You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@couchdb.apache.org by rn...@apache.org on 2013/12/24 00:31:17 UTC

[08/12] Replace ejson with jiffy

http://git-wip-us.apache.org/repos/asf/couchdb/blob/2e6092e4/src/jiffy/c_src/double-conversion/double-conversion.cc
----------------------------------------------------------------------
diff --git a/src/jiffy/c_src/double-conversion/double-conversion.cc b/src/jiffy/c_src/double-conversion/double-conversion.cc
new file mode 100644
index 0000000..a79fe92
--- /dev/null
+++ b/src/jiffy/c_src/double-conversion/double-conversion.cc
@@ -0,0 +1,889 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+//       notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+//       copyright notice, this list of conditions and the following
+//       disclaimer in the documentation and/or other materials provided
+//       with the distribution.
+//     * Neither the name of Google Inc. nor the names of its
+//       contributors may be used to endorse or promote products derived
+//       from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <limits.h>
+#include <math.h>
+
+#include "double-conversion.h"
+
+#include "bignum-dtoa.h"
+#include "fast-dtoa.h"
+#include "fixed-dtoa.h"
+#include "ieee.h"
+#include "strtod.h"
+#include "utils.h"
+
+namespace double_conversion {
+
+const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() {
+  int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN;
+  static DoubleToStringConverter converter(flags,
+                                           "Infinity",
+                                           "NaN",
+                                           'e',
+                                           -6, 21,
+                                           6, 0);
+  return converter;
+}
+
+
+bool DoubleToStringConverter::HandleSpecialValues(
+    double value,
+    StringBuilder* result_builder) const {
+  Double double_inspect(value);
+  if (double_inspect.IsInfinite()) {
+    if (infinity_symbol_ == NULL) return false;
+    if (value < 0) {
+      result_builder->AddCharacter('-');
+    }
+    result_builder->AddString(infinity_symbol_);
+    return true;
+  }
+  if (double_inspect.IsNan()) {
+    if (nan_symbol_ == NULL) return false;
+    result_builder->AddString(nan_symbol_);
+    return true;
+  }
+  return false;
+}
+
+
+void DoubleToStringConverter::CreateExponentialRepresentation(
+    const char* decimal_digits,
+    int length,
+    int exponent,
+    StringBuilder* result_builder) const {
+  ASSERT(length != 0);
+  result_builder->AddCharacter(decimal_digits[0]);
+  if (length != 1) {
+    result_builder->AddCharacter('.');
+    result_builder->AddSubstring(&decimal_digits[1], length-1);
+  }
+  result_builder->AddCharacter(exponent_character_);
+  if (exponent < 0) {
+    result_builder->AddCharacter('-');
+    exponent = -exponent;
+  } else {
+    if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) {
+      result_builder->AddCharacter('+');
+    }
+  }
+  if (exponent == 0) {
+    result_builder->AddCharacter('0');
+    return;
+  }
+  ASSERT(exponent < 1e4);
+  const int kMaxExponentLength = 5;
+  char buffer[kMaxExponentLength + 1];
+  buffer[kMaxExponentLength] = '\0';
+  int first_char_pos = kMaxExponentLength;
+  while (exponent > 0) {
+    buffer[--first_char_pos] = '0' + (exponent % 10);
+    exponent /= 10;
+  }
+  result_builder->AddSubstring(&buffer[first_char_pos],
+                               kMaxExponentLength - first_char_pos);
+}
+
+
+void DoubleToStringConverter::CreateDecimalRepresentation(
+    const char* decimal_digits,
+    int length,
+    int decimal_point,
+    int digits_after_point,
+    StringBuilder* result_builder) const {
+  // Create a representation that is padded with zeros if needed.
+  if (decimal_point <= 0) {
+      // "0.00000decimal_rep".
+    result_builder->AddCharacter('0');
+    if (digits_after_point > 0) {
+      result_builder->AddCharacter('.');
+      result_builder->AddPadding('0', -decimal_point);
+      ASSERT(length <= digits_after_point - (-decimal_point));
+      result_builder->AddSubstring(decimal_digits, length);
+      int remaining_digits = digits_after_point - (-decimal_point) - length;
+      result_builder->AddPadding('0', remaining_digits);
+    }
+  } else if (decimal_point >= length) {
+    // "decimal_rep0000.00000" or "decimal_rep.0000"
+    result_builder->AddSubstring(decimal_digits, length);
+    result_builder->AddPadding('0', decimal_point - length);
+    if (digits_after_point > 0) {
+      result_builder->AddCharacter('.');
+      result_builder->AddPadding('0', digits_after_point);
+    }
+  } else {
+    // "decima.l_rep000"
+    ASSERT(digits_after_point > 0);
+    result_builder->AddSubstring(decimal_digits, decimal_point);
+    result_builder->AddCharacter('.');
+    ASSERT(length - decimal_point <= digits_after_point);
+    result_builder->AddSubstring(&decimal_digits[decimal_point],
+                                 length - decimal_point);
+    int remaining_digits = digits_after_point - (length - decimal_point);
+    result_builder->AddPadding('0', remaining_digits);
+  }
+  if (digits_after_point == 0) {
+    if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) {
+      result_builder->AddCharacter('.');
+    }
+    if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) {
+      result_builder->AddCharacter('0');
+    }
+  }
+}
+
+
+bool DoubleToStringConverter::ToShortestIeeeNumber(
+    double value,
+    StringBuilder* result_builder,
+    DoubleToStringConverter::DtoaMode mode) const {
+  ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE);
+  if (Double(value).IsSpecial()) {
+    return HandleSpecialValues(value, result_builder);
+  }
+
+  int decimal_point;
+  bool sign;
+  const int kDecimalRepCapacity = kBase10MaximalLength + 1;
+  char decimal_rep[kDecimalRepCapacity];
+  int decimal_rep_length;
+
+  DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity,
+                &sign, &decimal_rep_length, &decimal_point);
+
+  bool unique_zero = (flags_ & UNIQUE_ZERO) != 0;
+  if (sign && (value != 0.0 || !unique_zero)) {
+    result_builder->AddCharacter('-');
+  }
+
+  int exponent = decimal_point - 1;
+  if ((decimal_in_shortest_low_ <= exponent) &&
+      (exponent < decimal_in_shortest_high_)) {
+    CreateDecimalRepresentation(decimal_rep, decimal_rep_length,
+                                decimal_point,
+                                Max(0, decimal_rep_length - decimal_point),
+                                result_builder);
+  } else {
+    CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent,
+                                    result_builder);
+  }
+  return true;
+}
+
+
+bool DoubleToStringConverter::ToFixed(double value,
+                                      int requested_digits,
+                                      StringBuilder* result_builder) const {
+  ASSERT(kMaxFixedDigitsBeforePoint == 60);
+  const double kFirstNonFixed = 1e60;
+
+  if (Double(value).IsSpecial()) {
+    return HandleSpecialValues(value, result_builder);
+  }
+
+  if (requested_digits > kMaxFixedDigitsAfterPoint) return false;
+  if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false;
+
+  // Find a sufficiently precise decimal representation of n.
+  int decimal_point;
+  bool sign;
+  // Add space for the '\0' byte.
+  const int kDecimalRepCapacity =
+      kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1;
+  char decimal_rep[kDecimalRepCapacity];
+  int decimal_rep_length;
+  DoubleToAscii(value, FIXED, requested_digits,
+                decimal_rep, kDecimalRepCapacity,
+                &sign, &decimal_rep_length, &decimal_point);
+
+  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+  if (sign && (value != 0.0 || !unique_zero)) {
+    result_builder->AddCharacter('-');
+  }
+
+  CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
+                              requested_digits, result_builder);
+  return true;
+}
+
+
+bool DoubleToStringConverter::ToExponential(
+    double value,
+    int requested_digits,
+    StringBuilder* result_builder) const {
+  if (Double(value).IsSpecial()) {
+    return HandleSpecialValues(value, result_builder);
+  }
+
+  if (requested_digits < -1) return false;
+  if (requested_digits > kMaxExponentialDigits) return false;
+
+  int decimal_point;
+  bool sign;
+  // Add space for digit before the decimal point and the '\0' character.
+  const int kDecimalRepCapacity = kMaxExponentialDigits + 2;
+  ASSERT(kDecimalRepCapacity > kBase10MaximalLength);
+  char decimal_rep[kDecimalRepCapacity];
+  int decimal_rep_length;
+
+  if (requested_digits == -1) {
+    DoubleToAscii(value, SHORTEST, 0,
+                  decimal_rep, kDecimalRepCapacity,
+                  &sign, &decimal_rep_length, &decimal_point);
+  } else {
+    DoubleToAscii(value, PRECISION, requested_digits + 1,
+                  decimal_rep, kDecimalRepCapacity,
+                  &sign, &decimal_rep_length, &decimal_point);
+    ASSERT(decimal_rep_length <= requested_digits + 1);
+
+    for (int i = decimal_rep_length; i < requested_digits + 1; ++i) {
+      decimal_rep[i] = '0';
+    }
+    decimal_rep_length = requested_digits + 1;
+  }
+
+  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+  if (sign && (value != 0.0 || !unique_zero)) {
+    result_builder->AddCharacter('-');
+  }
+
+  int exponent = decimal_point - 1;
+  CreateExponentialRepresentation(decimal_rep,
+                                  decimal_rep_length,
+                                  exponent,
+                                  result_builder);
+  return true;
+}
+
+
+bool DoubleToStringConverter::ToPrecision(double value,
+                                          int precision,
+                                          StringBuilder* result_builder) const {
+  if (Double(value).IsSpecial()) {
+    return HandleSpecialValues(value, result_builder);
+  }
+
+  if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) {
+    return false;
+  }
+
+  // Find a sufficiently precise decimal representation of n.
+  int decimal_point;
+  bool sign;
+  // Add one for the terminating null character.
+  const int kDecimalRepCapacity = kMaxPrecisionDigits + 1;
+  char decimal_rep[kDecimalRepCapacity];
+  int decimal_rep_length;
+
+  DoubleToAscii(value, PRECISION, precision,
+                decimal_rep, kDecimalRepCapacity,
+                &sign, &decimal_rep_length, &decimal_point);
+  ASSERT(decimal_rep_length <= precision);
+
+  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
+  if (sign && (value != 0.0 || !unique_zero)) {
+    result_builder->AddCharacter('-');
+  }
+
+  // The exponent if we print the number as x.xxeyyy. That is with the
+  // decimal point after the first digit.
+  int exponent = decimal_point - 1;
+
+  int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0;
+  if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
+      (decimal_point - precision + extra_zero >
+       max_trailing_padding_zeroes_in_precision_mode_)) {
+    // Fill buffer to contain 'precision' digits.
+    // Usually the buffer is already at the correct length, but 'DoubleToAscii'
+    // is allowed to return less characters.
+    for (int i = decimal_rep_length; i < precision; ++i) {
+      decimal_rep[i] = '0';
+    }
+
+    CreateExponentialRepresentation(decimal_rep,
+                                    precision,
+                                    exponent,
+                                    result_builder);
+  } else {
+    CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
+                                Max(0, precision - decimal_point),
+                                result_builder);
+  }
+  return true;
+}
+
+
+static BignumDtoaMode DtoaToBignumDtoaMode(
+    DoubleToStringConverter::DtoaMode dtoa_mode) {
+  switch (dtoa_mode) {
+    case DoubleToStringConverter::SHORTEST:  return BIGNUM_DTOA_SHORTEST;
+    case DoubleToStringConverter::SHORTEST_SINGLE:
+        return BIGNUM_DTOA_SHORTEST_SINGLE;
+    case DoubleToStringConverter::FIXED:     return BIGNUM_DTOA_FIXED;
+    case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
+    default:
+      UNREACHABLE();
+      return BIGNUM_DTOA_SHORTEST;  // To silence compiler.
+  }
+}
+
+
+void DoubleToStringConverter::DoubleToAscii(double v,
+                                            DtoaMode mode,
+                                            int requested_digits,
+                                            char* buffer,
+                                            int buffer_length,
+                                            bool* sign,
+                                            int* length,
+                                            int* point) {
+  Vector<char> vector(buffer, buffer_length);
+  ASSERT(!Double(v).IsSpecial());
+  ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0);
+
+  if (Double(v).Sign() < 0) {
+    *sign = true;
+    v = -v;
+  } else {
+    *sign = false;
+  }
+
+  if (mode == PRECISION && requested_digits == 0) {
+    vector[0] = '\0';
+    *length = 0;
+    return;
+  }
+
+  if (v == 0) {
+    vector[0] = '0';
+    vector[1] = '\0';
+    *length = 1;
+    *point = 1;
+    return;
+  }
+
+  bool fast_worked;
+  switch (mode) {
+    case SHORTEST:
+      fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point);
+      break;
+    case SHORTEST_SINGLE:
+      fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0,
+                             vector, length, point);
+      break;
+    case FIXED:
+      fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point);
+      break;
+    case PRECISION:
+      fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits,
+                             vector, length, point);
+      break;
+    default:
+      UNREACHABLE();
+      fast_worked = false;
+  }
+  if (fast_worked) return;
+
+  // If the fast dtoa didn't succeed use the slower bignum version.
+  BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode);
+  BignumDtoa(v, bignum_mode, requested_digits, vector, length, point);
+  vector[*length] = '\0';
+}
+
+
+// Consumes the given substring from the iterator.
+// Returns false, if the substring does not match.
+static bool ConsumeSubString(const char** current,
+                             const char* end,
+                             const char* substring) {
+  ASSERT(**current == *substring);
+  for (substring++; *substring != '\0'; substring++) {
+    ++*current;
+    if (*current == end || **current != *substring) return false;
+  }
+  ++*current;
+  return true;
+}
+
+
+// Maximum number of significant digits in decimal representation.
+// The longest possible double in decimal representation is
+// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
+// (768 digits). If we parse a number whose first digits are equal to a
+// mean of 2 adjacent doubles (that could have up to 769 digits) the result
+// must be rounded to the bigger one unless the tail consists of zeros, so
+// we don't need to preserve all the digits.
+const int kMaxSignificantDigits = 772;
+
+
+// Returns true if a nonspace found and false if the end has reached.
+static inline bool AdvanceToNonspace(const char** current, const char* end) {
+  while (*current != end) {
+    if (**current != ' ') return true;
+    ++*current;
+  }
+  return false;
+}
+
+
+static bool isDigit(int x, int radix) {
+  return (x >= '0' && x <= '9' && x < '0' + radix)
+      || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
+      || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
+}
+
+
+static double SignedZero(bool sign) {
+  return sign ? -0.0 : 0.0;
+}
+
+
+// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
+template <int radix_log_2>
+static double RadixStringToIeee(const char* current,
+                                const char* end,
+                                bool sign,
+                                bool allow_trailing_junk,
+                                double junk_string_value,
+                                bool read_as_double,
+                                const char** trailing_pointer) {
+  ASSERT(current != end);
+
+  const int kDoubleSize = Double::kSignificandSize;
+  const int kSingleSize = Single::kSignificandSize;
+  const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
+
+  // Skip leading 0s.
+  while (*current == '0') {
+    ++current;
+    if (current == end) {
+      *trailing_pointer = end;
+      return SignedZero(sign);
+    }
+  }
+
+  int64_t number = 0;
+  int exponent = 0;
+  const int radix = (1 << radix_log_2);
+
+  do {
+    int digit;
+    if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
+      digit = static_cast<char>(*current) - '0';
+    } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
+      digit = static_cast<char>(*current) - 'a' + 10;
+    } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
+      digit = static_cast<char>(*current) - 'A' + 10;
+    } else {
+      if (allow_trailing_junk || !AdvanceToNonspace(&current, end)) {
+        break;
+      } else {
+        return junk_string_value;
+      }
+    }
+
+    number = number * radix + digit;
+    int overflow = static_cast<int>(number >> kSignificandSize);
+    if (overflow != 0) {
+      // Overflow occurred. Need to determine which direction to round the
+      // result.
+      int overflow_bits_count = 1;
+      while (overflow > 1) {
+        overflow_bits_count++;
+        overflow >>= 1;
+      }
+
+      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
+      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
+      number >>= overflow_bits_count;
+      exponent = overflow_bits_count;
+
+      bool zero_tail = true;
+      while (true) {
+        ++current;
+        if (current == end || !isDigit(*current, radix)) break;
+        zero_tail = zero_tail && *current == '0';
+        exponent += radix_log_2;
+      }
+
+      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+        return junk_string_value;
+      }
+
+      int middle_value = (1 << (overflow_bits_count - 1));
+      if (dropped_bits > middle_value) {
+        number++;  // Rounding up.
+      } else if (dropped_bits == middle_value) {
+        // Rounding to even to consistency with decimals: half-way case rounds
+        // up if significant part is odd and down otherwise.
+        if ((number & 1) != 0 || !zero_tail) {
+          number++;  // Rounding up.
+        }
+      }
+
+      // Rounding up may cause overflow.
+      if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
+        exponent++;
+        number >>= 1;
+      }
+      break;
+    }
+    ++current;
+  } while (current != end);
+
+  ASSERT(number < ((int64_t)1 << kSignificandSize));
+  ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
+
+  *trailing_pointer = current;
+
+  if (exponent == 0) {
+    if (sign) {
+      if (number == 0) return -0.0;
+      number = -number;
+    }
+    return static_cast<double>(number);
+  }
+
+  ASSERT(number != 0);
+  return Double(DiyFp(number, exponent)).value();
+}
+
+
+double StringToDoubleConverter::StringToIeee(
+    const char* input,
+    int length,
+    int* processed_characters_count,
+    bool read_as_double) {
+  const char* current = input;
+  const char* end = input + length;
+
+  *processed_characters_count = 0;
+
+  const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
+  const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
+  const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
+  const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
+
+  // To make sure that iterator dereferencing is valid the following
+  // convention is used:
+  // 1. Each '++current' statement is followed by check for equality to 'end'.
+  // 2. If AdvanceToNonspace returned false then current == end.
+  // 3. If 'current' becomes equal to 'end' the function returns or goes to
+  // 'parsing_done'.
+  // 4. 'current' is not dereferenced after the 'parsing_done' label.
+  // 5. Code before 'parsing_done' may rely on 'current != end'.
+  if (current == end) return empty_string_value_;
+
+  if (allow_leading_spaces || allow_trailing_spaces) {
+    if (!AdvanceToNonspace(&current, end)) {
+      *processed_characters_count = current - input;
+      return empty_string_value_;
+    }
+    if (!allow_leading_spaces && (input != current)) {
+      // No leading spaces allowed, but AdvanceToNonspace moved forward.
+      return junk_string_value_;
+    }
+  }
+
+  // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
+  const int kBufferSize = kMaxSignificantDigits + 10;
+  char buffer[kBufferSize];  // NOLINT: size is known at compile time.
+  int buffer_pos = 0;
+
+  // Exponent will be adjusted if insignificant digits of the integer part
+  // or insignificant leading zeros of the fractional part are dropped.
+  int exponent = 0;
+  int significant_digits = 0;
+  int insignificant_digits = 0;
+  bool nonzero_digit_dropped = false;
+
+  bool sign = false;
+
+  if (*current == '+' || *current == '-') {
+    sign = (*current == '-');
+    ++current;
+    const char* next_non_space = current;
+    // Skip following spaces (if allowed).
+    if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
+    if (!allow_spaces_after_sign && (current != next_non_space)) {
+      return junk_string_value_;
+    }
+    current = next_non_space;
+  }
+
+  if (infinity_symbol_ != NULL) {
+    if (*current == infinity_symbol_[0]) {
+      if (!ConsumeSubString(&current, end, infinity_symbol_)) {
+        return junk_string_value_;
+      }
+
+      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+        return junk_string_value_;
+      }
+      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+        return junk_string_value_;
+      }
+
+      ASSERT(buffer_pos == 0);
+      *processed_characters_count = current - input;
+      return sign ? -Double::Infinity() : Double::Infinity();
+    }
+  }
+
+  if (nan_symbol_ != NULL) {
+    if (*current == nan_symbol_[0]) {
+      if (!ConsumeSubString(&current, end, nan_symbol_)) {
+        return junk_string_value_;
+      }
+
+      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+        return junk_string_value_;
+      }
+      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+        return junk_string_value_;
+      }
+
+      ASSERT(buffer_pos == 0);
+      *processed_characters_count = current - input;
+      return sign ? -Double::NaN() : Double::NaN();
+    }
+  }
+
+  bool leading_zero = false;
+  if (*current == '0') {
+    ++current;
+    if (current == end) {
+      *processed_characters_count = current - input;
+      return SignedZero(sign);
+    }
+
+    leading_zero = true;
+
+    // It could be hexadecimal value.
+    if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
+      ++current;
+      if (current == end || !isDigit(*current, 16)) {
+        return junk_string_value_;  // "0x".
+      }
+
+      const char* tail_pointer = NULL;
+      double result = RadixStringToIeee<4>(current,
+                                           end,
+                                           sign,
+                                           allow_trailing_junk,
+                                           junk_string_value_,
+                                           read_as_double,
+                                           &tail_pointer);
+      if (tail_pointer != NULL) {
+        if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end);
+        *processed_characters_count = tail_pointer - input;
+      }
+      return result;
+    }
+
+    // Ignore leading zeros in the integer part.
+    while (*current == '0') {
+      ++current;
+      if (current == end) {
+        *processed_characters_count = current - input;
+        return SignedZero(sign);
+      }
+    }
+  }
+
+  bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
+
+  // Copy significant digits of the integer part (if any) to the buffer.
+  while (*current >= '0' && *current <= '9') {
+    if (significant_digits < kMaxSignificantDigits) {
+      ASSERT(buffer_pos < kBufferSize);
+      buffer[buffer_pos++] = static_cast<char>(*current);
+      significant_digits++;
+      // Will later check if it's an octal in the buffer.
+    } else {
+      insignificant_digits++;  // Move the digit into the exponential part.
+      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
+    }
+    octal = octal && *current < '8';
+    ++current;
+    if (current == end) goto parsing_done;
+  }
+
+  if (significant_digits == 0) {
+    octal = false;
+  }
+
+  if (*current == '.') {
+    if (octal && !allow_trailing_junk) return junk_string_value_;
+    if (octal) goto parsing_done;
+
+    ++current;
+    if (current == end) {
+      if (significant_digits == 0 && !leading_zero) {
+        return junk_string_value_;
+      } else {
+        goto parsing_done;
+      }
+    }
+
+    if (significant_digits == 0) {
+      // octal = false;
+      // Integer part consists of 0 or is absent. Significant digits start after
+      // leading zeros (if any).
+      while (*current == '0') {
+        ++current;
+        if (current == end) {
+          *processed_characters_count = current - input;
+          return SignedZero(sign);
+        }
+        exponent--;  // Move this 0 into the exponent.
+      }
+    }
+
+    // There is a fractional part.
+    // We don't emit a '.', but adjust the exponent instead.
+    while (*current >= '0' && *current <= '9') {
+      if (significant_digits < kMaxSignificantDigits) {
+        ASSERT(buffer_pos < kBufferSize);
+        buffer[buffer_pos++] = static_cast<char>(*current);
+        significant_digits++;
+        exponent--;
+      } else {
+        // Ignore insignificant digits in the fractional part.
+        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
+      }
+      ++current;
+      if (current == end) goto parsing_done;
+    }
+  }
+
+  if (!leading_zero && exponent == 0 && significant_digits == 0) {
+    // If leading_zeros is true then the string contains zeros.
+    // If exponent < 0 then string was [+-]\.0*...
+    // If significant_digits != 0 the string is not equal to 0.
+    // Otherwise there are no digits in the string.
+    return junk_string_value_;
+  }
+
+  // Parse exponential part.
+  if (*current == 'e' || *current == 'E') {
+    if (octal && !allow_trailing_junk) return junk_string_value_;
+    if (octal) goto parsing_done;
+    ++current;
+    if (current == end) {
+      if (allow_trailing_junk) {
+        goto parsing_done;
+      } else {
+        return junk_string_value_;
+      }
+    }
+    char sign = '+';
+    if (*current == '+' || *current == '-') {
+      sign = static_cast<char>(*current);
+      ++current;
+      if (current == end) {
+        if (allow_trailing_junk) {
+          goto parsing_done;
+        } else {
+          return junk_string_value_;
+        }
+      }
+    }
+
+    if (current == end || *current < '0' || *current > '9') {
+      if (allow_trailing_junk) {
+        goto parsing_done;
+      } else {
+        return junk_string_value_;
+      }
+    }
+
+    const int max_exponent = INT_MAX / 2;
+    ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
+    int num = 0;
+    do {
+      // Check overflow.
+      int digit = *current - '0';
+      if (num >= max_exponent / 10
+          && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
+        num = max_exponent;
+      } else {
+        num = num * 10 + digit;
+      }
+      ++current;
+    } while (current != end && *current >= '0' && *current <= '9');
+
+    exponent += (sign == '-' ? -num : num);
+  }
+
+  if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
+    return junk_string_value_;
+  }
+  if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+    return junk_string_value_;
+  }
+  if (allow_trailing_spaces) {
+    AdvanceToNonspace(&current, end);
+  }
+
+  parsing_done:
+  exponent += insignificant_digits;
+
+  if (octal) {
+    double result;
+    const char* tail_pointer = NULL;
+    result = RadixStringToIeee<3>(buffer,
+                                  buffer + buffer_pos,
+                                  sign,
+                                  allow_trailing_junk,
+                                  junk_string_value_,
+                                  read_as_double,
+                                  &tail_pointer);
+    ASSERT(tail_pointer != NULL);
+    *processed_characters_count = current - input;
+    return result;
+  }
+
+  if (nonzero_digit_dropped) {
+    buffer[buffer_pos++] = '1';
+    exponent--;
+  }
+
+  ASSERT(buffer_pos < kBufferSize);
+  buffer[buffer_pos] = '\0';
+
+  double converted;
+  if (read_as_double) {
+    converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
+  } else {
+    converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
+  }
+  *processed_characters_count = current - input;
+  return sign? -converted: converted;
+}
+
+}  // namespace double_conversion

http://git-wip-us.apache.org/repos/asf/couchdb/blob/2e6092e4/src/jiffy/c_src/double-conversion/double-conversion.h
----------------------------------------------------------------------
diff --git a/src/jiffy/c_src/double-conversion/double-conversion.h b/src/jiffy/c_src/double-conversion/double-conversion.h
new file mode 100644
index 0000000..f98edae
--- /dev/null
+++ b/src/jiffy/c_src/double-conversion/double-conversion.h
@@ -0,0 +1,536 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+//       notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+//       copyright notice, this list of conditions and the following
+//       disclaimer in the documentation and/or other materials provided
+//       with the distribution.
+//     * Neither the name of Google Inc. nor the names of its
+//       contributors may be used to endorse or promote products derived
+//       from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
+#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
+
+#include "utils.h"
+
+namespace double_conversion {
+
+class DoubleToStringConverter {
+ public:
+  // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
+  // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
+  // function returns false.
+  static const int kMaxFixedDigitsBeforePoint = 60;
+  static const int kMaxFixedDigitsAfterPoint = 60;
+
+  // When calling ToExponential with a requested_digits
+  // parameter > kMaxExponentialDigits then the function returns false.
+  static const int kMaxExponentialDigits = 120;
+
+  // When calling ToPrecision with a requested_digits
+  // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
+  // then the function returns false.
+  static const int kMinPrecisionDigits = 1;
+  static const int kMaxPrecisionDigits = 120;
+
+  enum Flags {
+    NO_FLAGS = 0,
+    EMIT_POSITIVE_EXPONENT_SIGN = 1,
+    EMIT_TRAILING_DECIMAL_POINT = 2,
+    EMIT_TRAILING_ZERO_AFTER_POINT = 4,
+    UNIQUE_ZERO = 8
+  };
+
+  // Flags should be a bit-or combination of the possible Flags-enum.
+  //  - NO_FLAGS: no special flags.
+  //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
+  //    form, emits a '+' for positive exponents. Example: 1.2e+2.
+  //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
+  //    converted into decimal format then a trailing decimal point is appended.
+  //    Example: 2345.0 is converted to "2345.".
+  //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
+  //    emits a trailing '0'-character. This flag requires the
+  //    EXMIT_TRAILING_DECIMAL_POINT flag.
+  //    Example: 2345.0 is converted to "2345.0".
+  //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
+  //
+  // Infinity symbol and nan_symbol provide the string representation for these
+  // special values. If the string is NULL and the special value is encountered
+  // then the conversion functions return false.
+  //
+  // The exponent_character is used in exponential representations. It is
+  // usually 'e' or 'E'.
+  //
+  // When converting to the shortest representation the converter will
+  // represent input numbers in decimal format if they are in the interval
+  // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
+  //    (lower boundary included, greater boundary excluded).
+  // Example: with decimal_in_shortest_low = -6 and
+  //               decimal_in_shortest_high = 21:
+  //   ToShortest(0.000001)  -> "0.000001"
+  //   ToShortest(0.0000001) -> "1e-7"
+  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
+  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
+  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
+  //
+  // When converting to precision mode the converter may add
+  // max_leading_padding_zeroes before returning the number in exponential
+  // format.
+  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
+  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
+  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
+  // Similarily the converter may add up to
+  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
+  // returning an exponential representation. A zero added by the
+  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
+  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
+  //   ToPrecision(230.0, 2) -> "230"
+  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
+  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
+  DoubleToStringConverter(int flags,
+                          const char* infinity_symbol,
+                          const char* nan_symbol,
+                          char exponent_character,
+                          int decimal_in_shortest_low,
+                          int decimal_in_shortest_high,
+                          int max_leading_padding_zeroes_in_precision_mode,
+                          int max_trailing_padding_zeroes_in_precision_mode)
+      : flags_(flags),
+        infinity_symbol_(infinity_symbol),
+        nan_symbol_(nan_symbol),
+        exponent_character_(exponent_character),
+        decimal_in_shortest_low_(decimal_in_shortest_low),
+        decimal_in_shortest_high_(decimal_in_shortest_high),
+        max_leading_padding_zeroes_in_precision_mode_(
+            max_leading_padding_zeroes_in_precision_mode),
+        max_trailing_padding_zeroes_in_precision_mode_(
+            max_trailing_padding_zeroes_in_precision_mode) {
+    // When 'trailing zero after the point' is set, then 'trailing point'
+    // must be set too.
+    ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
+        !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
+  }
+
+  // Returns a converter following the EcmaScript specification.
+  static const DoubleToStringConverter& EcmaScriptConverter();
+
+  // Computes the shortest string of digits that correctly represent the input
+  // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
+  // (see constructor) it then either returns a decimal representation, or an
+  // exponential representation.
+  // Example with decimal_in_shortest_low = -6,
+  //              decimal_in_shortest_high = 21,
+  //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
+  //              EMIT_TRAILING_DECIMAL_POINT deactived:
+  //   ToShortest(0.000001)  -> "0.000001"
+  //   ToShortest(0.0000001) -> "1e-7"
+  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
+  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
+  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
+  //
+  // Note: the conversion may round the output if the returned string
+  // is accurate enough to uniquely identify the input-number.
+  // For example the most precise representation of the double 9e59 equals
+  // "899999999999999918767229449717619953810131273674690656206848", but
+  // the converter will return the shorter (but still correct) "9e59".
+  //
+  // Returns true if the conversion succeeds. The conversion always succeeds
+  // except when the input value is special and no infinity_symbol or
+  // nan_symbol has been given to the constructor.
+  bool ToShortest(double value, StringBuilder* result_builder) const {
+    return ToShortestIeeeNumber(value, result_builder, SHORTEST);
+  }
+
+  // Same as ToShortest, but for single-precision floats.
+  bool ToShortestSingle(float value, StringBuilder* result_builder) const {
+    return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
+  }
+
+
+  // Computes a decimal representation with a fixed number of digits after the
+  // decimal point. The last emitted digit is rounded.
+  //
+  // Examples:
+  //   ToFixed(3.12, 1) -> "3.1"
+  //   ToFixed(3.1415, 3) -> "3.142"
+  //   ToFixed(1234.56789, 4) -> "1234.5679"
+  //   ToFixed(1.23, 5) -> "1.23000"
+  //   ToFixed(0.1, 4) -> "0.1000"
+  //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
+  //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
+  //   ToFixed(0.1, 17) -> "0.10000000000000001"
+  //
+  // If requested_digits equals 0, then the tail of the result depends on
+  // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
+  // Examples, for requested_digits == 0,
+  //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
+  //    - false and false: then 123.45 -> 123
+  //                             0.678 -> 1
+  //    - true and false: then 123.45 -> 123.
+  //                            0.678 -> 1.
+  //    - true and true: then 123.45 -> 123.0
+  //                           0.678 -> 1.0
+  //
+  // Returns true if the conversion succeeds. The conversion always succeeds
+  // except for the following cases:
+  //   - the input value is special and no infinity_symbol or nan_symbol has
+  //     been provided to the constructor,
+  //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
+  //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
+  // The last two conditions imply that the result will never contain more than
+  // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
+  // (one additional character for the sign, and one for the decimal point).
+  bool ToFixed(double value,
+               int requested_digits,
+               StringBuilder* result_builder) const;
+
+  // Computes a representation in exponential format with requested_digits
+  // after the decimal point. The last emitted digit is rounded.
+  // If requested_digits equals -1, then the shortest exponential representation
+  // is computed.
+  //
+  // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
+  //               exponent_character set to 'e'.
+  //   ToExponential(3.12, 1) -> "3.1e0"
+  //   ToExponential(5.0, 3) -> "5.000e0"
+  //   ToExponential(0.001, 2) -> "1.00e-3"
+  //   ToExponential(3.1415, -1) -> "3.1415e0"
+  //   ToExponential(3.1415, 4) -> "3.1415e0"
+  //   ToExponential(3.1415, 3) -> "3.142e0"
+  //   ToExponential(123456789000000, 3) -> "1.235e14"
+  //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
+  //   ToExponential(1000000000000000019884624838656.0, 32) ->
+  //                     "1.00000000000000001988462483865600e30"
+  //   ToExponential(1234, 0) -> "1e3"
+  //
+  // Returns true if the conversion succeeds. The conversion always succeeds
+  // except for the following cases:
+  //   - the input value is special and no infinity_symbol or nan_symbol has
+  //     been provided to the constructor,
+  //   - 'requested_digits' > kMaxExponentialDigits.
+  // The last condition implies that the result will never contain more than
+  // kMaxExponentialDigits + 8 characters (the sign, the digit before the
+  // decimal point, the decimal point, the exponent character, the
+  // exponent's sign, and at most 3 exponent digits).
+  bool ToExponential(double value,
+                     int requested_digits,
+                     StringBuilder* result_builder) const;
+
+  // Computes 'precision' leading digits of the given 'value' and returns them
+  // either in exponential or decimal format, depending on
+  // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
+  // constructor).
+  // The last computed digit is rounded.
+  //
+  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
+  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
+  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
+  // Similarily the converter may add up to
+  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
+  // returning an exponential representation. A zero added by the
+  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
+  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
+  //   ToPrecision(230.0, 2) -> "230"
+  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
+  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
+  // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
+  //    EMIT_TRAILING_ZERO_AFTER_POINT:
+  //   ToPrecision(123450.0, 6) -> "123450"
+  //   ToPrecision(123450.0, 5) -> "123450"
+  //   ToPrecision(123450.0, 4) -> "123500"
+  //   ToPrecision(123450.0, 3) -> "123000"
+  //   ToPrecision(123450.0, 2) -> "1.2e5"
+  //
+  // Returns true if the conversion succeeds. The conversion always succeeds
+  // except for the following cases:
+  //   - the input value is special and no infinity_symbol or nan_symbol has
+  //     been provided to the constructor,
+  //   - precision < kMinPericisionDigits
+  //   - precision > kMaxPrecisionDigits
+  // The last condition implies that the result will never contain more than
+  // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
+  // exponent character, the exponent's sign, and at most 3 exponent digits).
+  bool ToPrecision(double value,
+                   int precision,
+                   StringBuilder* result_builder) const;
+
+  enum DtoaMode {
+    // Produce the shortest correct representation.
+    // For example the output of 0.299999999999999988897 is (the less accurate
+    // but correct) 0.3.
+    SHORTEST,
+    // Same as SHORTEST, but for single-precision floats.
+    SHORTEST_SINGLE,
+    // Produce a fixed number of digits after the decimal point.
+    // For instance fixed(0.1, 4) becomes 0.1000
+    // If the input number is big, the output will be big.
+    FIXED,
+    // Fixed number of digits (independent of the decimal point).
+    PRECISION
+  };
+
+  // The maximal number of digits that are needed to emit a double in base 10.
+  // A higher precision can be achieved by using more digits, but the shortest
+  // accurate representation of any double will never use more digits than
+  // kBase10MaximalLength.
+  // Note that DoubleToAscii null-terminates its input. So the given buffer
+  // should be at least kBase10MaximalLength + 1 characters long.
+  static const int kBase10MaximalLength = 17;
+
+  // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
+  // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
+  // after it has been casted to a single-precision float. That is, in this
+  // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
+  //
+  // The result should be interpreted as buffer * 10^(point-length).
+  //
+  // The output depends on the given mode:
+  //  - SHORTEST: produce the least amount of digits for which the internal
+  //   identity requirement is still satisfied. If the digits are printed
+  //   (together with the correct exponent) then reading this number will give
+  //   'v' again. The buffer will choose the representation that is closest to
+  //   'v'. If there are two at the same distance, than the one farther away
+  //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
+  //   In this mode the 'requested_digits' parameter is ignored.
+  //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
+  //  - FIXED: produces digits necessary to print a given number with
+  //   'requested_digits' digits after the decimal point. The produced digits
+  //   might be too short in which case the caller has to fill the remainder
+  //   with '0's.
+  //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
+  //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
+  //   toFixed(0.15, 2) thus returns buffer="2", point=0.
+  //   The returned buffer may contain digits that would be truncated from the
+  //   shortest representation of the input.
+  //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
+  //   Even though the length of produced digits usually equals
+  //   'requested_digits', the function is allowed to return fewer digits, in
+  //   which case the caller has to fill the missing digits with '0's.
+  //   Halfway cases are again rounded away from 0.
+  // DoubleToAscii expects the given buffer to be big enough to hold all
+  // digits and a terminating null-character. In SHORTEST-mode it expects a
+  // buffer of at least kBase10MaximalLength + 1. In all other modes the
+  // requested_digits parameter and the padding-zeroes limit the size of the
+  // output. Don't forget the decimal point, the exponent character and the
+  // terminating null-character when computing the maximal output size.
+  // The given length is only used in debug mode to ensure the buffer is big
+  // enough.
+  static void DoubleToAscii(double v,
+                            DtoaMode mode,
+                            int requested_digits,
+                            char* buffer,
+                            int buffer_length,
+                            bool* sign,
+                            int* length,
+                            int* point);
+
+ private:
+  // Implementation for ToShortest and ToShortestSingle.
+  bool ToShortestIeeeNumber(double value,
+                            StringBuilder* result_builder,
+                            DtoaMode mode) const;
+
+  // If the value is a special value (NaN or Infinity) constructs the
+  // corresponding string using the configured infinity/nan-symbol.
+  // If either of them is NULL or the value is not special then the
+  // function returns false.
+  bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
+  // Constructs an exponential representation (i.e. 1.234e56).
+  // The given exponent assumes a decimal point after the first decimal digit.
+  void CreateExponentialRepresentation(const char* decimal_digits,
+                                       int length,
+                                       int exponent,
+                                       StringBuilder* result_builder) const;
+  // Creates a decimal representation (i.e 1234.5678).
+  void CreateDecimalRepresentation(const char* decimal_digits,
+                                   int length,
+                                   int decimal_point,
+                                   int digits_after_point,
+                                   StringBuilder* result_builder) const;
+
+  const int flags_;
+  const char* const infinity_symbol_;
+  const char* const nan_symbol_;
+  const char exponent_character_;
+  const int decimal_in_shortest_low_;
+  const int decimal_in_shortest_high_;
+  const int max_leading_padding_zeroes_in_precision_mode_;
+  const int max_trailing_padding_zeroes_in_precision_mode_;
+
+  DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
+};
+
+
+class StringToDoubleConverter {
+ public:
+  // Enumeration for allowing octals and ignoring junk when converting
+  // strings to numbers.
+  enum Flags {
+    NO_FLAGS = 0,
+    ALLOW_HEX = 1,
+    ALLOW_OCTALS = 2,
+    ALLOW_TRAILING_JUNK = 4,
+    ALLOW_LEADING_SPACES = 8,
+    ALLOW_TRAILING_SPACES = 16,
+    ALLOW_SPACES_AFTER_SIGN = 32
+  };
+
+  // Flags should be a bit-or combination of the possible Flags-enum.
+  //  - NO_FLAGS: no special flags.
+  //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
+  //      Ex: StringToDouble("0x1234") -> 4660.0
+  //          In StringToDouble("0x1234.56") the characters ".56" are trailing
+  //          junk. The result of the call is hence dependent on
+  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
+  //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
+  //      the string will not be parsed as "0" followed by junk.
+  //
+  //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
+  //      If a sequence of octal digits starts with '0', then the number is
+  //      read as octal integer. Octal numbers may only be integers.
+  //      Ex: StringToDouble("01234") -> 668.0
+  //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
+  //                                               // digits.
+  //          In StringToDouble("01234.56") the characters ".56" are trailing
+  //          junk. The result of the call is hence dependent on
+  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
+  //          In StringToDouble("01234e56") the characters "e56" are trailing
+  //          junk, too.
+  //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
+  //      a double literal.
+  //  - ALLOW_LEADING_SPACES: skip over leading spaces.
+  //  - ALLOW_TRAILING_SPACES: ignore trailing spaces.
+  //  - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
+  //       Ex: StringToDouble("-   123.2") -> -123.2.
+  //           StringToDouble("+   123.2") -> 123.2
+  //
+  // empty_string_value is returned when an empty string is given as input.
+  // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
+  // containing only spaces is converted to the 'empty_string_value', too.
+  //
+  // junk_string_value is returned when
+  //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
+  //     part of a double-literal) is found.
+  //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
+  //     double literal.
+  //
+  // infinity_symbol and nan_symbol are strings that are used to detect
+  // inputs that represent infinity and NaN. They can be null, in which case
+  // they are ignored.
+  // The conversion routine first reads any possible signs. Then it compares the
+  // following character of the input-string with the first character of
+  // the infinity, and nan-symbol. If either matches, the function assumes, that
+  // a match has been found, and expects the following input characters to match
+  // the remaining characters of the special-value symbol.
+  // This means that the following restrictions apply to special-value symbols:
+  //  - they must not start with signs ('+', or '-'),
+  //  - they must not have the same first character.
+  //  - they must not start with digits.
+  //
+  // Examples:
+  //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
+  //  empty_string_value = 0.0,
+  //  junk_string_value = NaN,
+  //  infinity_symbol = "infinity",
+  //  nan_symbol = "nan":
+  //    StringToDouble("0x1234") -> 4660.0.
+  //    StringToDouble("0x1234K") -> 4660.0.
+  //    StringToDouble("") -> 0.0  // empty_string_value.
+  //    StringToDouble(" ") -> NaN  // junk_string_value.
+  //    StringToDouble(" 1") -> NaN  // junk_string_value.
+  //    StringToDouble("0x") -> NaN  // junk_string_value.
+  //    StringToDouble("-123.45") -> -123.45.
+  //    StringToDouble("--123.45") -> NaN  // junk_string_value.
+  //    StringToDouble("123e45") -> 123e45.
+  //    StringToDouble("123E45") -> 123e45.
+  //    StringToDouble("123e+45") -> 123e45.
+  //    StringToDouble("123E-45") -> 123e-45.
+  //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
+  //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
+  //    StringToDouble("+NaN") -> NaN  // NaN string literal.
+  //    StringToDouble("-infinity") -> -inf.  // infinity literal.
+  //    StringToDouble("Infinity") -> NaN  // junk_string_value.
+  //
+  //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
+  //  empty_string_value = 0.0,
+  //  junk_string_value = NaN,
+  //  infinity_symbol = NULL,
+  //  nan_symbol = NULL:
+  //    StringToDouble("0x1234") -> NaN  // junk_string_value.
+  //    StringToDouble("01234") -> 668.0.
+  //    StringToDouble("") -> 0.0  // empty_string_value.
+  //    StringToDouble(" ") -> 0.0  // empty_string_value.
+  //    StringToDouble(" 1") -> 1.0
+  //    StringToDouble("0x") -> NaN  // junk_string_value.
+  //    StringToDouble("0123e45") -> NaN  // junk_string_value.
+  //    StringToDouble("01239E45") -> 1239e45.
+  //    StringToDouble("-infinity") -> NaN  // junk_string_value.
+  //    StringToDouble("NaN") -> NaN  // junk_string_value.
+  StringToDoubleConverter(int flags,
+                          double empty_string_value,
+                          double junk_string_value,
+                          const char* infinity_symbol,
+                          const char* nan_symbol)
+      : flags_(flags),
+        empty_string_value_(empty_string_value),
+        junk_string_value_(junk_string_value),
+        infinity_symbol_(infinity_symbol),
+        nan_symbol_(nan_symbol) {
+  }
+
+  // Performs the conversion.
+  // The output parameter 'processed_characters_count' is set to the number
+  // of characters that have been processed to read the number.
+  // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
+  // in the 'processed_characters_count'. Trailing junk is never included.
+  double StringToDouble(const char* buffer,
+                        int length,
+                        int* processed_characters_count) {
+    return StringToIeee(buffer, length, processed_characters_count, true);
+  }
+
+  // Same as StringToDouble but reads a float.
+  // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
+  // due to potential double-rounding.
+  float StringToFloat(const char* buffer,
+                      int length,
+                      int* processed_characters_count) {
+    return static_cast<float>(StringToIeee(buffer, length,
+                                           processed_characters_count, false));
+  }
+
+ private:
+  const int flags_;
+  const double empty_string_value_;
+  const double junk_string_value_;
+  const char* const infinity_symbol_;
+  const char* const nan_symbol_;
+
+  double StringToIeee(const char* buffer,
+                      int length,
+                      int* processed_characters_count,
+                      bool read_as_double);
+
+  DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
+};
+
+}  // namespace double_conversion
+
+#endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_