You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@hawq.apache.org by hu...@apache.org on 2016/05/16 06:40:39 UTC

[08/11] incubator-hawq git commit: HAWQ-394. Remove pgcrypto from code base

http://git-wip-us.apache.org/repos/asf/incubator-hawq/blob/101adfab/contrib/pgcrypto/imath.c
----------------------------------------------------------------------
diff --git a/contrib/pgcrypto/imath.c b/contrib/pgcrypto/imath.c
deleted file mode 100644
index 35dc652..0000000
--- a/contrib/pgcrypto/imath.c
+++ /dev/null
@@ -1,3681 +0,0 @@
-/* imath version 1.3 */
-/*
-  Name:		imath.c
-  Purpose:	Arbitrary precision integer arithmetic routines.
-  Author:	M. J. Fromberger <http://www.dartmouth.edu/~sting/>
-  Info:		Id: imath.c 21 2006-04-02 18:58:36Z sting
-
-  Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
-
-  Permission is hereby granted, free of charge, to any person
-  obtaining a copy of this software and associated documentation files
-  (the "Software"), to deal in the Software without restriction,
-  including without limitation the rights to use, copy, modify, merge,
-  publish, distribute, sublicense, and/or sell copies of the Software,
-  and to permit persons to whom the Software is furnished to do so,
-  subject to the following conditions:
-
-  The above copyright notice and this permission notice shall be
-  included in all copies or substantial portions of the Software.
-
-  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-  NONINFRINGEMENT.	IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-  ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-  CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-  SOFTWARE.
- */
-/* $PostgreSQL: pgsql/contrib/pgcrypto/imath.c,v 1.8 2009/06/11 14:48:52 momjian Exp $ */
-
-#include "postgres.h"
-#include "px.h"
-#include "imath.h"
-
-#undef assert
-#define assert(TEST) Assert(TEST)
-#define TRACEABLE_CLAMP 0
-#define TRACEABLE_FREE 0
-
-/* {{{ Constants */
-
-const mp_result MP_OK = 0;		/* no error, all is well  */
-const mp_result MP_FALSE = 0;	/* boolean false		  */
-const mp_result MP_TRUE = -1;	/* boolean true			  */
-const mp_result MP_MEMORY = -2; /* out of memory		  */
-const mp_result MP_RANGE = -3;	/* argument out of range  */
-const mp_result MP_UNDEF = -4;	/* result undefined		  */
-const mp_result MP_TRUNC = -5;	/* output truncated		  */
-const mp_result MP_BADARG = -6; /* invalid null argument  */
-
-const mp_sign MP_NEG = 1;		/* value is strictly negative */
-const mp_sign MP_ZPOS = 0;		/* value is non-negative	  */
-
-static const char *s_unknown_err = "unknown result code";
-static const char *s_error_msg[] = {
-	"error code 0",
-	"boolean true",
-	"out of memory",
-	"argument out of range",
-	"result undefined",
-	"output truncated",
-	"invalid null argument",
-	NULL
-};
-
-/* }}} */
-
-/* Optional library flags */
-#define MP_CAP_DIGITS	1		/* flag bit to capitalize letter digits */
-
-/* Argument checking macros
-   Use CHECK() where a return value is required; NRCHECK() elsewhere */
-#define CHECK(TEST)   assert(TEST)
-#define NRCHECK(TEST) assert(TEST)
-
-/* {{{ Logarithm table for computing output sizes */
-
-/* The ith entry of this table gives the value of log_i(2).
-
-   An integer value n requires ceil(log_i(n)) digits to be represented
-   in base i.  Since it is easy to compute lg(n), by counting bits, we
-   can compute log_i(n) = lg(n) * log_i(2).
- */
-static const double s_log2[] = {
-	0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0  1  2	3 */
-	0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4  5  6	7 */
-	0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8  9 10 11 */
-	0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
-	0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
-	0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
-	0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
-	0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
-	0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
-	0.193426404, 0.191958720, 0.190551412, 0.189200360, /* 36 37 38 39 */
-	0.187901825, 0.186652411, 0.185449023, 0.184288833, /* 40 41 42 43 */
-	0.183169251, 0.182087900, 0.181042597, 0.180031327, /* 44 45 46 47 */
-	0.179052232, 0.178103594, 0.177183820, 0.176291434, /* 48 49 50 51 */
-	0.175425064, 0.174583430, 0.173765343, 0.172969690, /* 52 53 54 55 */
-	0.172195434, 0.171441601, 0.170707280, 0.169991616, /* 56 57 58 59 */
-	0.169293808, 0.168613099, 0.167948779, 0.167300179, /* 60 61 62 63 */
-	0.166666667
-};
-
-/* }}} */
-/* {{{ Various macros */
-
-/* Return the number of digits needed to represent a static value */
-#define MP_VALUE_DIGITS(V) \
-((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
-
-/* Round precision P to nearest word boundary */
-#define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
-
-/* Set array P of S digits to zero */
-#define ZERO(P, S) \
-do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P);memset(p__,0,i__);}while(0)
-
-/* Copy S digits from array P to array Q */
-#define COPY(P, Q, S) \
-do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P),*q__=(Q);\
-memcpy(q__,p__,i__);}while(0)
-
-/* Reverse N elements of type T in array A */
-#define REV(T, A, N) \
-do{T *u_=(A),*v_=u_+(N)-1;while(u_<v_){T xch=*u_;*u_++=*v_;*v_--=xch;}}while(0)
-
-#if TRACEABLE_CLAMP
-#define CLAMP(Z) s_clamp(Z)
-#else
-#define CLAMP(Z) \
-do{mp_int z_=(Z);mp_size uz_=MP_USED(z_);mp_digit *dz_=MP_DIGITS(z_)+uz_-1;\
-while(uz_ > 1 && (*dz_-- == 0)) --uz_;MP_USED(z_)=uz_;}while(0)
-#endif
-
-#undef MIN
-#undef MAX
-#define MIN(A, B) ((B)<(A)?(B):(A))
-#define MAX(A, B) ((B)>(A)?(B):(A))
-#define SWAP(T, A, B) do{T t_=(A);A=(B);B=t_;}while(0)
-
-#define TEMP(K) (temp + (K))
-#define SETUP(E, C) \
-do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
-
-#define CMPZ(Z) \
-(((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1)
-
-#define UMUL(X, Y, Z) \
-do{mp_size ua_=MP_USED(X),ub_=MP_USED(Y);mp_size o_=ua_+ub_;\
-ZERO(MP_DIGITS(Z),o_);\
-(void) s_kmul(MP_DIGITS(X),MP_DIGITS(Y),MP_DIGITS(Z),ua_,ub_);\
-MP_USED(Z)=o_;CLAMP(Z);}while(0)
-
-#define USQR(X, Z) \
-do{mp_size ua_=MP_USED(X),o_=ua_+ua_;ZERO(MP_DIGITS(Z),o_);\
-(void) s_ksqr(MP_DIGITS(X),MP_DIGITS(Z),ua_);MP_USED(Z)=o_;CLAMP(Z);}while(0)
-
-#define UPPER_HALF(W)			((mp_word)((W) >> MP_DIGIT_BIT))
-#define LOWER_HALF(W)			((mp_digit)(W))
-#define HIGH_BIT_SET(W)			((W) >> (MP_WORD_BIT - 1))
-#define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
-
-/* }}} */
-
-/* Default number of digits allocated to a new mp_int */
-static mp_size default_precision = 64;
-
-/* Minimum number of digits to invoke recursive multiply */
-static mp_size multiply_threshold = 32;
-
-/* Default library configuration flags */
-static mp_word mp_flags = MP_CAP_DIGITS;
-
-/* Allocate a buffer of (at least) num digits, or return
-   NULL if that couldn't be done.  */
-static mp_digit *s_alloc(mp_size num);
-
-#if TRACEABLE_FREE
-static void s_free(void *ptr);
-#else
-#define s_free(P) px_free(P)
-#endif
-
-/* Insure that z has at least min digits allocated, resizing if
-   necessary.  Returns true if successful, false if out of memory. */
-static int	s_pad(mp_int z, mp_size min);
-
-/* Normalize by removing leading zeroes (except when z = 0) */
-#if TRACEABLE_CLAMP
-static void s_clamp(mp_int z);
-#endif
-
-/* Fill in a "fake" mp_int on the stack with a given value */
-static void s_fake(mp_int z, int value, mp_digit vbuf[]);
-
-/* Compare two runs of digits of given length, returns <0, 0, >0 */
-static int	s_cdig(mp_digit *da, mp_digit *db, mp_size len);
-
-/* Pack the unsigned digits of v into array t */
-static int	s_vpack(int v, mp_digit t[]);
-
-/* Compare magnitudes of a and b, returns <0, 0, >0 */
-static int	s_ucmp(mp_int a, mp_int b);
-
-/* Compare magnitudes of a and v, returns <0, 0, >0 */
-static int	s_vcmp(mp_int a, int v);
-
-/* Unsigned magnitude addition; assumes dc is big enough.
-   Carry out is returned (no memory allocated). */
-static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
-	   mp_size size_a, mp_size size_b);
-
-/* Unsigned magnitude subtraction.	Assumes dc is big enough. */
-static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
-	   mp_size size_a, mp_size size_b);
-
-/* Unsigned recursive multiplication.  Assumes dc is big enough. */
-static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
-	   mp_size size_a, mp_size size_b);
-
-/* Unsigned magnitude multiplication.  Assumes dc is big enough. */
-static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
-	   mp_size size_a, mp_size size_b);
-
-/* Unsigned recursive squaring.  Assumes dc is big enough. */
-static int	s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
-
-/* Unsigned magnitude squaring.  Assumes dc is big enough. */
-static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
-
-/* Single digit addition.  Assumes a is big enough. */
-static void s_dadd(mp_int a, mp_digit b);
-
-/* Single digit multiplication.  Assumes a is big enough. */
-static void s_dmul(mp_int a, mp_digit b);
-
-/* Single digit multiplication on buffers; assumes dc is big enough. */
-static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
-		mp_size size_a);
-
-/* Single digit division.  Replaces a with the quotient,
-   returns the remainder.  */
-static mp_digit s_ddiv(mp_int a, mp_digit b);
-
-/* Quick division by a power of 2, replaces z (no allocation) */
-static void s_qdiv(mp_int z, mp_size p2);
-
-/* Quick remainder by a power of 2, replaces z (no allocation) */
-static void s_qmod(mp_int z, mp_size p2);
-
-/* Quick multiplication by a power of 2, replaces z.
-   Allocates if necessary; returns false in case this fails. */
-static int	s_qmul(mp_int z, mp_size p2);
-
-/* Quick subtraction from a power of 2, replaces z.
-   Allocates if necessary; returns false in case this fails. */
-static int	s_qsub(mp_int z, mp_size p2);
-
-/* Return maximum k such that 2^k divides z. */
-static int	s_dp2k(mp_int z);
-
-/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
-static int	s_isp2(mp_int z);
-
-/* Set z to 2^k.  May allocate; returns false in case this fails. */
-static int	s_2expt(mp_int z, int k);
-
-/* Normalize a and b for division, returns normalization constant */
-static int	s_norm(mp_int a, mp_int b);
-
-/* Compute constant mu for Barrett reduction, given modulus m, result
-   replaces z, m is untouched. */
-static mp_result s_brmu(mp_int z, mp_int m);
-
-/* Reduce a modulo m, using Barrett's algorithm. */
-static int	s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
-
-/* Modular exponentiation, using Barrett reduction */
-static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
-
-/* Unsigned magnitude division.  Assumes |a| > |b|.  Allocates
-   temporaries; overwrites a with quotient, b with remainder. */
-static mp_result s_udiv(mp_int a, mp_int b);
-
-/* Compute the number of digits in radix r required to represent the
-   given value.  Does not account for sign flags, terminators, etc. */
-static int	s_outlen(mp_int z, mp_size r);
-
-/* Guess how many digits of precision will be needed to represent a
-   radix r value of the specified number of digits.  Returns a value
-   guaranteed to be no smaller than the actual number required. */
-static mp_size s_inlen(int len, mp_size r);
-
-/* Convert a character to a digit value in radix r, or
-   -1 if out of range */
-static int	s_ch2val(char c, int r);
-
-/* Convert a digit value to a character */
-static char s_val2ch(int v, int caps);
-
-/* Take 2's complement of a buffer in place */
-static void s_2comp(unsigned char *buf, int len);
-
-/* Convert a value to binary, ignoring sign.  On input, *limpos is the
-   bound on how many bytes should be written to buf; on output, *limpos
-   is set to the number of bytes actually written. */
-static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
-
-#if 0
-/* Dump a representation of the mp_int to standard output */
-void		s_print(char *tag, mp_int z);
-void		s_print_buf(char *tag, mp_digit *buf, mp_size num);
-#endif
-
-/* {{{ get_default_precision() */
-
-mp_size
-mp_get_default_precision(void)
-{
-	return default_precision;
-}
-
-/* }}} */
-
-/* {{{ mp_set_default_precision(s) */
-
-void
-mp_set_default_precision(mp_size s)
-{
-	NRCHECK(s > 0);
-
-	default_precision = (mp_size) ROUND_PREC(s);
-}
-
-/* }}} */
-
-/* {{{ mp_get_multiply_threshold() */
-
-mp_size
-mp_get_multiply_threshold(void)
-{
-	return multiply_threshold;
-}
-
-/* }}} */
-
-/* {{{ mp_set_multiply_threshold(s) */
-
-void
-mp_set_multiply_threshold(mp_size s)
-{
-	multiply_threshold = s;
-}
-
-/* }}} */
-
-/* {{{ mp_int_init(z) */
-
-mp_result
-mp_int_init(mp_int z)
-{
-	return mp_int_init_size(z, default_precision);
-}
-
-/* }}} */
-
-/* {{{ mp_int_alloc() */
-
-mp_int
-mp_int_alloc(void)
-{
-	mp_int		out = px_alloc(sizeof(mpz_t));
-
-	assert(out != NULL);
-	out->digits = NULL;
-	out->used = 0;
-	out->alloc = 0;
-	out->sign = 0;
-
-	return out;
-}
-
-/* }}} */
-
-/* {{{ mp_int_init_size(z, prec) */
-
-mp_result
-mp_int_init_size(mp_int z, mp_size prec)
-{
-	CHECK(z != NULL);
-
-	prec = (mp_size) ROUND_PREC(prec);
-	prec = MAX(prec, default_precision);
-
-	if ((MP_DIGITS(z) = s_alloc(prec)) == NULL)
-		return MP_MEMORY;
-
-	z->digits[0] = 0;
-	MP_USED(z) = 1;
-	MP_ALLOC(z) = prec;
-	MP_SIGN(z) = MP_ZPOS;
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_init_copy(z, old) */
-
-mp_result
-mp_int_init_copy(mp_int z, mp_int old)
-{
-	mp_result	res;
-	mp_size		uold,
-				target;
-
-	CHECK(z != NULL && old != NULL);
-
-	uold = MP_USED(old);
-	target = MAX(uold, default_precision);
-
-	if ((res = mp_int_init_size(z, target)) != MP_OK)
-		return res;
-
-	MP_USED(z) = uold;
-	MP_SIGN(z) = MP_SIGN(old);
-	COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_init_value(z, value) */
-
-mp_result
-mp_int_init_value(mp_int z, int value)
-{
-	mp_result	res;
-
-	CHECK(z != NULL);
-
-	if ((res = mp_int_init(z)) != MP_OK)
-		return res;
-
-	return mp_int_set_value(z, value);
-}
-
-/* }}} */
-
-/* {{{ mp_int_set_value(z, value) */
-
-mp_result
-mp_int_set_value(mp_int z, int value)
-{
-	mp_size		ndig;
-
-	CHECK(z != NULL);
-
-	/* How many digits to copy */
-	ndig = (mp_size) MP_VALUE_DIGITS(value);
-
-	if (!s_pad(z, ndig))
-		return MP_MEMORY;
-
-	MP_USED(z) = (mp_size) s_vpack(value, MP_DIGITS(z));
-	MP_SIGN(z) = (value < 0) ? MP_NEG : MP_ZPOS;
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_clear(z) */
-
-void
-mp_int_clear(mp_int z)
-{
-	if (z == NULL)
-		return;
-
-	if (MP_DIGITS(z) != NULL)
-	{
-		s_free(MP_DIGITS(z));
-		MP_DIGITS(z) = NULL;
-	}
-}
-
-/* }}} */
-
-/* {{{ mp_int_free(z) */
-
-void
-mp_int_free(mp_int z)
-{
-	NRCHECK(z != NULL);
-
-	if (z->digits != NULL)
-		mp_int_clear(z);
-
-	px_free(z);
-}
-
-/* }}} */
-
-/* {{{ mp_int_copy(a, c) */
-
-mp_result
-mp_int_copy(mp_int a, mp_int c)
-{
-	CHECK(a != NULL && c != NULL);
-
-	if (a != c)
-	{
-		mp_size		ua = MP_USED(a);
-		mp_digit   *da,
-				   *dc;
-
-		if (!s_pad(c, ua))
-			return MP_MEMORY;
-
-		da = MP_DIGITS(a);
-		dc = MP_DIGITS(c);
-		COPY(da, dc, ua);
-
-		MP_USED(c) = ua;
-		MP_SIGN(c) = MP_SIGN(a);
-	}
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_swap(a, c) */
-
-void
-mp_int_swap(mp_int a, mp_int c)
-{
-	if (a != c)
-	{
-		mpz_t		tmp = *a;
-
-		*a = *c;
-		*c = tmp;
-	}
-}
-
-/* }}} */
-
-/* {{{ mp_int_zero(z) */
-
-void
-mp_int_zero(mp_int z)
-{
-	NRCHECK(z != NULL);
-
-	z->digits[0] = 0;
-	MP_USED(z) = 1;
-	MP_SIGN(z) = MP_ZPOS;
-}
-
-/* }}} */
-
-/* {{{ mp_int_abs(a, c) */
-
-mp_result
-mp_int_abs(mp_int a, mp_int c)
-{
-	mp_result	res;
-
-	CHECK(a != NULL && c != NULL);
-
-	if ((res = mp_int_copy(a, c)) != MP_OK)
-		return res;
-
-	MP_SIGN(c) = MP_ZPOS;
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_neg(a, c) */
-
-mp_result
-mp_int_neg(mp_int a, mp_int c)
-{
-	mp_result	res;
-
-	CHECK(a != NULL && c != NULL);
-
-	if ((res = mp_int_copy(a, c)) != MP_OK)
-		return res;
-
-	if (CMPZ(c) != 0)
-		MP_SIGN(c) = 1 - MP_SIGN(a);
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_add(a, b, c) */
-
-mp_result
-mp_int_add(mp_int a, mp_int b, mp_int c)
-{
-	mp_size		ua,
-				ub,
-				uc,
-				max;
-
-	CHECK(a != NULL && b != NULL && c != NULL);
-
-	ua = MP_USED(a);
-	ub = MP_USED(b);
-	uc = MP_USED(c);
-	max = MAX(ua, ub);
-
-	if (MP_SIGN(a) == MP_SIGN(b))
-	{
-		/* Same sign -- add magnitudes, preserve sign of addends */
-		mp_digit	carry;
-
-		if (!s_pad(c, max))
-			return MP_MEMORY;
-
-		carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
-		uc = max;
-
-		if (carry)
-		{
-			if (!s_pad(c, max + 1))
-				return MP_MEMORY;
-
-			c->digits[max] = carry;
-			++uc;
-		}
-
-		MP_USED(c) = uc;
-		MP_SIGN(c) = MP_SIGN(a);
-
-	}
-	else
-	{
-		/* Different signs -- subtract magnitudes, preserve sign of greater */
-		mp_int		x,
-					y;
-		int			cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
-
-		/* Set x to max(a, b), y to min(a, b) to simplify later code */
-		if (cmp >= 0)
-		{
-			x = a;
-			y = b;
-		}
-		else
-		{
-			x = b;
-			y = a;
-		}
-
-		if (!s_pad(c, MP_USED(x)))
-			return MP_MEMORY;
-
-		/* Subtract smaller from larger */
-		s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
-		MP_USED(c) = MP_USED(x);
-		CLAMP(c);
-
-		/* Give result the sign of the larger */
-		MP_SIGN(c) = MP_SIGN(x);
-	}
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_add_value(a, value, c) */
-
-mp_result
-mp_int_add_value(mp_int a, int value, mp_int c)
-{
-	mpz_t		vtmp;
-	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
-
-	s_fake(&vtmp, value, vbuf);
-
-	return mp_int_add(a, &vtmp, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_sub(a, b, c) */
-
-mp_result
-mp_int_sub(mp_int a, mp_int b, mp_int c)
-{
-	mp_size		ua,
-				ub,
-				uc,
-				max;
-
-	CHECK(a != NULL && b != NULL && c != NULL);
-
-	ua = MP_USED(a);
-	ub = MP_USED(b);
-	uc = MP_USED(c);
-	max = MAX(ua, ub);
-
-	if (MP_SIGN(a) != MP_SIGN(b))
-	{
-		/* Different signs -- add magnitudes and keep sign of a */
-		mp_digit	carry;
-
-		if (!s_pad(c, max))
-			return MP_MEMORY;
-
-		carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
-		uc = max;
-
-		if (carry)
-		{
-			if (!s_pad(c, max + 1))
-				return MP_MEMORY;
-
-			c->digits[max] = carry;
-			++uc;
-		}
-
-		MP_USED(c) = uc;
-		MP_SIGN(c) = MP_SIGN(a);
-
-	}
-	else
-	{
-		/* Same signs -- subtract magnitudes */
-		mp_int		x,
-					y;
-		mp_sign		osign;
-		int			cmp = s_ucmp(a, b);
-
-		if (!s_pad(c, max))
-			return MP_MEMORY;
-
-		if (cmp >= 0)
-		{
-			x = a;
-			y = b;
-			osign = MP_ZPOS;
-		}
-		else
-		{
-			x = b;
-			y = a;
-			osign = MP_NEG;
-		}
-
-		if (MP_SIGN(a) == MP_NEG && cmp != 0)
-			osign = 1 - osign;
-
-		s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
-		MP_USED(c) = MP_USED(x);
-		CLAMP(c);
-
-		MP_SIGN(c) = osign;
-	}
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_sub_value(a, value, c) */
-
-mp_result
-mp_int_sub_value(mp_int a, int value, mp_int c)
-{
-	mpz_t		vtmp;
-	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
-
-	s_fake(&vtmp, value, vbuf);
-
-	return mp_int_sub(a, &vtmp, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_mul(a, b, c) */
-
-mp_result
-mp_int_mul(mp_int a, mp_int b, mp_int c)
-{
-	mp_digit   *out;
-	mp_size		osize,
-				ua,
-				ub,
-				p = 0;
-	mp_sign		osign;
-
-	CHECK(a != NULL && b != NULL && c != NULL);
-
-	/* If either input is zero, we can shortcut multiplication */
-	if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0)
-	{
-		mp_int_zero(c);
-		return MP_OK;
-	}
-
-	/* Output is positive if inputs have same sign, otherwise negative */
-	osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
-
-	/*
-	 * If the output is not equal to any of the inputs, we'll write the
-	 * results there directly; otherwise, allocate a temporary space.
-	 */
-	ua = MP_USED(a);
-	ub = MP_USED(b);
-	osize = ua + ub;
-
-	if (c == a || c == b)
-	{
-		p = ROUND_PREC(osize);
-		p = MAX(p, default_precision);
-
-		if ((out = s_alloc(p)) == NULL)
-			return MP_MEMORY;
-	}
-	else
-	{
-		if (!s_pad(c, osize))
-			return MP_MEMORY;
-
-		out = MP_DIGITS(c);
-	}
-	ZERO(out, osize);
-
-	if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
-		return MP_MEMORY;
-
-	/*
-	 * If we allocated a new buffer, get rid of whatever memory c was already
-	 * using, and fix up its fields to reflect that.
-	 */
-	if (out != MP_DIGITS(c))
-	{
-		s_free(MP_DIGITS(c));
-		MP_DIGITS(c) = out;
-		MP_ALLOC(c) = p;
-	}
-
-	MP_USED(c) = osize;			/* might not be true, but we'll fix it ... */
-	CLAMP(c);					/* ... right here */
-	MP_SIGN(c) = osign;
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_mul_value(a, value, c) */
-
-mp_result
-mp_int_mul_value(mp_int a, int value, mp_int c)
-{
-	mpz_t		vtmp;
-	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
-
-	s_fake(&vtmp, value, vbuf);
-
-	return mp_int_mul(a, &vtmp, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_mul_pow2(a, p2, c) */
-
-mp_result
-mp_int_mul_pow2(mp_int a, int p2, mp_int c)
-{
-	mp_result	res;
-
-	CHECK(a != NULL && c != NULL && p2 >= 0);
-
-	if ((res = mp_int_copy(a, c)) != MP_OK)
-		return res;
-
-	if (s_qmul(c, (mp_size) p2))
-		return MP_OK;
-	else
-		return MP_MEMORY;
-}
-
-/* }}} */
-
-/* {{{ mp_int_sqr(a, c) */
-
-mp_result
-mp_int_sqr(mp_int a, mp_int c)
-{
-	mp_digit   *out;
-	mp_size		osize,
-				p = 0;
-
-	CHECK(a != NULL && c != NULL);
-
-	/* Get a temporary buffer big enough to hold the result */
-	osize = (mp_size) 2 *MP_USED(a);
-
-	if (a == c)
-	{
-		p = ROUND_PREC(osize);
-		p = MAX(p, default_precision);
-
-		if ((out = s_alloc(p)) == NULL)
-			return MP_MEMORY;
-	}
-	else
-	{
-		if (!s_pad(c, osize))
-			return MP_MEMORY;
-
-		out = MP_DIGITS(c);
-	}
-	ZERO(out, osize);
-
-	s_ksqr(MP_DIGITS(a), out, MP_USED(a));
-
-	/*
-	 * Get rid of whatever memory c was already using, and fix up its fields
-	 * to reflect the new digit array it's using
-	 */
-	if (out != MP_DIGITS(c))
-	{
-		s_free(MP_DIGITS(c));
-		MP_DIGITS(c) = out;
-		MP_ALLOC(c) = p;
-	}
-
-	MP_USED(c) = osize;			/* might not be true, but we'll fix it ... */
-	CLAMP(c);					/* ... right here */
-	MP_SIGN(c) = MP_ZPOS;
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_div(a, b, q, r) */
-
-mp_result
-mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
-{
-	int			cmp,
-				last = 0,
-				lg;
-	mp_result	res = MP_OK;
-	mpz_t		temp[2];
-	mp_int		qout,
-				rout;
-	mp_sign		sa = MP_SIGN(a),
-				sb = MP_SIGN(b);
-
-	CHECK(a != NULL && b != NULL && q != r);
-
-	if (CMPZ(b) == 0)
-		return MP_UNDEF;
-	else if ((cmp = s_ucmp(a, b)) < 0)
-	{
-		/*
-		 * If |a| < |b|, no division is required: q = 0, r = a
-		 */
-		if (r && (res = mp_int_copy(a, r)) != MP_OK)
-			return res;
-
-		if (q)
-			mp_int_zero(q);
-
-		return MP_OK;
-	}
-	else if (cmp == 0)
-	{
-		/*
-		 * If |a| = |b|, no division is required: q = 1 or -1, r = 0
-		 */
-		if (r)
-			mp_int_zero(r);
-
-		if (q)
-		{
-			mp_int_zero(q);
-			q->digits[0] = 1;
-
-			if (sa != sb)
-				MP_SIGN(q) = MP_NEG;
-		}
-
-		return MP_OK;
-	}
-
-	/*
-	 * When |a| > |b|, real division is required.  We need someplace to store
-	 * quotient and remainder, but q and r are allowed to be NULL or to
-	 * overlap with the inputs.
-	 */
-	if ((lg = s_isp2(b)) < 0)
-	{
-		if (q && b != q && (res = mp_int_copy(a, q)) == MP_OK)
-		{
-			qout = q;
-		}
-		else
-		{
-			qout = TEMP(last);
-			SETUP(mp_int_init_copy(TEMP(last), a), last);
-		}
-
-		if (r && a != r && (res = mp_int_copy(b, r)) == MP_OK)
-		{
-			rout = r;
-		}
-		else
-		{
-			rout = TEMP(last);
-			SETUP(mp_int_init_copy(TEMP(last), b), last);
-		}
-
-		if ((res = s_udiv(qout, rout)) != MP_OK)
-			goto CLEANUP;
-	}
-	else
-	{
-		if (q && (res = mp_int_copy(a, q)) != MP_OK)
-			goto CLEANUP;
-		if (r && (res = mp_int_copy(a, r)) != MP_OK)
-			goto CLEANUP;
-
-		if (q)
-			s_qdiv(q, (mp_size) lg);
-		qout = q;
-		if (r)
-			s_qmod(r, (mp_size) lg);
-		rout = r;
-	}
-
-	/* Recompute signs for output */
-	if (rout)
-	{
-		MP_SIGN(rout) = sa;
-		if (CMPZ(rout) == 0)
-			MP_SIGN(rout) = MP_ZPOS;
-	}
-	if (qout)
-	{
-		MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG;
-		if (CMPZ(qout) == 0)
-			MP_SIGN(qout) = MP_ZPOS;
-	}
-
-	if (q && (res = mp_int_copy(qout, q)) != MP_OK)
-		goto CLEANUP;
-	if (r && (res = mp_int_copy(rout, r)) != MP_OK)
-		goto CLEANUP;
-
-CLEANUP:
-	while (--last >= 0)
-		mp_int_clear(TEMP(last));
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_mod(a, m, c) */
-
-mp_result
-mp_int_mod(mp_int a, mp_int m, mp_int c)
-{
-	mp_result	res;
-	mpz_t		tmp;
-	mp_int		out;
-
-	if (m == c)
-	{
-		if ((res = mp_int_init(&tmp)) != MP_OK)
-			return res;
-
-		out = &tmp;
-	}
-	else
-	{
-		out = c;
-	}
-
-	if ((res = mp_int_div(a, m, NULL, out)) != MP_OK)
-		goto CLEANUP;
-
-	if (CMPZ(out) < 0)
-		res = mp_int_add(out, m, c);
-	else
-		res = mp_int_copy(out, c);
-
-CLEANUP:
-	if (out != c)
-		mp_int_clear(&tmp);
-
-	return res;
-}
-
-/* }}} */
-
-
-/* {{{ mp_int_div_value(a, value, q, r) */
-
-mp_result
-mp_int_div_value(mp_int a, int value, mp_int q, int *r)
-{
-	mpz_t		vtmp,
-				rtmp;
-	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
-	mp_result	res;
-
-	if ((res = mp_int_init(&rtmp)) != MP_OK)
-		return res;
-	s_fake(&vtmp, value, vbuf);
-
-	if ((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
-		goto CLEANUP;
-
-	if (r)
-		(void) mp_int_to_int(&rtmp, r); /* can't fail */
-
-CLEANUP:
-	mp_int_clear(&rtmp);
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_div_pow2(a, p2, q, r) */
-
-mp_result
-mp_int_div_pow2(mp_int a, int p2, mp_int q, mp_int r)
-{
-	mp_result	res = MP_OK;
-
-	CHECK(a != NULL && p2 >= 0 && q != r);
-
-	if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
-		s_qdiv(q, (mp_size) p2);
-
-	if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
-		s_qmod(r, (mp_size) p2);
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_expt(a, b, c) */
-
-mp_result
-mp_int_expt(mp_int a, int b, mp_int c)
-{
-	mpz_t		t;
-	mp_result	res;
-	unsigned int v = abs(b);
-
-	CHECK(b >= 0 && c != NULL);
-
-	if ((res = mp_int_init_copy(&t, a)) != MP_OK)
-		return res;
-
-	(void) mp_int_set_value(c, 1);
-	while (v != 0)
-	{
-		if (v & 1)
-		{
-			if ((res = mp_int_mul(c, &t, c)) != MP_OK)
-				goto CLEANUP;
-		}
-
-		v >>= 1;
-		if (v == 0)
-			break;
-
-		if ((res = mp_int_sqr(&t, &t)) != MP_OK)
-			goto CLEANUP;
-	}
-
-CLEANUP:
-	mp_int_clear(&t);
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_expt_value(a, b, c) */
-
-mp_result
-mp_int_expt_value(int a, int b, mp_int c)
-{
-	mpz_t		t;
-	mp_result	res;
-	unsigned int v = abs(b);
-
-	CHECK(b >= 0 && c != NULL);
-
-	if ((res = mp_int_init_value(&t, a)) != MP_OK)
-		return res;
-
-	(void) mp_int_set_value(c, 1);
-	while (v != 0)
-	{
-		if (v & 1)
-		{
-			if ((res = mp_int_mul(c, &t, c)) != MP_OK)
-				goto CLEANUP;
-		}
-
-		v >>= 1;
-		if (v == 0)
-			break;
-
-		if ((res = mp_int_sqr(&t, &t)) != MP_OK)
-			goto CLEANUP;
-	}
-
-CLEANUP:
-	mp_int_clear(&t);
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_compare(a, b) */
-
-int
-mp_int_compare(mp_int a, mp_int b)
-{
-	mp_sign		sa;
-
-	CHECK(a != NULL && b != NULL);
-
-	sa = MP_SIGN(a);
-	if (sa == MP_SIGN(b))
-	{
-		int			cmp = s_ucmp(a, b);
-
-		/*
-		 * If they're both zero or positive, the normal comparison applies; if
-		 * both negative, the sense is reversed.
-		 */
-		if (sa == MP_ZPOS)
-			return cmp;
-		else
-			return -cmp;
-
-	}
-	else
-	{
-		if (sa == MP_ZPOS)
-			return 1;
-		else
-			return -1;
-	}
-}
-
-/* }}} */
-
-/* {{{ mp_int_compare_unsigned(a, b) */
-
-int
-mp_int_compare_unsigned(mp_int a, mp_int b)
-{
-	NRCHECK(a != NULL && b != NULL);
-
-	return s_ucmp(a, b);
-}
-
-/* }}} */
-
-/* {{{ mp_int_compare_zero(z) */
-
-int
-mp_int_compare_zero(mp_int z)
-{
-	NRCHECK(z != NULL);
-
-	if (MP_USED(z) == 1 && z->digits[0] == 0)
-		return 0;
-	else if (MP_SIGN(z) == MP_ZPOS)
-		return 1;
-	else
-		return -1;
-}
-
-/* }}} */
-
-/* {{{ mp_int_compare_value(z, value) */
-
-int
-mp_int_compare_value(mp_int z, int value)
-{
-	mp_sign		vsign = (value < 0) ? MP_NEG : MP_ZPOS;
-	int			cmp;
-
-	CHECK(z != NULL);
-
-	if (vsign == MP_SIGN(z))
-	{
-		cmp = s_vcmp(z, value);
-
-		if (vsign == MP_ZPOS)
-			return cmp;
-		else
-			return -cmp;
-	}
-	else
-	{
-		if (value < 0)
-			return 1;
-		else
-			return -1;
-	}
-}
-
-/* }}} */
-
-/* {{{ mp_int_exptmod(a, b, m, c) */
-
-mp_result
-mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
-{
-	mp_result	res;
-	mp_size		um;
-	mpz_t		temp[3];
-	mp_int		s;
-	int			last = 0;
-
-	CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
-
-	/* Zero moduli and negative exponents are not considered. */
-	if (CMPZ(m) == 0)
-		return MP_UNDEF;
-	if (CMPZ(b) < 0)
-		return MP_RANGE;
-
-	um = MP_USED(m);
-	SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
-	SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
-
-	if (c == b || c == m)
-	{
-		SETUP(mp_int_init_size(TEMP(2), 2 * um), last);
-		s = TEMP(2);
-	}
-	else
-	{
-		s = c;
-	}
-
-	if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK)
-		goto CLEANUP;
-
-	if ((res = s_brmu(TEMP(1), m)) != MP_OK)
-		goto CLEANUP;
-
-	if ((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
-		goto CLEANUP;
-
-	res = mp_int_copy(s, c);
-
-CLEANUP:
-	while (--last >= 0)
-		mp_int_clear(TEMP(last));
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_exptmod_evalue(a, value, m, c) */
-
-mp_result
-mp_int_exptmod_evalue(mp_int a, int value, mp_int m, mp_int c)
-{
-	mpz_t		vtmp;
-	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
-
-	s_fake(&vtmp, value, vbuf);
-
-	return mp_int_exptmod(a, &vtmp, m, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_exptmod_bvalue(v, b, m, c) */
-
-mp_result
-mp_int_exptmod_bvalue(int value, mp_int b,
-					  mp_int m, mp_int c)
-{
-	mpz_t		vtmp;
-	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
-
-	s_fake(&vtmp, value, vbuf);
-
-	return mp_int_exptmod(&vtmp, b, m, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_exptmod_known(a, b, m, mu, c) */
-
-mp_result
-mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
-{
-	mp_result	res;
-	mp_size		um;
-	mpz_t		temp[2];
-	mp_int		s;
-	int			last = 0;
-
-	CHECK(a && b && m && c);
-
-	/* Zero moduli and negative exponents are not considered. */
-	if (CMPZ(m) == 0)
-		return MP_UNDEF;
-	if (CMPZ(b) < 0)
-		return MP_RANGE;
-
-	um = MP_USED(m);
-	SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
-
-	if (c == b || c == m)
-	{
-		SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
-		s = TEMP(1);
-	}
-	else
-	{
-		s = c;
-	}
-
-	if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK)
-		goto CLEANUP;
-
-	if ((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
-		goto CLEANUP;
-
-	res = mp_int_copy(s, c);
-
-CLEANUP:
-	while (--last >= 0)
-		mp_int_clear(TEMP(last));
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_redux_const(m, c) */
-
-mp_result
-mp_int_redux_const(mp_int m, mp_int c)
-{
-	CHECK(m != NULL && c != NULL && m != c);
-
-	return s_brmu(c, m);
-}
-
-/* }}} */
-
-/* {{{ mp_int_invmod(a, m, c) */
-
-mp_result
-mp_int_invmod(mp_int a, mp_int m, mp_int c)
-{
-	mp_result	res;
-	mp_sign		sa;
-	int			last = 0;
-	mpz_t		temp[2];
-
-	CHECK(a != NULL && m != NULL && c != NULL);
-
-	if (CMPZ(a) == 0 || CMPZ(m) <= 0)
-		return MP_RANGE;
-
-	sa = MP_SIGN(a);			/* need this for the result later */
-
-	for (last = 0; last < 2; ++last)
-		if ((res = mp_int_init(TEMP(last))) != MP_OK)
-			goto CLEANUP;
-
-	if ((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
-		goto CLEANUP;
-
-	if (mp_int_compare_value(TEMP(0), 1) != 0)
-	{
-		res = MP_UNDEF;
-		goto CLEANUP;
-	}
-
-	/* It is first necessary to constrain the value to the proper range */
-	if ((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
-		goto CLEANUP;
-
-	/*
-	 * Now, if 'a' was originally negative, the value we have is actually the
-	 * magnitude of the negative representative; to get the positive value we
-	 * have to subtract from the modulus.  Otherwise, the value is okay as it
-	 * stands.
-	 */
-	if (sa == MP_NEG)
-		res = mp_int_sub(m, TEMP(1), c);
-	else
-		res = mp_int_copy(TEMP(1), c);
-
-CLEANUP:
-	while (--last >= 0)
-		mp_int_clear(TEMP(last));
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_gcd(a, b, c) */
-
-/* Binary GCD algorithm due to Josef Stein, 1961 */
-mp_result
-mp_int_gcd(mp_int a, mp_int b, mp_int c)
-{
-	int			ca,
-				cb,
-				k = 0;
-	mpz_t		u,
-				v,
-				t;
-	mp_result	res;
-
-	CHECK(a != NULL && b != NULL && c != NULL);
-
-	ca = CMPZ(a);
-	cb = CMPZ(b);
-	if (ca == 0 && cb == 0)
-		return MP_UNDEF;
-	else if (ca == 0)
-		return mp_int_abs(b, c);
-	else if (cb == 0)
-		return mp_int_abs(a, c);
-
-	if ((res = mp_int_init(&t)) != MP_OK)
-		return res;
-	if ((res = mp_int_init_copy(&u, a)) != MP_OK)
-		goto U;
-	if ((res = mp_int_init_copy(&v, b)) != MP_OK)
-		goto V;
-
-	MP_SIGN(&u) = MP_ZPOS;
-	MP_SIGN(&v) = MP_ZPOS;
-
-	{							/* Divide out common factors of 2 from u and v */
-		int			div2_u = s_dp2k(&u),
-					div2_v = s_dp2k(&v);
-
-		k = MIN(div2_u, div2_v);
-		s_qdiv(&u, (mp_size) k);
-		s_qdiv(&v, (mp_size) k);
-	}
-
-	if (mp_int_is_odd(&u))
-	{
-		if ((res = mp_int_neg(&v, &t)) != MP_OK)
-			goto CLEANUP;
-	}
-	else
-	{
-		if ((res = mp_int_copy(&u, &t)) != MP_OK)
-			goto CLEANUP;
-	}
-
-	for (;;)
-	{
-		s_qdiv(&t, s_dp2k(&t));
-
-		if (CMPZ(&t) > 0)
-		{
-			if ((res = mp_int_copy(&t, &u)) != MP_OK)
-				goto CLEANUP;
-		}
-		else
-		{
-			if ((res = mp_int_neg(&t, &v)) != MP_OK)
-				goto CLEANUP;
-		}
-
-		if ((res = mp_int_sub(&u, &v, &t)) != MP_OK)
-			goto CLEANUP;
-
-		if (CMPZ(&t) == 0)
-			break;
-	}
-
-	if ((res = mp_int_abs(&u, c)) != MP_OK)
-		goto CLEANUP;
-	if (!s_qmul(c, (mp_size) k))
-		res = MP_MEMORY;
-
-CLEANUP:
-	mp_int_clear(&v);
-V: mp_int_clear(&u);
-U: mp_int_clear(&t);
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_egcd(a, b, c, x, y) */
-
-/* This is the binary GCD algorithm again, but this time we keep track
-   of the elementary matrix operations as we go, so we can get values
-   x and y satisfying c = ax + by.
- */
-mp_result
-mp_int_egcd(mp_int a, mp_int b, mp_int c,
-			mp_int x, mp_int y)
-{
-	int			k,
-				last = 0,
-				ca,
-				cb;
-	mpz_t		temp[8];
-	mp_result	res;
-
-	CHECK(a != NULL && b != NULL && c != NULL &&
-		  (x != NULL || y != NULL));
-
-	ca = CMPZ(a);
-	cb = CMPZ(b);
-	if (ca == 0 && cb == 0)
-		return MP_UNDEF;
-	else if (ca == 0)
-	{
-		if ((res = mp_int_abs(b, c)) != MP_OK)
-			return res;
-		mp_int_zero(x);
-		(void) mp_int_set_value(y, 1);
-		return MP_OK;
-	}
-	else if (cb == 0)
-	{
-		if ((res = mp_int_abs(a, c)) != MP_OK)
-			return res;
-		(void) mp_int_set_value(x, 1);
-		mp_int_zero(y);
-		return MP_OK;
-	}
-
-	/*
-	 * Initialize temporaries: A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7
-	 */
-	for (last = 0; last < 4; ++last)
-	{
-		if ((res = mp_int_init(TEMP(last))) != MP_OK)
-			goto CLEANUP;
-	}
-	TEMP(0)->digits[0] = 1;
-	TEMP(3)->digits[0] = 1;
-
-	SETUP(mp_int_init_copy(TEMP(4), a), last);
-	SETUP(mp_int_init_copy(TEMP(5), b), last);
-
-	/* We will work with absolute values here */
-	MP_SIGN(TEMP(4)) = MP_ZPOS;
-	MP_SIGN(TEMP(5)) = MP_ZPOS;
-
-	{							/* Divide out common factors of 2 from u and v */
-		int			div2_u = s_dp2k(TEMP(4)),
-					div2_v = s_dp2k(TEMP(5));
-
-		k = MIN(div2_u, div2_v);
-		s_qdiv(TEMP(4), k);
-		s_qdiv(TEMP(5), k);
-	}
-
-	SETUP(mp_int_init_copy(TEMP(6), TEMP(4)), last);
-	SETUP(mp_int_init_copy(TEMP(7), TEMP(5)), last);
-
-	for (;;)
-	{
-		while (mp_int_is_even(TEMP(4)))
-		{
-			s_qdiv(TEMP(4), 1);
-
-			if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1)))
-			{
-				if ((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
-					goto CLEANUP;
-				if ((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
-					goto CLEANUP;
-			}
-
-			s_qdiv(TEMP(0), 1);
-			s_qdiv(TEMP(1), 1);
-		}
-
-		while (mp_int_is_even(TEMP(5)))
-		{
-			s_qdiv(TEMP(5), 1);
-
-			if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3)))
-			{
-				if ((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
-					goto CLEANUP;
-				if ((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
-					goto CLEANUP;
-			}
-
-			s_qdiv(TEMP(2), 1);
-			s_qdiv(TEMP(3), 1);
-		}
-
-		if (mp_int_compare(TEMP(4), TEMP(5)) >= 0)
-		{
-			if ((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK)
-				goto CLEANUP;
-			if ((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK)
-				goto CLEANUP;
-			if ((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK)
-				goto CLEANUP;
-		}
-		else
-		{
-			if ((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK)
-				goto CLEANUP;
-			if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK)
-				goto CLEANUP;
-			if ((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK)
-				goto CLEANUP;
-		}
-
-		if (CMPZ(TEMP(4)) == 0)
-		{
-			if (x && (res = mp_int_copy(TEMP(2), x)) != MP_OK)
-				goto CLEANUP;
-			if (y && (res = mp_int_copy(TEMP(3), y)) != MP_OK)
-				goto CLEANUP;
-			if (c)
-			{
-				if (!s_qmul(TEMP(5), k))
-				{
-					res = MP_MEMORY;
-					goto CLEANUP;
-				}
-
-				res = mp_int_copy(TEMP(5), c);
-			}
-
-			break;
-		}
-	}
-
-CLEANUP:
-	while (--last >= 0)
-		mp_int_clear(TEMP(last));
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_divisible_value(a, v) */
-
-int
-mp_int_divisible_value(mp_int a, int v)
-{
-	int			rem = 0;
-
-	if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
-		return 0;
-
-	return rem == 0;
-}
-
-/* }}} */
-
-/* {{{ mp_int_is_pow2(z) */
-
-int
-mp_int_is_pow2(mp_int z)
-{
-	CHECK(z != NULL);
-
-	return s_isp2(z);
-}
-
-/* }}} */
-
-/* {{{ mp_int_sqrt(a, c) */
-
-mp_result
-mp_int_sqrt(mp_int a, mp_int c)
-{
-	mp_result	res = MP_OK;
-	mpz_t		temp[2];
-	int			last = 0;
-
-	CHECK(a != NULL && c != NULL);
-
-	/* The square root of a negative value does not exist in the integers. */
-	if (MP_SIGN(a) == MP_NEG)
-		return MP_UNDEF;
-
-	SETUP(mp_int_init_copy(TEMP(last), a), last);
-	SETUP(mp_int_init(TEMP(last)), last);
-
-	for (;;)
-	{
-		if ((res = mp_int_sqr(TEMP(0), TEMP(1))) != MP_OK)
-			goto CLEANUP;
-
-		if (mp_int_compare_unsigned(a, TEMP(1)) == 0)
-			break;
-
-		if ((res = mp_int_copy(a, TEMP(1))) != MP_OK)
-			goto CLEANUP;
-		if ((res = mp_int_div(TEMP(1), TEMP(0), TEMP(1), NULL)) != MP_OK)
-			goto CLEANUP;
-		if ((res = mp_int_add(TEMP(0), TEMP(1), TEMP(1))) != MP_OK)
-			goto CLEANUP;
-		if ((res = mp_int_div_pow2(TEMP(1), 1, TEMP(1), NULL)) != MP_OK)
-			goto CLEANUP;
-
-		if (mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0)
-			break;
-		if ((res = mp_int_sub_value(TEMP(0), 1, TEMP(0))) != MP_OK)
-			goto CLEANUP;
-		if (mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0)
-			break;
-
-		if ((res = mp_int_copy(TEMP(1), TEMP(0))) != MP_OK)
-			goto CLEANUP;
-	}
-
-	res = mp_int_copy(TEMP(0), c);
-
-CLEANUP:
-	while (--last >= 0)
-		mp_int_clear(TEMP(last));
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_int(z, out) */
-
-mp_result
-mp_int_to_int(mp_int z, int *out)
-{
-	unsigned int uv = 0;
-	mp_size		uz;
-	mp_digit   *dz;
-	mp_sign		sz;
-
-	CHECK(z != NULL);
-
-	/* Make sure the value is representable as an int */
-	sz = MP_SIGN(z);
-	if ((sz == MP_ZPOS && mp_int_compare_value(z, INT_MAX) > 0) ||
-		mp_int_compare_value(z, INT_MIN) < 0)
-		return MP_RANGE;
-
-	uz = MP_USED(z);
-	dz = MP_DIGITS(z) + uz - 1;
-
-	while (uz > 0)
-	{
-		uv <<= MP_DIGIT_BIT / 2;
-		uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
-		--uz;
-	}
-
-	if (out)
-		*out = (sz == MP_NEG) ? -(int) uv : (int) uv;
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_string(z, radix, str, limit) */
-
-mp_result
-mp_int_to_string(mp_int z, mp_size radix,
-				 char *str, int limit)
-{
-	mp_result	res;
-	int			cmp = 0;
-
-	CHECK(z != NULL && str != NULL && limit >= 2);
-
-	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
-		return MP_RANGE;
-
-	if (CMPZ(z) == 0)
-	{
-		*str++ = s_val2ch(0, mp_flags & MP_CAP_DIGITS);
-	}
-	else
-	{
-		mpz_t		tmp;
-		char	   *h,
-				   *t;
-
-		if ((res = mp_int_init_copy(&tmp, z)) != MP_OK)
-			return res;
-
-		if (MP_SIGN(z) == MP_NEG)
-		{
-			*str++ = '-';
-			--limit;
-		}
-		h = str;
-
-		/* Generate digits in reverse order until finished or limit reached */
-		for ( /* */ ; limit > 0; --limit)
-		{
-			mp_digit	d;
-
-			if ((cmp = CMPZ(&tmp)) == 0)
-				break;
-
-			d = s_ddiv(&tmp, (mp_digit) radix);
-			*str++ = s_val2ch(d, mp_flags & MP_CAP_DIGITS);
-		}
-		t = str - 1;
-
-		/* Put digits back in correct output order */
-		while (h < t)
-		{
-			char		tc = *h;
-
-			*h++ = *t;
-			*t-- = tc;
-		}
-
-		mp_int_clear(&tmp);
-	}
-
-	*str = '\0';
-	if (cmp == 0)
-		return MP_OK;
-	else
-		return MP_TRUNC;
-}
-
-/* }}} */
-
-/* {{{ mp_int_string_len(z, radix) */
-
-mp_result
-mp_int_string_len(mp_int z, mp_size radix)
-{
-	int			len;
-
-	CHECK(z != NULL);
-
-	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
-		return MP_RANGE;
-
-	len = s_outlen(z, radix) + 1;		/* for terminator */
-
-	/* Allow for sign marker on negatives */
-	if (MP_SIGN(z) == MP_NEG)
-		len += 1;
-
-	return len;
-}
-
-/* }}} */
-
-/* {{{ mp_int_read_string(z, radix, *str) */
-
-/* Read zero-terminated string into z */
-mp_result
-mp_int_read_string(mp_int z, mp_size radix, const char *str)
-{
-	return mp_int_read_cstring(z, radix, str, NULL);
-
-}
-
-/* }}} */
-
-/* {{{ mp_int_read_cstring(z, radix, *str, **end) */
-
-mp_result
-mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
-{
-	int			ch;
-
-	CHECK(z != NULL && str != NULL);
-
-	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
-		return MP_RANGE;
-
-	/* Skip leading whitespace */
-	while (isspace((unsigned char) *str))
-		++str;
-
-	/* Handle leading sign tag (+/-, positive default) */
-	switch (*str)
-	{
-		case '-':
-			MP_SIGN(z) = MP_NEG;
-			++str;
-			break;
-		case '+':
-			++str;				/* fallthrough */
-		default:
-			MP_SIGN(z) = MP_ZPOS;
-			break;
-	}
-
-	/* Skip leading zeroes */
-	while ((ch = s_ch2val(*str, radix)) == 0)
-		++str;
-
-	/* Make sure there is enough space for the value */
-	if (!s_pad(z, s_inlen(strlen(str), radix)))
-		return MP_MEMORY;
-
-	MP_USED(z) = 1;
-	z->digits[0] = 0;
-
-	while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0))
-	{
-		s_dmul(z, (mp_digit) radix);
-		s_dadd(z, (mp_digit) ch);
-		++str;
-	}
-
-	CLAMP(z);
-
-	/* Override sign for zero, even if negative specified. */
-	if (CMPZ(z) == 0)
-		MP_SIGN(z) = MP_ZPOS;
-
-	if (end != NULL)
-		*end = (char *) str;
-
-	/*
-	 * Return a truncation error if the string has unprocessed characters
-	 * remaining, so the caller can tell if the whole string was done
-	 */
-	if (*str != '\0')
-		return MP_TRUNC;
-	else
-		return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_count_bits(z) */
-
-mp_result
-mp_int_count_bits(mp_int z)
-{
-	mp_size		nbits = 0,
-				uz;
-	mp_digit	d;
-
-	CHECK(z != NULL);
-
-	uz = MP_USED(z);
-	if (uz == 1 && z->digits[0] == 0)
-		return 1;
-
-	--uz;
-	nbits = uz * MP_DIGIT_BIT;
-	d = z->digits[uz];
-
-	while (d != 0)
-	{
-		d >>= 1;
-		++nbits;
-	}
-
-	return nbits;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_binary(z, buf, limit) */
-
-mp_result
-mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
-{
-	static const int PAD_FOR_2C = 1;
-
-	mp_result	res;
-	int			limpos = limit;
-
-	CHECK(z != NULL && buf != NULL);
-
-	res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
-
-	if (MP_SIGN(z) == MP_NEG)
-		s_2comp(buf, limpos);
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_read_binary(z, buf, len) */
-
-mp_result
-mp_int_read_binary(mp_int z, unsigned char *buf, int len)
-{
-	mp_size		need,
-				i;
-	unsigned char *tmp;
-	mp_digit   *dz;
-
-	CHECK(z != NULL && buf != NULL && len > 0);
-
-	/* Figure out how many digits are needed to represent this value */
-	need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
-	if (!s_pad(z, need))
-		return MP_MEMORY;
-
-	mp_int_zero(z);
-
-	/*
-	 * If the high-order bit is set, take the 2's complement before reading
-	 * the value (it will be restored afterward)
-	 */
-	if (buf[0] >> (CHAR_BIT - 1))
-	{
-		MP_SIGN(z) = MP_NEG;
-		s_2comp(buf, len);
-	}
-
-	dz = MP_DIGITS(z);
-	for (tmp = buf, i = len; i > 0; --i, ++tmp)
-	{
-		s_qmul(z, (mp_size) CHAR_BIT);
-		*dz |= *tmp;
-	}
-
-	/* Restore 2's complement if we took it before */
-	if (MP_SIGN(z) == MP_NEG)
-		s_2comp(buf, len);
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_binary_len(z) */
-
-mp_result
-mp_int_binary_len(mp_int z)
-{
-	mp_result	res = mp_int_count_bits(z);
-	int			bytes = mp_int_unsigned_len(z);
-
-	if (res <= 0)
-		return res;
-
-	bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
-
-	/*
-	 * If the highest-order bit falls exactly on a byte boundary, we need to
-	 * pad with an extra byte so that the sign will be read correctly when
-	 * reading it back in.
-	 */
-	if (bytes * CHAR_BIT == res)
-		++bytes;
-
-	return bytes;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_unsigned(z, buf, limit) */
-
-mp_result
-mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
-{
-	static const int NO_PADDING = 0;
-
-	CHECK(z != NULL && buf != NULL);
-
-	return s_tobin(z, buf, &limit, NO_PADDING);
-}
-
-/* }}} */
-
-/* {{{ mp_int_read_unsigned(z, buf, len) */
-
-mp_result
-mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
-{
-	mp_size		need,
-				i;
-	unsigned char *tmp;
-	mp_digit   *dz;
-
-	CHECK(z != NULL && buf != NULL && len > 0);
-
-	/* Figure out how many digits are needed to represent this value */
-	need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
-	if (!s_pad(z, need))
-		return MP_MEMORY;
-
-	mp_int_zero(z);
-
-	dz = MP_DIGITS(z);
-	for (tmp = buf, i = len; i > 0; --i, ++tmp)
-	{
-		(void) s_qmul(z, CHAR_BIT);
-		*dz |= *tmp;
-	}
-
-	return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_unsigned_len(z) */
-
-mp_result
-mp_int_unsigned_len(mp_int z)
-{
-	mp_result	res = mp_int_count_bits(z);
-	int			bytes;
-
-	if (res <= 0)
-		return res;
-
-	bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
-
-	return bytes;
-}
-
-/* }}} */
-
-/* {{{ mp_error_string(res) */
-
-const char *
-mp_error_string(mp_result res)
-{
-	int			ix;
-
-	if (res > 0)
-		return s_unknown_err;
-
-	res = -res;
-	for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
-		;
-
-	if (s_error_msg[ix] != NULL)
-		return s_error_msg[ix];
-	else
-		return s_unknown_err;
-}
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* Private functions for internal use.	These make assumptions.			  */
-
-/* {{{ s_alloc(num) */
-
-static mp_digit *
-s_alloc(mp_size num)
-{
-	mp_digit   *out = px_alloc(num * sizeof(mp_digit));
-
-	assert(out != NULL);		/* for debugging */
-
-	return out;
-}
-
-/* }}} */
-
-/* {{{ s_realloc(old, num) */
-
-static mp_digit *
-s_realloc(mp_digit *old, mp_size num)
-{
-	mp_digit   *new = px_realloc(old, num * sizeof(mp_digit));
-
-	assert(new != NULL);		/* for debugging */
-
-	return new;
-}
-
-/* }}} */
-
-/* {{{ s_free(ptr) */
-
-#if TRACEABLE_FREE
-static void
-s_free(void *ptr)
-{
-	px_free(ptr);
-}
-#endif
-
-/* }}} */
-
-/* {{{ s_pad(z, min) */
-
-static int
-s_pad(mp_int z, mp_size min)
-{
-	if (MP_ALLOC(z) < min)
-	{
-		mp_size		nsize = ROUND_PREC(min);
-		mp_digit   *tmp = s_realloc(MP_DIGITS(z), nsize);
-
-		if (tmp == NULL)
-			return 0;
-
-		MP_DIGITS(z) = tmp;
-		MP_ALLOC(z) = nsize;
-	}
-
-	return 1;
-}
-
-/* }}} */
-
-/* {{{ s_clamp(z) */
-
-#if TRACEABLE_CLAMP
-static void
-s_clamp(mp_int z)
-{
-	mp_size		uz = MP_USED(z);
-	mp_digit   *zd = MP_DIGITS(z) + uz - 1;
-
-	while (uz > 1 && (*zd-- == 0))
-		--uz;
-
-	MP_USED(z) = uz;
-}
-#endif
-
-/* }}} */
-
-/* {{{ s_fake(z, value, vbuf) */
-
-static void
-s_fake(mp_int z, int value, mp_digit vbuf[])
-{
-	mp_size		uv = (mp_size) s_vpack(value, vbuf);
-
-	z->used = uv;
-	z->alloc = MP_VALUE_DIGITS(value);
-	z->sign = (value < 0) ? MP_NEG : MP_ZPOS;
-	z->digits = vbuf;
-}
-
-/* }}} */
-
-/* {{{ s_cdig(da, db, len) */
-
-static int
-s_cdig(mp_digit *da, mp_digit *db, mp_size len)
-{
-	mp_digit   *dat = da + len - 1,
-			   *dbt = db + len - 1;
-
-	for ( /* */ ; len != 0; --len, --dat, --dbt)
-	{
-		if (*dat > *dbt)
-			return 1;
-		else if (*dat < *dbt)
-			return -1;
-	}
-
-	return 0;
-}
-
-/* }}} */
-
-/* {{{ s_vpack(v, t[]) */
-
-static int
-s_vpack(int v, mp_digit t[])
-{
-	unsigned int uv = (unsigned int) ((v < 0) ? -v : v);
-	int			ndig = 0;
-
-	if (uv == 0)
-		t[ndig++] = 0;
-	else
-	{
-		while (uv != 0)
-		{
-			t[ndig++] = (mp_digit) uv;
-			uv >>= MP_DIGIT_BIT / 2;
-			uv >>= MP_DIGIT_BIT / 2;
-		}
-	}
-
-	return ndig;
-}
-
-/* }}} */
-
-/* {{{ s_ucmp(a, b) */
-
-static int
-s_ucmp(mp_int a, mp_int b)
-{
-	mp_size		ua = MP_USED(a),
-				ub = MP_USED(b);
-
-	if (ua > ub)
-		return 1;
-	else if (ub > ua)
-		return -1;
-	else
-		return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
-}
-
-/* }}} */
-
-/* {{{ s_vcmp(a, v) */
-
-static int
-s_vcmp(mp_int a, int v)
-{
-	mp_digit	vdig[MP_VALUE_DIGITS(v)];
-	int			ndig = 0;
-	mp_size		ua = MP_USED(a);
-
-	ndig = s_vpack(v, vdig);
-
-	if (ua > ndig)
-		return 1;
-	else if (ua < ndig)
-		return -1;
-	else
-		return s_cdig(MP_DIGITS(a), vdig, ndig);
-}
-
-/* }}} */
-
-/* {{{ s_uadd(da, db, dc, size_a, size_b) */
-
-static mp_digit
-s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
-	   mp_size size_a, mp_size size_b)
-{
-	mp_size		pos;
-	mp_word		w = 0;
-
-	/* Insure that da is the longer of the two to simplify later code */
-	if (size_b > size_a)
-	{
-		SWAP(mp_digit *, da, db);
-		SWAP(mp_size, size_a, size_b);
-	}
-
-	/* Add corresponding digits until the shorter number runs out */
-	for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
-	{
-		w = w + (mp_word) *da + (mp_word) *db;
-		*dc = LOWER_HALF(w);
-		w = UPPER_HALF(w);
-	}
-
-	/* Propagate carries as far as necessary */
-	for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
-	{
-		w = w + *da;
-
-		*dc = LOWER_HALF(w);
-		w = UPPER_HALF(w);
-	}
-
-	/* Return carry out */
-	return (mp_digit) w;
-}
-
-/* }}} */
-
-/* {{{ s_usub(da, db, dc, size_a, size_b) */
-
-static void
-s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
-	   mp_size size_a, mp_size size_b)
-{
-	mp_size		pos;
-	mp_word		w = 0;
-
-	/* We assume that |a| >= |b| so this should definitely hold */
-	assert(size_a >= size_b);
-
-	/* Subtract corresponding digits and propagate borrow */
-	for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
-	{
-		w = ((mp_word) MP_DIGIT_MAX + 1 +		/* MP_RADIX */
-			 (mp_word) *da) - w - (mp_word) *db;
-
-		*dc = LOWER_HALF(w);
-		w = (UPPER_HALF(w) == 0);
-	}
-
-	/* Finish the subtraction for remaining upper digits of da */
-	for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
-	{
-		w = ((mp_word) MP_DIGIT_MAX + 1 +		/* MP_RADIX */
-			 (mp_word) *da) - w;
-
-		*dc = LOWER_HALF(w);
-		w = (UPPER_HALF(w) == 0);
-	}
-
-	/* If there is a borrow out at the end, it violates the precondition */
-	assert(w == 0);
-}
-
-/* }}} */
-
-/* {{{ s_kmul(da, db, dc, size_a, size_b) */
-
-static int
-s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
-	   mp_size size_a, mp_size size_b)
-{
-	mp_size		bot_size;
-
-	/* Make sure b is the smaller of the two input values */
-	if (size_b > size_a)
-	{
-		SWAP(mp_digit *, da, db);
-		SWAP(mp_size, size_a, size_b);
-	}
-
-	/*
-	 * Insure that the bottom is the larger half in an odd-length split; the
-	 * code below relies on this being true.
-	 */
-	bot_size = (size_a + 1) / 2;
-
-	/*
-	 * If the values are big enough to bother with recursion, use the
-	 * Karatsuba algorithm to compute the product; otherwise use the normal
-	 * multiplication algorithm
-	 */
-	if (multiply_threshold &&
-		size_a >= multiply_threshold &&
-		size_b > bot_size)
-	{
-
-		mp_digit   *t1,
-				   *t2,
-				   *t3,
-					carry;
-
-		mp_digit   *a_top = da + bot_size;
-		mp_digit   *b_top = db + bot_size;
-
-		mp_size		at_size = size_a - bot_size;
-		mp_size		bt_size = size_b - bot_size;
-		mp_size		buf_size = 2 * bot_size;
-
-		/*
-		 * Do a single allocation for all three temporary buffers needed; each
-		 * buffer must be big enough to hold the product of two bottom halves,
-		 * and one buffer needs space for the completed product; twice the
-		 * space is plenty.
-		 */
-		if ((t1 = s_alloc(4 * buf_size)) == NULL)
-			return 0;
-		t2 = t1 + buf_size;
-		t3 = t2 + buf_size;
-		ZERO(t1, 4 * buf_size);
-
-		/*
-		 * t1 and t2 are initially used as temporaries to compute the inner
-		 * product (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
-		 */
-		carry = s_uadd(da, a_top, t1, bot_size, at_size);		/* t1 = a1 + a0 */
-		t1[bot_size] = carry;
-
-		carry = s_uadd(db, b_top, t2, bot_size, bt_size);		/* t2 = b1 + b0 */
-		t2[bot_size] = carry;
-
-		(void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1);	/* t3 = t1 * t2 */
-
-		/*
-		 * Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so
-		 * that we're left with only the pieces we want:  t3 = a1b0 + a0b1
-		 */
-		ZERO(t1, bot_size + 1);
-		ZERO(t2, bot_size + 1);
-		(void) s_kmul(da, db, t1, bot_size, bot_size);	/* t1 = a0 * b0 */
-		(void) s_kmul(a_top, b_top, t2, at_size, bt_size);		/* t2 = a1 * b1 */
-
-		/* Subtract out t1 and t2 to get the inner product */
-		s_usub(t3, t1, t3, buf_size + 2, buf_size);
-		s_usub(t3, t2, t3, buf_size + 2, buf_size);
-
-		/* Assemble the output value */
-		COPY(t1, dc, buf_size);
-		(void) s_uadd(t3, dc + bot_size, dc + bot_size,
-					  buf_size + 1, buf_size + 1);
-
-		(void) s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size,
-					  buf_size, buf_size);
-
-		s_free(t1);				/* note t2 and t3 are just internal pointers
-								 * to t1 */
-	}
-	else
-	{
-		s_umul(da, db, dc, size_a, size_b);
-	}
-
-	return 1;
-}
-
-/* }}} */
-
-/* {{{ s_umul(da, db, dc, size_a, size_b) */
-
-static void
-s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
-	   mp_size size_a, mp_size size_b)
-{
-	mp_size		a,
-				b;
-	mp_word		w;
-
-	for (a = 0; a < size_a; ++a, ++dc, ++da)
-	{
-		mp_digit   *dct = dc;
-		mp_digit   *dbt = db;
-
-		if (*da == 0)
-			continue;
-
-		w = 0;
-		for (b = 0; b < size_b; ++b, ++dbt, ++dct)
-		{
-			w = (mp_word) *da * (mp_word) *dbt + w + (mp_word) *dct;
-
-			*dct = LOWER_HALF(w);
-			w = UPPER_HALF(w);
-		}
-
-		*dct = (mp_digit) w;
-	}
-}
-
-/* }}} */
-
-/* {{{ s_ksqr(da, dc, size_a) */
-
-static int
-s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
-{
-	if (multiply_threshold && size_a > multiply_threshold)
-	{
-		mp_size		bot_size = (size_a + 1) / 2;
-		mp_digit   *a_top = da + bot_size;
-		mp_digit   *t1,
-				   *t2,
-				   *t3;
-		mp_size		at_size = size_a - bot_size;
-		mp_size		buf_size = 2 * bot_size;
-
-		if ((t1 = s_alloc(4 * buf_size)) == NULL)
-			return 0;
-		t2 = t1 + buf_size;
-		t3 = t2 + buf_size;
-		ZERO(t1, 4 * buf_size);
-
-		(void) s_ksqr(da, t1, bot_size);		/* t1 = a0 ^ 2 */
-		(void) s_ksqr(a_top, t2, at_size);		/* t2 = a1 ^ 2 */
-
-		(void) s_kmul(da, a_top, t3, bot_size, at_size);		/* t3 = a0 * a1 */
-
-		/* Quick multiply t3 by 2, shifting left (can't overflow) */
-		{
-			int			i,
-						top = bot_size + at_size;
-			mp_word		w,
-						save = 0;
-
-			for (i = 0; i < top; ++i)
-			{
-				w = t3[i];
-				w = (w << 1) | save;
-				t3[i] = LOWER_HALF(w);
-				save = UPPER_HALF(w);
-			}
-			t3[i] = LOWER_HALF(save);
-		}
-
-		/* Assemble the output value */
-		COPY(t1, dc, 2 * bot_size);
-		(void) s_uadd(t3, dc + bot_size, dc + bot_size,
-					  buf_size + 1, buf_size + 1);
-
-		(void) s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size,
-					  buf_size, buf_size);
-
-		px_free(t1);			/* note that t2 and t2 are internal pointers
-								 * only */
-
-	}
-	else
-	{
-		s_usqr(da, dc, size_a);
-	}
-
-	return 1;
-}
-
-/* }}} */
-
-/* {{{ s_usqr(da, dc, size_a) */
-
-static void
-s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
-{
-	mp_size		i,
-				j;
-	mp_word		w;
-
-	for (i = 0; i < size_a; ++i, dc += 2, ++da)
-	{
-		mp_digit   *dct = dc,
-				   *dat = da;
-
-		if (*da == 0)
-			continue;
-
-		/* Take care of the first digit, no rollover */
-		w = (mp_word) *dat * (mp_word) *dat + (mp_word) *dct;
-		*dct = LOWER_HALF(w);
-		w = UPPER_HALF(w);
-		++dat;
-		++dct;
-
-		for (j = i + 1; j < size_a; ++j, ++dat, ++dct)
-		{
-			mp_word		t = (mp_word) *da * (mp_word) *dat;
-			mp_word		u = w + (mp_word) *dct,
-						ov = 0;
-
-			/* Check if doubling t will overflow a word */
-			if (HIGH_BIT_SET(t))
-				ov = 1;
-
-			w = t + t;
-
-			/* Check if adding u to w will overflow a word */
-			if (ADD_WILL_OVERFLOW(w, u))
-				ov = 1;
-
-			w += u;
-
-			*dct = LOWER_HALF(w);
-			w = UPPER_HALF(w);
-			if (ov)
-			{
-				w += MP_DIGIT_MAX;		/* MP_RADIX */
-				++w;
-			}
-		}
-
-		w = w + *dct;
-		*dct = (mp_digit) w;
-		while ((w = UPPER_HALF(w)) != 0)
-		{
-			++dct;
-			w = w + *dct;
-			*dct = LOWER_HALF(w);
-		}
-
-		assert(w == 0);
-	}
-}
-
-/* }}} */
-
-/* {{{ s_dadd(a, b) */
-
-static void
-s_dadd(mp_int a, mp_digit b)
-{
-	mp_word		w = 0;
-	mp_digit   *da = MP_DIGITS(a);
-	mp_size		ua = MP_USED(a);
-
-	w = (mp_word) *da + b;
-	*da++ = LOWER_HALF(w);
-	w = UPPER_HALF(w);
-
-	for (ua -= 1; ua > 0; --ua, ++da)
-	{
-		w = (mp_word) *da + w;
-
-		*da = LOWER_HALF(w);
-		w = UPPER_HALF(w);
-	}
-
-	if (w)
-	{
-		*da = (mp_digit) w;
-		MP_USED(a) += 1;
-	}
-}
-
-/* }}} */
-
-/* {{{ s_dmul(a, b) */
-
-static void
-s_dmul(mp_int a, mp_digit b)
-{
-	mp_word		w = 0;
-	mp_digit   *da = MP_DIGITS(a);
-	mp_size		ua = MP_USED(a);
-
-	while (ua > 0)
-	{
-		w = (mp_word) *da * b + w;
-		*da++ = LOWER_HALF(w);
-		w = UPPER_HALF(w);
-		--ua;
-	}
-
-	if (w)
-	{
-		*da = (mp_digit) w;
-		MP_USED(a) += 1;
-	}
-}
-
-/* }}} */
-
-/* {{{ s_dbmul(da, b, dc, size_a) */
-
-static void
-s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
-{
-	mp_word		w = 0;
-
-	while (size_a > 0)
-	{
-		w = (mp_word) *da++ * (mp_word) b + w;
-
-		*dc++ = LOWER_HALF(w);
-		w = UPPER_HALF(w);
-		--size_a;
-	}
-
-	if (w)
-		*dc = LOWER_HALF(w);
-}
-
-/* }}} */
-
-/* {{{ s_ddiv(da, d, dc, size_a) */
-
-static mp_digit
-s_ddiv(mp_int a, mp_digit b)
-{
-	mp_word		w = 0,
-				qdigit;
-	mp_size		ua = MP_USED(a);
-	mp_digit   *da = MP_DIGITS(a) + ua - 1;
-
-	for ( /* */ ; ua > 0; --ua, --da)
-	{
-		w = (w << MP_DIGIT_BIT) | *da;
-
-		if (w >= b)
-		{
-			qdigit = w / b;
-			w = w % b;
-		}
-		else
-		{
-			qdigit = 0;
-		}
-
-		*da = (mp_digit) qdigit;
-	}
-
-	CLAMP(a);
-	return (mp_digit) w;
-}
-
-/* }}} */
-
-/* {{{ s_qdiv(z, p2) */
-
-static void
-s_qdiv(mp_int z, mp_size p2)
-{
-	mp_size		ndig = p2 / MP_DIGIT_BIT,
-				nbits = p2 % MP_DIGIT_BIT;
-	mp_size		uz = MP_USED(z);
-
-	if (ndig)
-	{
-		mp_size		mark;
-		mp_digit   *to,
-				   *from;
-
-		if (ndig >= uz)
-		{
-			mp_int_zero(z);
-			return;
-		}
-
-		to = MP_DIGITS(z);
-		from = to + ndig;
-
-		for (mark = ndig; mark < uz; ++mark)
-			*to++ = *from++;
-
-		MP_USED(z) = uz - ndig;
-	}
-
-	if (nbits)
-	{
-		mp_digit	d = 0,
-				   *dz,
-					save;
-		mp_size		up = MP_DIGIT_BIT - nbits;
-
-		uz = MP_USED(z);
-		dz = MP_DIGITS(z) + uz - 1;
-
-		for ( /* */ ; uz > 0; --uz, --dz)
-		{
-			save = *dz;
-
-			*dz = (*dz >> nbits) | (d << up);
-			d = save;
-		}
-
-		CLAMP(z);
-	}
-
-	if (MP_USED(z) == 1 && z->digits[0] == 0)
-		MP_SIGN(z) = MP_ZPOS;
-}
-
-/* }}} */
-
-/* {{{ s_qmod(z, p2) */
-
-static void
-s_qmod(mp_int z, mp_size p2)
-{
-	mp_size		start = p2 / MP_DIGIT_BIT + 1,
-				rest = p2 % MP_DIGIT_BIT;
-	mp_size		uz = MP_USED(z);
-	mp_digit	mask = (1 << rest) - 1;
-
-	if (start <= uz)
-	{
-		MP_USED(z) = start;
-		z->digits[start - 1] &= mask;
-		CLAMP(z);
-	}
-}
-
-/* }}} */
-
-/* {{{ s_qmul(z, p2) */
-
-static int
-s_qmul(mp_int z, mp_size p2)
-{
-	mp_size		uz,
-				need,
-				rest,
-				extra,
-				i;
-	mp_digit   *from,
-			   *to,
-				d;
-
-	if (p2 == 0)
-		return 1;
-
-	uz = MP_USED(z);
-	need = p2 / MP_DIGIT_BIT;
-	rest = p2 % MP_DIGIT_BIT;
-
-	/*
-	 * Figure out if we need an extra digit at the top end; this occurs if the
-	 * topmost `rest' bits of the high-order digit of z are not zero, meaning
-	 * they will be shifted off the end if not preserved
-	 */
-	extra = 0;
-	if (rest != 0)
-	{
-		mp_digit   *dz = MP_DIGITS(z) + uz - 1;
-
-		if ((*dz >> (MP_DIGIT_BIT - rest)) != 0)
-			extra = 1;
-	}
-
-	if (!s_pad(z, uz + need + extra))
-		return 0;
-
-	/*
-	 * If we need to shift by whole digits, do that in one pass, then to back
-	 * and shift by partial digits.
-	 */
-	if (need > 0)
-	{
-		from = MP_DIGITS(z) + uz - 1;
-		to = from + need;
-
-		for (i = 0; i < uz; ++i)
-			*to-- = *from--;
-
-		ZERO(MP_DIGITS(z), need);
-		uz += need;
-	}
-
-	if (rest)
-	{
-		d = 0;
-		for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from)
-		{
-			mp_digit	save = *from;
-
-			*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
-			d = save;
-		}
-
-		d >>= (MP_DIGIT_BIT - rest);
-		if (d != 0)
-		{
-			*from = d;
-			uz += extra;
-		}
-	}
-
-	MP_USED(z) = uz;
-	CLAMP(z);
-
-	return 1;
-}
-
-/* }}} */
-
-/* {{{ s_qsub(z, p2) */
-
-/* Subtract |z| from 2^p2, assuming 2^p2 > |z|, and set z to be positive */
-static int
-s_qsub(mp_int z, mp_size p2)
-{
-	mp_digit	hi = (1 << (p2 % MP_DIGIT_BIT)),
-			   *zp;
-	mp_size		tdig = (p2 / MP_DIGIT_BIT),
-				pos;
-	mp_word		w = 0;
-
-	if (!s_pad(z, tdig + 1))
-		return 0;
-
-	for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp)
-	{
-		w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word) *zp;
-
-		*zp = LOWER_HALF(w);
-		w = UPPER_HALF(w) ? 0 : 1;
-	}
-
-	w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word) *zp;
-	*zp = LOWER_HALF(w);
-
-	assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
-
-	MP_SIGN(z) = MP_ZPOS;
-	CLAMP(z);
-
-	return 1;
-}
-
-/* }}} */
-
-/* {{{ s_dp2k(z) */
-
-static int
-s_dp2k(mp_int z)
-{
-	int			k = 0;
-	mp_digit   *dp = MP_DIGITS(z),
-				d;
-
-	if (MP_USED(z) == 1 && *dp == 0)
-		return 1;
-
-	while (*dp == 0)
-	{
-		k += MP_DIGIT_BIT;
-		++dp;
-	}
-
-	d = *dp;
-	while ((d & 1) == 0)
-	{
-		d >>= 1;
-		++k;
-	}
-
-	return k;
-}
-
-/* }}} */
-
-/* {{{ s_isp2(z) */
-
-static int
-s_isp2(mp_int z)
-{
-	mp_size		uz = MP_USED(z),
-				k = 0;
-	mp_digit   *dz = MP_DIGITS(z),
-				d;
-
-	while (uz > 1)
-	{
-		if (*dz++ != 0)
-			return -1;
-		k += MP_DIGIT_BIT;
-		--uz;
-	}
-
-	d = *dz;
-	while (d > 1)
-	{
-		if (d & 1)
-			return -1;
-		++k;
-		d >>= 1;
-	}
-
-	return (int) k;
-}
-
-/* }}} */
-
-/* {{{ s_2expt(z, k) */
-
-static int
-s_2expt(mp_int z, int k)
-{
-	mp_size		ndig,
-				rest;
-	mp_digit   *dz;
-
-	ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
-	rest = k % MP_DIGIT_BIT;
-
-	if (!s_pad(z, ndig))
-		return 0;
-
-	dz = MP_DIGITS(z);
-	ZERO(dz, ndig);
-	*(dz + ndig - 1) = (1 << rest);
-	MP_USED(z) = ndig;
-
-	return 1;
-}
-
-/* }}} */
-
-/* {{{ s_norm(a, b) */
-
-static int
-s_norm(mp_int a, mp_int b)
-{
-	mp_digit	d = b->digits[MP_USED(b) - 1];
-	int			k = 0;
-
-	while (d < (mp_digit) ((mp_digit) 1 << (MP_DIGIT_BIT - 1)))
-	{							/* d < (MP_RADIX / 2) */
-		d <<= 1;
-		++k;
-	}
-
-	/* These multiplications can't fail */
-	if (k != 0)
-	{
-		(void) s_qmul(a, (mp_size) k);
-		(void) s_qmul(b, (mp_size) k);
-	}
-
-	return k;
-}
-
-/* }}} */
-
-/* {{{ s_brmu(z, m) */
-
-static mp_result
-s_brmu(mp_int z, mp_int m)
-{
-	mp_size		um = MP_USED(m) * 2;
-
-	if (!s_pad(z, um))
-		return MP_MEMORY;
-
-	s_2expt(z, MP_DIGIT_BIT * um);
-	return mp_int_div(z, m, z, NULL);
-}
-
-/* }}} */
-
-/* {{{ s_reduce(x, m, mu, q1, q2) */
-
-static int
-s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
-{
-	mp_size		um = MP_USED(m),
-				umb_p1,
-				umb_m1;
-
-	umb_p1 = (um + 1) * MP_DIGIT_BIT;
-	umb_m1 = (um - 1) * MP_DIGIT_BIT;
-
-	if (mp_int_copy(x, q1) != MP_OK)
-		return 0;
-
-	/* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
-	s_qdiv(q1, umb_m1);
-	UMUL(q1, mu, q2);
-	s_qdiv(q2, umb_p1);
-
-	/* Set x = x mod b^(k+1) */
-	s_qmod(x, umb_p1);
-
-	/*
-	 * Now, q is a guess for the quotient a / m. Compute x - q * m mod
-	 * b^(k+1), replacing x.  This may be off by a factor of 2m, but no more
-	 * than that.
-	 */
-	UMUL(q2, m, q1);
-	s_qmod(q1, umb_p1);
-	(void) mp_int_sub(x, q1, x);	/* can't fail */
-
-	/*
-	 * The result may be < 0; if it is, add b^(k+1) to pin it in the proper
-	 * range.
-	 */
-	if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
-		return 0;
-
-	/*
-	 * If x > m, we need to back it off until it is in range. This will be
-	 * required at most twice.
-	 */
-	if (mp_int_compare(x, m) >= 0)
-		(void) mp_int_sub(x, m, x);
-	if (mp_int_compare(x, m) >= 0)
-		(void) mp_int_sub(x, m, x);
-
-	/* At this point, x has been properly reduced. */
-	return 1;
-}
-
-/* }}} */
-
-/* {{{ s_embar(a, b, m, mu, c) */
-
-/* Perform modular exponentiation using Barrett's method, where mu is
-   the reduction constant for m.  Assumes a < m, b > 0. */
-static mp_result
-s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
-{
-	mp_digit   *db,
-			   *dbt,
-				umu,
-				d;
-	mpz_t		temp[3];
-	mp_result	res;
-	int			last = 0;
-
-	umu = MP_USED(mu);
-	db = MP_DIGITS(b);
-	dbt = db + MP_USED(b) - 1;
-
-	while (last < 3)
-		SETUP(mp_int_init_size(TEMP(last), 2 * umu), last);
-
-	(void) mp_int_set_value(c, 1);
-
-	/* Take care of low-order digits */
-	while (db < dbt)
-	{
-		int			i;
-
-		for (d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1)
-		{
-			if (d & 1)
-			{
-				/* The use of a second temporary avoids allocation */
-				UMUL(c, a, TEMP(0));
-				if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
-				{
-					res = MP_MEMORY;
-					goto CLEANUP;
-				}
-				mp_int_copy(TEMP(0), c);
-			}
-
-
-			USQR(a, TEMP(0));
-			assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
-			if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
-			{
-				res = MP_MEMORY;
-				goto CLEANUP;
-			}
-			assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
-			mp_int_copy(TEMP(0), a);
-
-
-		}
-
-		++db;
-	}
-
-	/* Take care of highest-order digit */
-	d = *dbt;
-	for (;;)
-	{
-		if (d & 1)
-		{
-			UMUL(c, a, TEMP(0));
-			if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
-			{
-				res = MP_MEMORY;
-				goto CLEANUP;
-			}
-			mp_int_copy(TEMP(0), c);
-		}
-
-		d >>= 1;
-		if (!d)
-			break;
-
-		USQR(a, TEMP(0));
-		if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
-		{
-			res = MP_MEMORY;
-			goto CLEANUP;
-		}
-		(void) mp_int_copy(TEMP(0), a);
-	}
-
-CLEANUP:
-	while (--last >= 0)
-		mp_int_clear(TEMP(last));
-
-	return res;
-}
-
-/* }}} */
-
-/* {{{ s_udiv(a, b) */
-
-/* Precondition:  a >= b and b > 0
-   Postcondition: a' = a / b, b' = a % b
- */
-static mp_result
-s_udiv(mp_int a, mp_int b)
-{
-	mpz_t		q,
-				r,
-				t;
-	mp_size		ua,
-				ub,
-				qpos = 0;
-	mp_digit   *da,
-				btop;
-	mp_result	res = MP_OK;
-	int			k,
-				skip = 0;
-
-	/* Force signs to positive */
-	MP_SIGN(a) = MP_ZPOS;
-	MP_SIGN(b) = MP_ZPOS;
-
-	/* Normalize, per Knuth */
-	k = s_norm(a, b);
-
-	ua = MP_USED(a);
-	ub = MP_USED(b);
-	btop = b->digits[ub - 1];
-	if ((res = mp_int_init_size(&q, ua)) != MP_OK)
-		return res;
-	if ((res = mp_int_init_size(&t, ua + 1)) != MP_OK)
-		goto CLEANUP;
-
-	da = MP_DIGITS(a);
-	r.digits = da + ua - 1;		/* The contents of r are shared with a */
-	r.used = 1;
-	r.sign = MP_ZPOS;
-	r.alloc = MP_ALLOC(a);
-	ZERO(t.digits, t.alloc);
-
-	/* Solve for quotient digits, store in q.digits in reverse order */
-	while (r.digits >= da)
-	{
-		assert(qpos <= q.alloc);
-
-		if (s_ucmp(b, &r) > 0)
-		{
-			r.digits -= 1;
-			r.used += 1;
-
-			if (++skip > 1)
-				q.digits[qpos++] = 0;
-
-			CLAMP(&r);
-		}
-		else
-		{
-			mp_word		pfx = r.digits[r.used - 1];
-			mp_word		qdigit;
-
-			if (r.used > 1 && (pfx < btop || r.digits[r.used - 2] == 0))
-			{
-				pfx <<= MP_DIGIT_BIT / 2;
-				pfx <<= MP_DIGIT_BIT / 2;
-				pfx |= r.digits[r.used - 2];
-			}
-
-			qdigit = pfx / btop;
-			if (qdigit > MP_DIGIT_MAX)
-				qdigit = 1;
-
-			s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub);
-			t.used = ub + 1;
-			CLAMP(&t);
-			while (s_ucmp(&t, &r) > 0)
-			{
-				--qdigit;
-				(void) mp_int_sub(&t, b, &t);	/* cannot fail */
-			}
-
-			s_usub(r.digits, t.digits, r.digits, r.used, t.used);
-			CLAMP(&r);
-
-			q.digits[qpos++] = (mp_digit) qdigit;
-			ZERO(t.digits, t.used);
-			skip = 0;
-		}
-	}
-
-	/* Put quotient digits in the correct order, and discard extra zeroes */
-	q.used = qpos;
-	REV(mp_digit, q.digits, qpos);
-	CLAMP(&q);
-
-	/* Denormalize the remainder */
-	CLAMP(a);
-	if (k != 0)
-		s_qdiv(a, k);
-
-	mp_int_copy(a, b);			/* ok:	0 <= r < b */
-	mp_int_copy(&q, a);			/* ok:	q <= a	   */
-
-	mp_int_clear(&t);
-CLEANUP:
-	mp_int_clear(&q);
-	return res;
-}
-
-/* }}} */
-
-/* {{{ s_outlen(z, r) */
-
-/* Precondition:  2 <= r < 64 */
-static int
-s_outlen(mp_int z, mp_size r)
-{
-	mp_result	bits;
-	double		raw;
-
-	bits = mp_int_count_bits(z);
-	raw = (double) bits *s_log2[r];
-
-	return (int) (raw + 0.999999);
-}
-
-/* }}} */
-
-/* {{{ s_inlen(len, r) */
-
-static mp_size
-s_inlen(int len, mp_size r)
-{
-	double		raw = (double) len / s_log2[r];
-	mp_size		bits = (mp_size) (raw + 0.5);
-
-	return (mp_size) ((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT);
-}
-
-/* }}} */
-
-/* {{{ s_ch2val(c, r) */
-
-static int
-s_ch2val(char c, int r)
-{
-	int			out;
-
-	if (isdigit((unsigned char) c))
-		out = c - '0';
-	else if (r > 10 && isalpha((unsigned char) c))
-		out = toupper((unsigned char) c) - 'A' + 10;
-	else
-		return -1;
-
-	return (out >= r) ? -1 : out;
-}
-
-/* }}} */
-
-/* {{{ s_val2ch(v, caps) */
-
-static char
-s_val2ch(int v, int caps)
-{
-	assert(v >= 0);
-
-	if (v < 10)
-		return v + '0';
-	else
-	{
-		char		out = (v - 10) + 'a';
-
-		if (caps)
-			return toupper((unsigned char) out);
-		else
-			return out;
-	}
-}
-
-/* }}} */
-
-/* {{{ s_2comp(buf, len) */
-
-static void
-s_2comp(unsigned char *buf, int len)
-{
-	int			i;
-	unsigned short s = 1;
-
-	for (i = len - 1; i >= 0; --i)
-	{
-		unsigned char c = ~buf[i];
-
-		s = c + s;
-		c = s & UCHAR_MAX;
-		s >>= CHAR_BIT;
-
-		buf[i] = c;
-	}
-
-	/* last carry out is ignored */
-}
-
-/* }}} */
-
-/* {{{ s_tobin(z, buf, *limpos) */
-
-static mp_result
-s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
-{
-	mp_size		uz;
-	mp_digit   *dz;
-	int			pos = 0,
-				limit = *limpos;
-
-	uz = MP_USED(z);
-	dz = MP_DIGITS(z);
-	while (uz > 0 && pos < limit)
-	{
-		mp_digit	d = *dz++;
-		int			i;
-
-		for (i = sizeof(mp_digit); i > 0 && pos < limit; --i)
-		{
-			buf[pos++] = (unsigned char) d;
-			d >>= CHAR_BIT;
-
-			/* Don't write leading zeroes */
-			if (d == 0 && uz == 1)
-				i = 0;			/* exit loop without signaling truncation */
-		}
-
-		/* Detect truncation (loop exited with pos >= limit) */
-		if (i > 0)
-			break;
-
-		--uz;
-	}
-
-	if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1)))
-	{
-		if (pos < limit)
-			buf[pos++] = 0;
-		else
-			uz = 1;
-	}
-
-	/* Digits are in reverse order, fix that */
-	REV(unsigned char, buf, pos);
-
-	/* Return the number of bytes actually written */
-	*limpos = pos;
-
-	return (uz == 0) ? MP_OK : MP_TRUNC;
-}
-
-/* }}} */
-
-/* {{{ s_print(tag, z) */
-
-#if 0
-void
-s_print(char *tag, mp_int z)
-{
-	int			i;
-
-	fprintf(stderr, "%s: %c ", tag,
-			(MP_SIGN(z) == MP_NEG) ? '-' : '+');
-
-	for (i = MP_USED(z) - 1; i >= 0; --i)
-		fprintf(stderr, "%0*X", (int) (MP_DIGIT_BIT / 4), z->digits[i]);
-
-	fputc('\n', stderr);
-
-}
-
-void
-s_print_buf(char *tag, mp_digit *buf, mp_size num)
-{
-	int			i;
-
-	fprintf(stderr, "%s: ", tag);
-
-	for (i = num - 1; i >= 0; --i)
-		fprintf(stderr, "%0*X", (int) (MP_DIGIT_BIT / 4), buf[i]);
-
-	fputc('\n', stderr);
-}
-#endif
-
-/* }}} */
-
-/* HERE THERE BE DRAGONS */

http://git-wip-us.apache.org/repos/asf/incubator-hawq/blob/101adfab/contrib/pgcrypto/imath.h
----------------------------------------------------------------------
diff --git a/contrib/pgcrypto/imath.h b/contrib/pgcrypto/imath.h
deleted file mode 100644
index 09d0e3e..0000000
--- a/contrib/pgcrypto/imath.h
+++ /dev/null
@@ -1,217 +0,0 @@
-/*
-  Name:		imath.h
-  Purpose:	Arbitrary precision integer arithmetic routines.
-  Author:	M. J. Fromberger <http://www.dartmouth.edu/~sting/>
-  Info:		Id: imath.h 21 2006-04-02 18:58:36Z sting
-
-  Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
-
-  Permission is hereby granted, free of charge, to any person
-  obtaining a copy of this software and associated documentation files
-  (the "Software"), to deal in the Software without restriction,
-  including without limitation the rights to use, copy, modify, merge,
-  publish, distribute, sublicense, and/or sell copies of the Software,
-  and to permit persons to whom the Software is furnished to do so,
-  subject to the following conditions:
-
-  The above copyright notice and this permission notice shall be
-  included in all copies or substantial portions of the Software.
-
-  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-  NONINFRINGEMENT.	IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-  ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-  CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-  SOFTWARE.
- */
-/* $PostgreSQL: pgsql/contrib/pgcrypto/imath.h,v 1.7 2009/06/11 14:48:52 momjian Exp $ */
-
-#ifndef IMATH_H_
-#define IMATH_H_
-
-/* use always 32bit digits - should some arch use 16bit digits? */
-#define USE_LONG_LONG
-
-#include <limits.h>
-
-typedef unsigned char mp_sign;
-typedef unsigned int mp_size;
-typedef int mp_result;
-
-#ifdef USE_LONG_LONG
-typedef uint32 mp_digit;
-typedef uint64 mp_word;
-
-#define MP_DIGIT_MAX	   0xFFFFFFFFULL
-#define MP_WORD_MAX		   0xFFFFFFFFFFFFFFFFULL
-#else
-typedef uint16 mp_digit;
-typedef uint32 mp_word;
-
-#define MP_DIGIT_MAX	   0xFFFFUL
-#define MP_WORD_MAX		   0xFFFFFFFFUL
-#endif
-
-typedef struct mpz
-{
-	mp_digit   *digits;
-	mp_size		alloc;
-	mp_size		used;
-	mp_sign		sign;
-} mpz_t    ,
-		   *mp_int;
-
-#define MP_DIGITS(Z) ((Z)->digits)
-#define MP_ALLOC(Z)  ((Z)->alloc)
-#define MP_USED(Z)	 ((Z)->used)
-#define MP_SIGN(Z)	 ((Z)->sign)
-
-extern const mp_result MP_OK;
-extern const mp_result MP_FALSE;
-extern const mp_result MP_TRUE;
-extern const mp_result MP_MEMORY;
-extern const mp_result MP_RANGE;
-extern const mp_result MP_UNDEF;
-extern const mp_result MP_TRUNC;
-extern const mp_result MP_BADARG;
-
-#define MP_DIGIT_BIT	(sizeof(mp_digit) * CHAR_BIT)
-#define MP_WORD_BIT		(sizeof(mp_word) * CHAR_BIT)
-
-#define MP_MIN_RADIX	2
-#define MP_MAX_RADIX	36
-
-extern const mp_sign MP_NEG;
-extern const mp_sign MP_ZPOS;
-
-#define mp_int_is_odd(Z)  ((Z)->digits[0] & 1)
-#define mp_int_is_even(Z) !((Z)->digits[0] & 1)
-
-mp_size		mp_get_default_precision(void);
-void		mp_set_default_precision(mp_size s);
-mp_size		mp_get_multiply_threshold(void);
-void		mp_set_multiply_threshold(mp_size s);
-
-mp_result	mp_int_init(mp_int z);
-mp_int		mp_int_alloc(void);
-mp_result	mp_int_init_size(mp_int z, mp_size prec);
-mp_result	mp_int_init_copy(mp_int z, mp_int old);
-mp_result	mp_int_init_value(mp_int z, int value);
-mp_result	mp_int_set_value(mp_int z, int value);
-void		mp_int_clear(mp_int z);
-void		mp_int_free(mp_int z);
-
-mp_result	mp_int_copy(mp_int a, mp_int c);	/* c = a	 */
-void		mp_int_swap(mp_int a, mp_int c);	/* swap a, c */
-void		mp_int_zero(mp_int z);		/* z = 0	 */
-mp_result	mp_int_abs(mp_int a, mp_int c);		/* c = |a|	 */
-mp_result	mp_int_neg(mp_int a, mp_int c);		/* c = -a	 */
-mp_result	mp_int_add(mp_int a, mp_int b, mp_int c);	/* c = a + b */
-mp_result	mp_int_add_value(mp_int a, int value, mp_int c);
-mp_result	mp_int_sub(mp_int a, mp_int b, mp_int c);	/* c = a - b */
-mp_result	mp_int_sub_value(mp_int a, int value, mp_int c);
-mp_result	mp_int_mul(mp_int a, mp_int b, mp_int c);	/* c = a * b */
-mp_result	mp_int_mul_value(mp_int a, int value, mp_int c);
-mp_result	mp_int_mul_pow2(mp_int a, int p2, mp_int c);
-mp_result	mp_int_sqr(mp_int a, mp_int c);		/* c = a * a */
-
-mp_result
-mp_int_div(mp_int a, mp_int b,	/* q = a / b */
-		   mp_int q, mp_int r); /* r = a % b */
-mp_result
-mp_int_div_value(mp_int a, int value,	/* q = a / value */
-				 mp_int q, int *r);		/* r = a % value */
-mp_result
-mp_int_div_pow2(mp_int a, int p2,		/* q = a / 2^p2  */
-				mp_int q, mp_int r);	/* r = q % 2^p2  */
-mp_result	mp_int_mod(mp_int a, mp_int m, mp_int c);	/* c = a % m */
-
-#define   mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
-mp_result	mp_int_expt(mp_int a, int b, mp_int c);		/* c = a^b	 */
-mp_result	mp_int_expt_value(int a, int b, mp_int c);	/* c = a^b	 */
-
-int			mp_int_compare(mp_int a, mp_int b); /* a <=> b	   */
-int			mp_int_compare_unsigned(mp_int a, mp_int b);		/* |a| <=> |b| */
-int			mp_int_compare_zero(mp_int z);		/* a <=> 0	   */
-int			mp_int_compare_value(mp_int z, int value);	/* a <=> v	   */
-
-/* Returns true if v|a, false otherwise (including errors) */
-int			mp_int_divisible_value(mp_int a, int v);
-
-/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
-int			mp_int_is_pow2(mp_int z);
-
-mp_result
-mp_int_exptmod(mp_int a, mp_int b, mp_int m,
-			   mp_int c);		/* c = a^b (mod m) */
-mp_result
-mp_int_exptmod_evalue(mp_int a, int value,
-					  mp_int m, mp_int c);		/* c = a^v (mod m) */
-mp_result
-mp_int_exptmod_bvalue(int value, mp_int b,
-					  mp_int m, mp_int c);		/* c = v^b (mod m) */
-mp_result
-mp_int_exptmod_known(mp_int a, mp_int b,
-					 mp_int m, mp_int mu,
-					 mp_int c); /* c = a^b (mod m) */
-mp_result	mp_int_redux_const(mp_int m, mp_int c);
-
-mp_result	mp_int_invmod(mp_int a, mp_int m, mp_int c);		/* c = 1/a (mod m) */
-
-mp_result	mp_int_gcd(mp_int a, mp_int b, mp_int c);	/* c = gcd(a, b)   */
-
-mp_result
-mp_int_egcd(mp_int a, mp_int b, mp_int c,		/* c = gcd(a, b)   */
-			mp_int x, mp_int y);	/* c = ax + by	   */
-
-mp_result	mp_int_sqrt(mp_int a, mp_int c);	/* c = floor(sqrt(q)) */
-
-/* Convert to an int, if representable (returns MP_RANGE if not). */
-mp_result	mp_int_to_int(mp_int z, int *out);
-
-/* Convert to nul-terminated string with the specified radix, writing at
-   most limit characters including the nul terminator  */
-mp_result mp_int_to_string(mp_int z, mp_size radix,
-				 char *str, int limit);
-
-/* Return the number of characters required to represent
-   z in the given radix.  May over-estimate. */
-mp_result	mp_int_string_len(mp_int z, mp_size radix);
-
-/* Read zero-terminated string into z */
-mp_result	mp_int_read_string(mp_int z, mp_size radix, const char *str);
-mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
-					char **end);
-
-/* Return the number of significant bits in z */
-mp_result	mp_int_count_bits(mp_int z);
-
-/* Convert z to two's complement binary, writing at most limit bytes */
-mp_result	mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
-
-/* Read a two's complement binary value into z from the given buffer */
-mp_result	mp_int_read_binary(mp_int z, unsigned char *buf, int len);
-
-/* Return the number of bytes required to represent z in binary. */
-mp_result	mp_int_binary_len(mp_int z);
-
-/* Convert z to unsigned binary, writing at most limit bytes */
-mp_result	mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
-
-/* Read an unsigned binary value into z from the given buffer */
-mp_result	mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
-
-/* Return the number of bytes required to represent z as unsigned output */
-mp_result	mp_int_unsigned_len(mp_int z);
-
-/* Return a statically allocated string describing error code res */
-const char *mp_error_string(mp_result res);
-
-#if 0
-void		s_print(char *tag, mp_int z);
-void		s_print_buf(char *tag, mp_digit *buf, mp_size num);
-#endif
-
-#endif   /* end IMATH_H_ */

http://git-wip-us.apache.org/repos/asf/incubator-hawq/blob/101adfab/contrib/pgcrypto/internal-sha2.c
----------------------------------------------------------------------
diff --git a/contrib/pgcrypto/internal-sha2.c b/contrib/pgcrypto/internal-sha2.c
deleted file mode 100644
index 1e36a36..0000000
--- a/contrib/pgcrypto/internal-sha2.c
+++ /dev/null
@@ -1,316 +0,0 @@
-/*
- * internal.c
- *		Wrapper for builtin functions
- *
- * Copyright (c) 2001 Marko Kreen
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *	  notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *	  notice, this list of conditions and the following disclaimer in the
- *	  documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED.	IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * $PostgreSQL: pgsql/contrib/pgcrypto/internal-sha2.c,v 1.3 2009/06/11 14:48:52 momjian Exp $
- */
-
-#include "postgres.h"
-
-#include <time.h>
-
-#include "px.h"
-#include "sha2.h"
-
-void		init_sha224(PX_MD *h);
-void		init_sha256(PX_MD *h);
-void		init_sha384(PX_MD *h);
-void		init_sha512(PX_MD *h);
-
-/* SHA224 */
-
-static unsigned
-int_sha224_len(PX_MD *h)
-{
-	return SHA224_DIGEST_LENGTH;
-}
-
-static unsigned
-int_sha224_block_len(PX_MD *h)
-{
-	return SHA224_BLOCK_LENGTH;
-}
-
-static void
-int_sha224_update(PX_MD *h, const uint8 *data, unsigned dlen)
-{
-	SHA224_CTX *ctx = (SHA224_CTX *) h->p.ptr;
-
-	SHA224_Update(ctx, data, dlen);
-}
-
-static void
-int_sha224_reset(PX_MD *h)
-{
-	SHA224_CTX *ctx = (SHA224_CTX *) h->p.ptr;
-
-	SHA224_Init(ctx);
-}
-
-static void
-int_sha224_finish(PX_MD *h, uint8 *dst)
-{
-	SHA224_CTX *ctx = (SHA224_CTX *) h->p.ptr;
-
-	SHA224_Final(dst, ctx);
-}
-
-static void
-int_sha224_free(PX_MD *h)
-{
-	SHA224_CTX *ctx = (SHA224_CTX *) h->p.ptr;
-
-	memset(ctx, 0, sizeof(*ctx));
-	px_free(ctx);
-	px_free(h);
-}
-
-/* SHA256 */
-
-static unsigned
-int_sha256_len(PX_MD *h)
-{
-	return SHA256_DIGEST_LENGTH;
-}
-
-static unsigned
-int_sha256_block_len(PX_MD *h)
-{
-	return SHA256_BLOCK_LENGTH;
-}
-
-static void
-int_sha256_update(PX_MD *h, const uint8 *data, unsigned dlen)
-{
-	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
-
-	SHA256_Update(ctx, data, dlen);
-}
-
-static void
-int_sha256_reset(PX_MD *h)
-{
-	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
-
-	SHA256_Init(ctx);
-}
-
-static void
-int_sha256_finish(PX_MD *h, uint8 *dst)
-{
-	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
-
-	SHA256_Final(dst, ctx);
-}
-
-static void
-int_sha256_free(PX_MD *h)
-{
-	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
-
-	memset(ctx, 0, sizeof(*ctx));
-	px_free(ctx);
-	px_free(h);
-}
-
-/* SHA384 */
-
-static unsigned
-int_sha384_len(PX_MD *h)
-{
-	return SHA384_DIGEST_LENGTH;
-}
-
-static unsigned
-int_sha384_block_len(PX_MD *h)
-{
-	return SHA384_BLOCK_LENGTH;
-}
-
-static void
-int_sha384_update(PX_MD *h, const uint8 *data, unsigned dlen)
-{
-	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
-
-	SHA384_Update(ctx, data, dlen);
-}
-
-static void
-int_sha384_reset(PX_MD *h)
-{
-	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
-
-	SHA384_Init(ctx);
-}
-
-static void
-int_sha384_finish(PX_MD *h, uint8 *dst)
-{
-	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
-
-	SHA384_Final(dst, ctx);
-}
-
-static void
-int_sha384_free(PX_MD *h)
-{
-	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
-
-	memset(ctx, 0, sizeof(*ctx));
-	px_free(ctx);
-	px_free(h);
-}
-
-/* SHA512 */
-
-static unsigned
-int_sha512_len(PX_MD *h)
-{
-	return SHA512_DIGEST_LENGTH;
-}
-
-static unsigned
-int_sha512_block_len(PX_MD *h)
-{
-	return SHA512_BLOCK_LENGTH;
-}
-
-static void
-int_sha512_update(PX_MD *h, const uint8 *data, unsigned dlen)
-{
-	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
-
-	SHA512_Update(ctx, data, dlen);
-}
-
-static void
-int_sha512_reset(PX_MD *h)
-{
-	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
-
-	SHA512_Init(ctx);
-}
-
-static void
-int_sha512_finish(PX_MD *h, uint8 *dst)
-{
-	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
-
-	SHA512_Final(dst, ctx);
-}
-
-static void
-int_sha512_free(PX_MD *h)
-{
-	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
-
-	memset(ctx, 0, sizeof(*ctx));
-	px_free(ctx);
-	px_free(h);
-}
-
-/* init functions */
-
-void
-init_sha224(PX_MD *md)
-{
-	SHA224_CTX *ctx;
-
-	ctx = px_alloc(sizeof(*ctx));
-	memset(ctx, 0, sizeof(*ctx));
-
-	md->p.ptr = ctx;
-
-	md->result_size = int_sha224_len;
-	md->block_size = int_sha224_block_len;
-	md->reset = int_sha224_reset;
-	md->update = int_sha224_update;
-	md->finish = int_sha224_finish;
-	md->free = int_sha224_free;
-
-	md->reset(md);
-}
-
-void
-init_sha256(PX_MD *md)
-{
-	SHA256_CTX *ctx;
-
-	ctx = px_alloc(sizeof(*ctx));
-	memset(ctx, 0, sizeof(*ctx));
-
-	md->p.ptr = ctx;
-
-	md->result_size = int_sha256_len;
-	md->block_size = int_sha256_block_len;
-	md->reset = int_sha256_reset;
-	md->update = int_sha256_update;
-	md->finish = int_sha256_finish;
-	md->free = int_sha256_free;
-
-	md->reset(md);
-}
-
-void
-init_sha384(PX_MD *md)
-{
-	SHA384_CTX *ctx;
-
-	ctx = px_alloc(sizeof(*ctx));
-	memset(ctx, 0, sizeof(*ctx));
-
-	md->p.ptr = ctx;
-
-	md->result_size = int_sha384_len;
-	md->block_size = int_sha384_block_len;
-	md->reset = int_sha384_reset;
-	md->update = int_sha384_update;
-	md->finish = int_sha384_finish;
-	md->free = int_sha384_free;
-
-	md->reset(md);
-}
-
-void
-init_sha512(PX_MD *md)
-{
-	SHA512_CTX *ctx;
-
-	ctx = px_alloc(sizeof(*ctx));
-	memset(ctx, 0, sizeof(*ctx));
-
-	md->p.ptr = ctx;
-
-	md->result_size = int_sha512_len;
-	md->block_size = int_sha512_block_len;
-	md->reset = int_sha512_reset;
-	md->update = int_sha512_update;
-	md->finish = int_sha512_finish;
-	md->free = int_sha512_free;
-
-	md->reset(md);
-}