess for the parameters will be {@link ParameterGuesser}
+     * computed automatically, and the maximum number of iterations of the
+     * optimization algorithm is set to {@link Integer#MAX_VALUE}.
+     *
+     * @return a curve fitter.
+     *
+     * @see #withStartPoint(double[])
+     * @see #withMaxIterations(int)
+     */
+    public static HarmonicCurveFitter create() {
+        return new HarmonicCurveFitter(null, Integer.MAX_VALUE);
+    }
+
+    /** {@inheritDoc} */
+    public HarmonicCurveFitter withStartPoint(double[] start) {
+        return new HarmonicCurveFitter(start.clone(),
+                                       maxIter);
+    }
+
+    /** {@inheritDoc} */
+    public HarmonicCurveFitter withMaxIterations(int max) {
+        return new HarmonicCurveFitter(initialGuess,
+                                       max);
+    }
+
+    /** {@inheritDoc} */
+    @Override
+    protected LevenbergMarquardtOptimizer getOptimizer(Collection<WeightedObservedPoint> observations) {
+        // Prepare least-squares problem.
+        final int len = observations.size();
+        final double[] target  = new double[len];
+        final double[] weights = new double[len];
+
+        int i = 0;
+        for (WeightedObservedPoint obs : observations) {
+            target[i]  = obs.getY();
+            weights[i] = obs.getWeight();
+            ++i;
+        }
+
+        final AbstractCurveFitter.TheoreticalValuesFunction model
+            = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION,
+                                                                observations);
+
+        final double[] startPoint = initialGuess != null ?
+            initialGuess :
+            // Compute estimation.
+            new ParameterGuesser(observations).guess();
+
+        // Return a new optimizer set up to fit a Gaussian curve to the
+        // observed points.
+        return LevenbergMarquardtOptimizer.create()
+            .withMaxEvaluations(Integer.MAX_VALUE)
+            .withMaxIterations(maxIter)
+            .withStartPoint(startPoint)
+            .withTarget(target)
+            .withWeight(new DiagonalMatrix(weights))
+            .withModelAndJacobian(model.getModelFunction(),
+                                  model.getModelFunctionJacobian());
+    }
+
+    /**
+     * This class guesses harmonic coefficients from a sample.
+     * <p>The algorithm used to guess the coefficients is as follows:</p>
+     *
+     * <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a,
+     * &omega; and &phi; such that f (t) = a cos (&omega; t + &phi;).
+     * </p>
+     *
+     * <p>From the analytical expression, we can compute two primitives :
+     * <pre>
+     *     If2  (t) = &int; f<sup>2</sup>  = a<sup>2</sup> &times; [t + S (t)] / 2
+     *     If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2
+     *     where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;)
+     * </pre>
+     * </p>
+     *
+     * <p>We can remove S between these expressions :
+     * <pre>
+     *     If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t)
+     * </pre>
+     * </p>
+     *
+     * <p>The preceding expression shows that If'2 (t) is a linear
+     * combination of both t and If2 (t): If'2 (t) = A &times; t + B &times; If2 (t)
+     * </p>
+     *
+     * <p>From the primitive, we can deduce the same form for definite
+     * integrals between t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
+     * <pre>
+     *   If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
+     * </pre>
+     * </p>
+     *
+     * <p>We can find the coefficients A and B that best fit the sample
+     * to this linear expression by computing the definite integrals for
+     * each sample points.
+     * </p>
+     *
+     * <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B &times; y<sub>i</sub>, the
+     * coefficients A and B that minimize a least square criterion
+     * &sum; (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these expressions:</p>
+     * <pre>
+     *
+     *         &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+     *     A = ------------------------
+     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+     *
+     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub>
+     *     B = ------------------------
+     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+     * </pre>
+     * </p>
+     *
+     *
+     * <p>In fact, we can assume both a and &omega; are positive and
+     * compute them directly, knowing that A = a<sup>2</sup> &omega;<sup>2</sup> and that
+     * B = - &omega;<sup>2</sup>. The complete algorithm is therefore:</p>
+     * <pre>
+     *
+     * for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
+     *   f  (t<sub>i</sub>)
+     *   f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
+     *   x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
+     *   y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
+     *   z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
+     *   update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
+     * end for
+     *
+     *            |--------------------------
+     *         \  | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+     * a     =  \ | ------------------------
+     *           \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+     *
+     *
+     *            |--------------------------
+     *         \  | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
+     * &omega;     =  \ | ------------------------
+     *           \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
+     *
+     * </pre>
+     * </p>
+     *
+     * <p>Once we know &omega;, we can compute:
+     * <pre>
+     *    fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
+     *    fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
+     * </pre>
+     * </p>
+     *
+     * <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and
+     * <code>fs = -a &omega; sin (&phi;)</code>, so we can use these
+     * expressions to compute &phi;. The best estimate over the sample is
+     * given by averaging these expressions.
+     * </p>
+     *
+     * <p>Since integrals and means are involved in the preceding
+     * estimations, these operations run in O(n) time, where n is the
+     * number of measurements.</p>
+     */
+    public static class ParameterGuesser {
+        /** Amplitude. */
+        private final double a;
+        /** Angular frequency. */
+        private final double omega;
+        /** Phase. */
+        private final double phi;
+
+        /**
+         * Simple constructor.
+         *
+         * @param observations Sampled observations.
+         * @throws NumberIsTooSmallException if the sample is too short.
+         * @throws ZeroException if the abscissa range is zero.
+         * @throws MathIllegalStateException when the guessing procedure cannot
+         * produce sensible results.
+         */
+        public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
+            if (observations.size() < 4) {
+                throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
+                                                    observations.size(), 4, true);
+            }
+
+            final WeightedObservedPoint[] sorted
+                = sortObservations(observations).toArray(new WeightedObservedPoint[0]);
+
+            final double aOmega[] = guessAOmega(sorted);
+            a = aOmega[0];
+            omega = aOmega[1];
+
+            phi = guessPhi(sorted);
+        }
+
+        /**
+         * Gets an estimation of the parameters.
+         *
+         * @return the guessed parameters, in the following order:
+         * <ul>
+         *  <li>Amplitude</li>
+         *  <li>Angular frequency</li>
+         *  <li>Phase</li>
+         * </ul>
+         */
+        public double[] guess() {
+            return new double[] { a, omega, phi };
+        }
+
+        /**
+         * Sort the observations with respect to the abscissa.
+         *
+         * @param unsorted Input observations.
+         * @return the input observations, sorted.
+         */
+        private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
+            final List<WeightedObservedPoint> observations = new ArrayList<WeightedObservedPoint>(unsorted);
+
+            // Since the samples are almost always already sorted, this
+            // method is implemented as an insertion sort that reorders the
+            // elements in place. Insertion sort is very efficient in this case.
+            WeightedObservedPoint curr = observations.get(0);
+            final int len = observations.size();
+            for (int j = 1; j < len; j++) {
+                WeightedObservedPoint prec = curr;
+                curr = observations.get(j);
+                if (curr.getX() < prec.getX()) {
+                    // the current element should be inserted closer to the beginning
+                    int i = j - 1;
+                    WeightedObservedPoint mI = observations.get(i);
+                    while ((i >= 0) && (curr.getX() < mI.getX())) {
+                        observations.set(i + 1, mI);
+                        if (i-- != 0) {
+                            mI = observations.get(i);
+                        }
+                    }
+                    observations.set(i + 1, curr);
+                    curr = observations.get(j);
+                }
+            }
+
+            return observations;
+        }
+
+        /**
+         * Estimate a first guess of the amplitude and angular frequency.
+         *
+         * @param observations Observations, sorted w.r.t. abscissa.
+         * @throws ZeroException if the abscissa range is zero.
+         * @throws MathIllegalStateException when the guessing procedure cannot
+         * produce sensible results.
+         * @return the guessed amplitude (at index 0) and circular frequency
+         * (at index 1).
+         */
+        private double[] guessAOmega(WeightedObservedPoint[] observations) {
+            final double[] aOmega = new double[2];
+
+            // initialize the sums for the linear model between the two integrals
+            double sx2 = 0;
+            double sy2 = 0;
+            double sxy = 0;
+            double sxz = 0;
+            double syz = 0;
+
+            double currentX = observations[0].getX();
+            double currentY = observations[0].getY();
+            double f2Integral = 0;
+            double fPrime2Integral = 0;
+            final double startX = currentX;
+            for (int i = 1; i < observations.length; ++i) {
+                // one step forward
+                final double previousX = currentX;
+                final double previousY = currentY;
+                currentX = observations[i].getX();
+                currentY = observations[i].getY();
+
+                // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
+                // considering a linear model for f (and therefore constant f')
+                final double dx = currentX - previousX;
+                final double dy = currentY - previousY;
+                final double f2StepIntegral =
+                    dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3;
+                final double fPrime2StepIntegral = dy * dy / dx;
+
+                final double x = currentX - startX;
+                f2Integral += f2StepIntegral;
+                fPrime2Integral += fPrime2StepIntegral;
+
+                sx2 += x * x;
+                sy2 += f2Integral * f2Integral;
+                sxy += x * f2Integral;
+                sxz += x * fPrime2Integral;
+                syz += f2Integral * fPrime2Integral;
+            }
+
+            // compute the amplitude and pulsation coefficients
+            double c1 = sy2 * sxz - sxy * syz;
+            double c2 = sxy * sxz - sx2 * syz;
+            double c3 = sx2 * sy2 - sxy * sxy;
+            if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
+                final int last = observations.length - 1;
+                // Range of the observations, assuming that the
+                // observations are sorted.
+                final double xRange = observations[last].getX() - observations[0].getX();
+                if (xRange == 0) {
+                    throw new ZeroException();
+                }
+                aOmega[1] = 2 * Math.PI / xRange;
+
+                double yMin = Double.POSITIVE_INFINITY;
+                double yMax = Double.NEGATIVE_INFINITY;
+                for (int i = 1; i < observations.length; ++i) {
+                    final double y = observations[i].getY();
+                    if (y < yMin) {
+                        yMin = y;
+                    }
+                    if (y > yMax) {
+                        yMax = y;
+                    }
+                }
+                aOmega[0] = 0.5 * (yMax - yMin);
+            } else {
+                if (c2 == 0) {
+                    // In some ill-conditioned cases (cf. MATH-844), the guesser
+                    // procedure cannot produce sensible results.
+                    throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR);
+                }
+
+                aOmega[0] = FastMath.sqrt(c1 / c2);
+                aOmega[1] = FastMath.sqrt(c2 / c3);
+            }
+
+            return aOmega;
+        }
+
+        /**
+         * Estimate a first guess of the phase.
+         *
+         * @param observations Observations, sorted w.r.t. abscissa.
+         * @return the guessed phase.
+         */
+        private double guessPhi(WeightedObservedPoint[] observations) {
+            // initialize the means
+            double fcMean = 0;
+            double fsMean = 0;
+
+            double currentX = observations[0].getX();
+            double currentY = observations[0].getY();
+            for (int i = 1; i < observations.length; ++i) {
+                // one step forward
+                final double previousX = currentX;
+                final double previousY = currentY;
+                currentX = observations[i].getX();
+                currentY = observations[i].getY();
+                final double currentYPrime = (currentY - previousY) / (currentX - previousX);
+
+                double omegaX = omega * currentX;
+                double cosine = FastMath.cos(omegaX);
+                double sine = FastMath.sin(omegaX);
+                fcMean += omega * currentY * cosine - currentYPrime * sine;
+                fsMean += omega * currentY * sine + currentYPrime * cosine;
+            }
+
+            return FastMath.atan2(-fsMean, fcMean);
+        }
+    }
+}

Propchange: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicCurveFitter.java
------------------------------------------------------------------------------
    svn:eol-style = native

Propchange: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicCurveFitter.java
------------------------------------------------------------------------------
    svn:keywords = Id Revision

Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java?rev=1520807&r1=1520806&r2=1520807&view=diff
==============================================================================
--- commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java (original)
+++ commons/proper/math/trunk/src/main/java/org/apache/commons/math3/fitting/HarmonicFitter.java Sat Sep  7 20:37:49 2013
@@ -35,7 +35,10 @@ import org.apache.commons.math3.util.Fas
  *
  * @version $Id: HarmonicFitter.java 1416643 2012-12-03 19:37:14Z tn $
  * @since 2.0
+ * @deprecated As of 3.3. Please use {@link HarmonicCurveFitter} and
+ * {@link WeightedObservedPoints} instead.
  */
+@Deprecated
 public class HarmonicFitter extends CurveFitter<HarmonicOscillator.Parametric> {
     /**
      * Simple constructor.

Added: commons/proper/math/trunk/src/test/java/org/apache/commons/math3/fitting/HarmonicCurveFitterTest.java
URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math3/fitting/HarmonicCurveFitterTest.java?rev=1520807&view=auto
==============================================================================
--- commons/proper/math/trunk/src/test/java/org/apache/commons/math3/fitting/HarmonicCurveFitterTest.java (added)
+++ commons/proper/math/trunk/src/test/java/org/apache/commons/math3/fitting/HarmonicCurveFitterTest.java Sat Sep  7 20:37:49 2013
@@ -0,0 +1,183 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.fitting;
+
+import java.util.Random;
+import java.util.List;
+import java.util.ArrayList;
+import org.apache.commons.math3.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer;
+import org.apache.commons.math3.analysis.function.HarmonicOscillator;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.MathIllegalStateException;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathUtils;
+
+import org.junit.Test;
+import org.junit.Assert;
+
+public class HarmonicCurveFitterTest {
+    /**
+     * Zero points is not enough observed points.
+     */
+    @Test(expected=NumberIsTooSmallException.class)
+    public void testPreconditions1() {
+        HarmonicCurveFitter.create().fit(new WeightedObservedPoints().toList());
+    }
+
+    @Test
+    public void testNoError() {
+        final double a = 0.2;
+        final double w = 3.4;
+        final double p = 4.1;
+        final HarmonicOscillator f = new HarmonicOscillator(a, w, p);
+
+        final WeightedObservedPoints points = new WeightedObservedPoints();
+        for (double x = 0.0; x < 1.3; x += 0.01) {
+            points.add(1, x, f.value(x));
+        }
+
+        final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
+        final double[] fitted = fitter.fit(points.toList());
+        Assert.assertEquals(a, fitted[0], 1.0e-13);
+        Assert.assertEquals(w, fitted[1], 1.0e-13);
+        Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1e-13);
+
+        final HarmonicOscillator ff = new HarmonicOscillator(fitted[0], fitted[1], fitted[2]);
+        for (double x = -1.0; x < 1.0; x += 0.01) {
+            Assert.assertTrue(FastMath.abs(f.value(x) - ff.value(x)) < 1e-13);
+        }
+    }
+
+    @Test
+    public void test1PercentError() {
+        final Random randomizer = new Random(64925784252L);
+        final double a = 0.2;
+        final double w = 3.4;
+        final double p = 4.1;
+        final HarmonicOscillator f = new HarmonicOscillator(a, w, p);
+
+        final WeightedObservedPoints points = new WeightedObservedPoints();
+        for (double x = 0.0; x < 10.0; x += 0.1) {
+            points.add(1, x, f.value(x) + 0.01 * randomizer.nextGaussian());
+        }
+
+        final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
+        final double[] fitted = fitter.fit(points.toList());
+        Assert.assertEquals(a, fitted[0], 7.6e-4);
+        Assert.assertEquals(w, fitted[1], 2.7e-3);
+        Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.3e-2);
+    }
+
+    @Test
+    public void testTinyVariationsData() {
+        final Random randomizer = new Random(64925784252L);
+
+        final WeightedObservedPoints points = new WeightedObservedPoints();
+        for (double x = 0.0; x < 10.0; x += 0.1) {
+            points.add(1, x, 1e-7 * randomizer.nextGaussian());
+        }
+
+        final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
+        final double[] fitted = fitter.fit(points.toList());
+
+        // This test serves to cover the part of the code of "guessAOmega"
+        // when the algorithm using integrals fails.
+    }
+
+    @Test
+    public void testInitialGuess() {
+        final Random randomizer = new Random(45314242L);
+        final double a = 0.2;
+        final double w = 3.4;
+        final double p = 4.1;
+        final HarmonicOscillator f = new HarmonicOscillator(a, w, p);
+
+        final WeightedObservedPoints points = new WeightedObservedPoints();
+        for (double x = 0.0; x < 10.0; x += 0.1) {
+            points.add(1, x, f.value(x) + 0.01 * randomizer.nextGaussian());
+        }
+
+        final HarmonicCurveFitter fitter = HarmonicCurveFitter.create()
+            .withStartPoint(new double[] { 0.15, 3.6, 4.5 });
+        final double[] fitted = fitter.fit(points.toList());
+        Assert.assertEquals(a, fitted[0], 1.2e-3);
+        Assert.assertEquals(w, fitted[1], 3.3e-3);
+        Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.7e-2);
+    }
+
+    @Test
+    public void testUnsorted() {
+        Random randomizer = new Random(64925784252L);
+        final double a = 0.2;
+        final double w = 3.4;
+        final double p = 4.1;
+        final HarmonicOscillator f = new HarmonicOscillator(a, w, p);
+
+        // Build a regularly spaced array of measurements.
+        final int size = 100;
+        final double[] xTab = new double[size];
+        final double[] yTab = new double[size];
+        for (int i = 0; i < size; i++) {
+            xTab[i] = 0.1 * i;
+            yTab[i] = f.value(xTab[i]) + 0.01 * randomizer.nextGaussian();
+        }
+
+        // shake it
+        for (int i = 0; i < size; i++) {
+            int i1 = randomizer.nextInt(size);
+            int i2 = randomizer.nextInt(size);
+            double xTmp = xTab[i1];
+            double yTmp = yTab[i1];
+            xTab[i1] = xTab[i2];
+            yTab[i1] = yTab[i2];
+            xTab[i2] = xTmp;
+            yTab[i2] = yTmp;
+        }
+
+        // Pass it to the fitter.
+        final WeightedObservedPoints points = new WeightedObservedPoints();        
+        for (int i = 0; i < size; ++i) {
+            points.add(1, xTab[i], yTab[i]);
+        }
+
+        final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
+        final double[] fitted = fitter.fit(points.toList());
+        Assert.assertEquals(a, fitted[0], 7.6e-4);
+        Assert.assertEquals(w, fitted[1], 3.5e-3);
+        Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.5e-2);
+    }
+
+    @Test(expected=MathIllegalStateException.class)
+    public void testMath844() {
+        final double[] y = { 0, 1, 2, 3, 2, 1,
+                             0, -1, -2, -3, -2, -1,
+                             0, 1, 2, 3, 2, 1,
+                             0, -1, -2, -3, -2, -1,
+                             0, 1, 2, 3, 2, 1, 0 };
+        final List<WeightedObservedPoint> points = new ArrayList<WeightedObservedPoint>();
+        for (int i = 0; i < y.length; i++) {
+            points.add(new WeightedObservedPoint(1, i, y[i]));
+        }
+
+        // The guesser fails because the function is far from an harmonic
+        // function: It is a triangular periodic function with amplitude 3
+        // and period 12, and all sample points are taken at integer abscissae
+        // so function values all belong to the integer subset {-3, -2, -1, 0,
+        // 1, 2, 3}.
+        new HarmonicCurveFitter.ParameterGuesser(points);
+    }
+}

Propchange: commons/proper/math/trunk/src/test/java/org/apache/commons/math3/fitting/HarmonicCurveFitterTest.java
------------------------------------------------------------------------------
    svn:eol-style = native

Propchange: commons/proper/math/trunk/src/test/java/org/apache/commons/math3/fitting/HarmonicCurveFitterTest.java
------------------------------------------------------------------------------
    svn:keywords = Id Revision