You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@mynewt.apache.org by cc...@apache.org on 2017/04/06 02:27:47 UTC

[42/54] [partial] incubator-mynewt-newtmgr git commit: revendor

http://git-wip-us.apache.org/repos/asf/incubator-mynewt-newtmgr/blob/9975ef7a/newtmgr/vendor/github.com/ugorji/go/codec/encode.go
----------------------------------------------------------------------
diff --git a/newtmgr/vendor/github.com/ugorji/go/codec/encode.go b/newtmgr/vendor/github.com/ugorji/go/codec/encode.go
deleted file mode 100644
index c2cef81..0000000
--- a/newtmgr/vendor/github.com/ugorji/go/codec/encode.go
+++ /dev/null
@@ -1,1461 +0,0 @@
-// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
-// Use of this source code is governed by a MIT license found in the LICENSE file.
-
-package codec
-
-import (
-	"encoding"
-	"fmt"
-	"io"
-	"reflect"
-	"sort"
-	"sync"
-)
-
-const (
-	defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
-)
-
-// AsSymbolFlag defines what should be encoded as symbols.
-type AsSymbolFlag uint8
-
-const (
-	// AsSymbolDefault is default.
-	// Currently, this means only encode struct field names as symbols.
-	// The default is subject to change.
-	AsSymbolDefault AsSymbolFlag = iota
-
-	// AsSymbolAll means encode anything which could be a symbol as a symbol.
-	AsSymbolAll = 0xfe
-
-	// AsSymbolNone means do not encode anything as a symbol.
-	AsSymbolNone = 1 << iota
-
-	// AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
-	AsSymbolMapStringKeysFlag
-
-	// AsSymbolStructFieldName means encode struct field names as symbols.
-	AsSymbolStructFieldNameFlag
-)
-
-// encWriter abstracts writing to a byte array or to an io.Writer.
-type encWriter interface {
-	writeb([]byte)
-	writestr(string)
-	writen1(byte)
-	writen2(byte, byte)
-	atEndOfEncode()
-}
-
-// encDriver abstracts the actual codec (binc vs msgpack, etc)
-type encDriver interface {
-	IsBuiltinType(rt uintptr) bool
-	EncodeBuiltin(rt uintptr, v interface{})
-	EncodeNil()
-	EncodeInt(i int64)
-	EncodeUint(i uint64)
-	EncodeBool(b bool)
-	EncodeFloat32(f float32)
-	EncodeFloat64(f float64)
-	// encodeExtPreamble(xtag byte, length int)
-	EncodeRawExt(re *RawExt, e *Encoder)
-	EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
-	EncodeArrayStart(length int)
-	EncodeMapStart(length int)
-	EncodeString(c charEncoding, v string)
-	EncodeSymbol(v string)
-	EncodeStringBytes(c charEncoding, v []byte)
-	//TODO
-	//encBignum(f *big.Int)
-	//encStringRunes(c charEncoding, v []rune)
-
-	reset()
-}
-
-type encDriverAsis interface {
-	EncodeAsis(v []byte)
-}
-
-type encNoSeparator struct{}
-
-func (_ encNoSeparator) EncodeEnd() {}
-
-type ioEncWriterWriter interface {
-	WriteByte(c byte) error
-	WriteString(s string) (n int, err error)
-	Write(p []byte) (n int, err error)
-}
-
-type ioEncStringWriter interface {
-	WriteString(s string) (n int, err error)
-}
-
-type EncodeOptions struct {
-	// Encode a struct as an array, and not as a map
-	StructToArray bool
-
-	// Canonical representation means that encoding a value will always result in the same
-	// sequence of bytes.
-	//
-	// This only affects maps, as the iteration order for maps is random.
-	//
-	// The implementation MAY use the natural sort order for the map keys if possible:
-	//
-	//     - If there is a natural sort order (ie for number, bool, string or []byte keys),
-	//       then the map keys are first sorted in natural order and then written
-	//       with corresponding map values to the strema.
-	//     - If there is no natural sort order, then the map keys will first be
-	//       encoded into []byte, and then sorted,
-	//       before writing the sorted keys and the corresponding map values to the stream.
-	//
-	Canonical bool
-
-	// CheckCircularRef controls whether we check for circular references
-	// and error fast during an encode.
-	//
-	// If enabled, an error is received if a pointer to a struct
-	// references itself either directly or through one of its fields (iteratively).
-	//
-	// This is opt-in, as there may be a performance hit to checking circular references.
-	CheckCircularRef bool
-
-	// RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
-	// when checking if a value is empty.
-	//
-	// Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
-	RecursiveEmptyCheck bool
-
-	// Raw controls whether we encode Raw values.
-	// This is a "dangerous" option and must be explicitly set.
-	// If set, we blindly encode Raw values as-is, without checking
-	// if they are a correct representation of a value in that format.
-	// If unset, we error out.
-	Raw bool
-
-	// AsSymbols defines what should be encoded as symbols.
-	//
-	// Encoding as symbols can reduce the encoded size significantly.
-	//
-	// However, during decoding, each string to be encoded as a symbol must
-	// be checked to see if it has been seen before. Consequently, encoding time
-	// will increase if using symbols, because string comparisons has a clear cost.
-	//
-	// Sample values:
-	//   AsSymbolNone
-	//   AsSymbolAll
-	//   AsSymbolMapStringKeys
-	//   AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
-	AsSymbols AsSymbolFlag
-}
-
-// ---------------------------------------------
-
-type simpleIoEncWriterWriter struct {
-	w  io.Writer
-	bw io.ByteWriter
-	sw ioEncStringWriter
-	bs [1]byte
-}
-
-func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
-	if o.bw != nil {
-		return o.bw.WriteByte(c)
-	}
-	// _, err = o.w.Write([]byte{c})
-	o.bs[0] = c
-	_, err = o.w.Write(o.bs[:])
-	return
-}
-
-func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
-	if o.sw != nil {
-		return o.sw.WriteString(s)
-	}
-	// return o.w.Write([]byte(s))
-	return o.w.Write(bytesView(s))
-}
-
-func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
-	return o.w.Write(p)
-}
-
-// ----------------------------------------
-
-// ioEncWriter implements encWriter and can write to an io.Writer implementation
-type ioEncWriter struct {
-	w ioEncWriterWriter
-	s simpleIoEncWriterWriter
-	// x [8]byte // temp byte array re-used internally for efficiency
-}
-
-func (z *ioEncWriter) writeb(bs []byte) {
-	if len(bs) == 0 {
-		return
-	}
-	n, err := z.w.Write(bs)
-	if err != nil {
-		panic(err)
-	}
-	if n != len(bs) {
-		panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
-	}
-}
-
-func (z *ioEncWriter) writestr(s string) {
-	n, err := z.w.WriteString(s)
-	if err != nil {
-		panic(err)
-	}
-	if n != len(s) {
-		panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
-	}
-}
-
-func (z *ioEncWriter) writen1(b byte) {
-	if err := z.w.WriteByte(b); err != nil {
-		panic(err)
-	}
-}
-
-func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
-	z.writen1(b1)
-	z.writen1(b2)
-}
-
-func (z *ioEncWriter) atEndOfEncode() {}
-
-// ----------------------------------------
-
-// bytesEncWriter implements encWriter and can write to an byte slice.
-// It is used by Marshal function.
-type bytesEncWriter struct {
-	b   []byte
-	c   int     // cursor
-	out *[]byte // write out on atEndOfEncode
-}
-
-func (z *bytesEncWriter) writeb(s []byte) {
-	if len(s) == 0 {
-		return
-	}
-	oc, a := z.growNoAlloc(len(s))
-	if a {
-		z.growAlloc(len(s), oc)
-	}
-	copy(z.b[oc:], s)
-}
-
-func (z *bytesEncWriter) writestr(s string) {
-	if len(s) == 0 {
-		return
-	}
-	oc, a := z.growNoAlloc(len(s))
-	if a {
-		z.growAlloc(len(s), oc)
-	}
-	copy(z.b[oc:], s)
-}
-
-func (z *bytesEncWriter) writen1(b1 byte) {
-	oc, a := z.growNoAlloc(1)
-	if a {
-		z.growAlloc(1, oc)
-	}
-	z.b[oc] = b1
-}
-
-func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
-	oc, a := z.growNoAlloc(2)
-	if a {
-		z.growAlloc(2, oc)
-	}
-	z.b[oc+1] = b2
-	z.b[oc] = b1
-}
-
-func (z *bytesEncWriter) atEndOfEncode() {
-	*(z.out) = z.b[:z.c]
-}
-
-// have a growNoalloc(n int), which can be inlined.
-// if allocation is needed, then call growAlloc(n int)
-
-func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
-	oldcursor = z.c
-	z.c = z.c + n
-	if z.c > len(z.b) {
-		if z.c > cap(z.b) {
-			allocNeeded = true
-		} else {
-			z.b = z.b[:cap(z.b)]
-		}
-	}
-	return
-}
-
-func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
-	// appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
-	// bytes.Buffer model (2*cap + n): much better
-	// bs := make([]byte, 2*cap(z.b)+n)
-	bs := make([]byte, growCap(cap(z.b), 1, n))
-	copy(bs, z.b[:oldcursor])
-	z.b = bs
-}
-
-// ---------------------------------------------
-
-type encFnInfo struct {
-	e     *Encoder
-	ti    *typeInfo
-	xfFn  Ext
-	xfTag uint64
-	seq   seqType
-}
-
-func (f *encFnInfo) builtin(rv reflect.Value) {
-	f.e.e.EncodeBuiltin(f.ti.rtid, rv.Interface())
-}
-
-func (f *encFnInfo) raw(rv reflect.Value) {
-	f.e.raw(rv.Interface().(Raw))
-}
-
-func (f *encFnInfo) rawExt(rv reflect.Value) {
-	// rev := rv.Interface().(RawExt)
-	// f.e.e.EncodeRawExt(&rev, f.e)
-	var re *RawExt
-	if rv.CanAddr() {
-		re = rv.Addr().Interface().(*RawExt)
-	} else {
-		rev := rv.Interface().(RawExt)
-		re = &rev
-	}
-	f.e.e.EncodeRawExt(re, f.e)
-}
-
-func (f *encFnInfo) ext(rv reflect.Value) {
-	// if this is a struct|array and it was addressable, then pass the address directly (not the value)
-	if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
-		rv = rv.Addr()
-	}
-	f.e.e.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
-}
-
-func (f *encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
-	if indir == 0 {
-		v = rv.Interface()
-	} else if indir == -1 {
-		// If a non-pointer was passed to Encode(), then that value is not addressable.
-		// Take addr if addressable, else copy value to an addressable value.
-		if rv.CanAddr() {
-			v = rv.Addr().Interface()
-		} else {
-			rv2 := reflect.New(rv.Type())
-			rv2.Elem().Set(rv)
-			v = rv2.Interface()
-			// fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", rv.Type(), rv2.Type(), v)
-		}
-	} else {
-		for j := int8(0); j < indir; j++ {
-			if rv.IsNil() {
-				f.e.e.EncodeNil()
-				return
-			}
-			rv = rv.Elem()
-		}
-		v = rv.Interface()
-	}
-	return v, true
-}
-
-func (f *encFnInfo) selferMarshal(rv reflect.Value) {
-	if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
-		v.(Selfer).CodecEncodeSelf(f.e)
-	}
-}
-
-func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
-	if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
-		bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
-		f.e.marshal(bs, fnerr, false, c_RAW)
-	}
-}
-
-func (f *encFnInfo) textMarshal(rv reflect.Value) {
-	if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
-		// debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
-		bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
-		f.e.marshal(bs, fnerr, false, c_UTF8)
-	}
-}
-
-func (f *encFnInfo) jsonMarshal(rv reflect.Value) {
-	if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
-		bs, fnerr := v.(jsonMarshaler).MarshalJSON()
-		f.e.marshal(bs, fnerr, true, c_UTF8)
-	}
-}
-
-func (f *encFnInfo) kBool(rv reflect.Value) {
-	f.e.e.EncodeBool(rv.Bool())
-}
-
-func (f *encFnInfo) kString(rv reflect.Value) {
-	f.e.e.EncodeString(c_UTF8, rv.String())
-}
-
-func (f *encFnInfo) kFloat64(rv reflect.Value) {
-	f.e.e.EncodeFloat64(rv.Float())
-}
-
-func (f *encFnInfo) kFloat32(rv reflect.Value) {
-	f.e.e.EncodeFloat32(float32(rv.Float()))
-}
-
-func (f *encFnInfo) kInt(rv reflect.Value) {
-	f.e.e.EncodeInt(rv.Int())
-}
-
-func (f *encFnInfo) kUint(rv reflect.Value) {
-	f.e.e.EncodeUint(rv.Uint())
-}
-
-func (f *encFnInfo) kInvalid(rv reflect.Value) {
-	f.e.e.EncodeNil()
-}
-
-func (f *encFnInfo) kErr(rv reflect.Value) {
-	f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
-}
-
-func (f *encFnInfo) kSlice(rv reflect.Value) {
-	ti := f.ti
-	// array may be non-addressable, so we have to manage with care
-	//   (don't call rv.Bytes, rv.Slice, etc).
-	// E.g. type struct S{B [2]byte};
-	//   Encode(S{}) will bomb on "panic: slice of unaddressable array".
-	e := f.e
-	if f.seq != seqTypeArray {
-		if rv.IsNil() {
-			e.e.EncodeNil()
-			return
-		}
-		// If in this method, then there was no extension function defined.
-		// So it's okay to treat as []byte.
-		if ti.rtid == uint8SliceTypId {
-			e.e.EncodeStringBytes(c_RAW, rv.Bytes())
-			return
-		}
-	}
-	cr := e.cr
-	rtelem := ti.rt.Elem()
-	l := rv.Len()
-	if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
-		switch f.seq {
-		case seqTypeArray:
-			// if l == 0 { e.e.encodeStringBytes(c_RAW, nil) } else
-			if rv.CanAddr() {
-				e.e.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
-			} else {
-				var bs []byte
-				if l <= cap(e.b) {
-					bs = e.b[:l]
-				} else {
-					bs = make([]byte, l)
-				}
-				reflect.Copy(reflect.ValueOf(bs), rv)
-				// TODO: Test that reflect.Copy works instead of manual one-by-one
-				// for i := 0; i < l; i++ {
-				// 	bs[i] = byte(rv.Index(i).Uint())
-				// }
-				e.e.EncodeStringBytes(c_RAW, bs)
-			}
-		case seqTypeSlice:
-			e.e.EncodeStringBytes(c_RAW, rv.Bytes())
-		case seqTypeChan:
-			bs := e.b[:0]
-			// do not use range, so that the number of elements encoded
-			// does not change, and encoding does not hang waiting on someone to close chan.
-			// for b := range rv.Interface().(<-chan byte) {
-			// 	bs = append(bs, b)
-			// }
-			ch := rv.Interface().(<-chan byte)
-			for i := 0; i < l; i++ {
-				bs = append(bs, <-ch)
-			}
-			e.e.EncodeStringBytes(c_RAW, bs)
-		}
-		return
-	}
-
-	if ti.mbs {
-		if l%2 == 1 {
-			e.errorf("mapBySlice requires even slice length, but got %v", l)
-			return
-		}
-		e.e.EncodeMapStart(l / 2)
-	} else {
-		e.e.EncodeArrayStart(l)
-	}
-
-	if l > 0 {
-		for rtelem.Kind() == reflect.Ptr {
-			rtelem = rtelem.Elem()
-		}
-		// if kind is reflect.Interface, do not pre-determine the
-		// encoding type, because preEncodeValue may break it down to
-		// a concrete type and kInterface will bomb.
-		var fn *encFn
-		if rtelem.Kind() != reflect.Interface {
-			rtelemid := reflect.ValueOf(rtelem).Pointer()
-			fn = e.getEncFn(rtelemid, rtelem, true, true)
-		}
-		// TODO: Consider perf implication of encoding odd index values as symbols if type is string
-		for j := 0; j < l; j++ {
-			if cr != nil {
-				if ti.mbs {
-					if j%2 == 0 {
-						cr.sendContainerState(containerMapKey)
-					} else {
-						cr.sendContainerState(containerMapValue)
-					}
-				} else {
-					cr.sendContainerState(containerArrayElem)
-				}
-			}
-			if f.seq == seqTypeChan {
-				if rv2, ok2 := rv.Recv(); ok2 {
-					e.encodeValue(rv2, fn)
-				} else {
-					e.encode(nil) // WE HAVE TO DO SOMETHING, so nil if nothing received.
-				}
-			} else {
-				e.encodeValue(rv.Index(j), fn)
-			}
-		}
-	}
-
-	if cr != nil {
-		if ti.mbs {
-			cr.sendContainerState(containerMapEnd)
-		} else {
-			cr.sendContainerState(containerArrayEnd)
-		}
-	}
-}
-
-func (f *encFnInfo) kStruct(rv reflect.Value) {
-	fti := f.ti
-	e := f.e
-	cr := e.cr
-	tisfi := fti.sfip
-	toMap := !(fti.toArray || e.h.StructToArray)
-	newlen := len(fti.sfi)
-
-	// Use sync.Pool to reduce allocating slices unnecessarily.
-	// The cost of sync.Pool is less than the cost of new allocation.
-	pool, poolv, fkvs := encStructPoolGet(newlen)
-
-	// if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
-	if toMap {
-		tisfi = fti.sfi
-	}
-	newlen = 0
-	var kv stringRv
-	recur := e.h.RecursiveEmptyCheck
-	for _, si := range tisfi {
-		kv.r = si.field(rv, false)
-		if toMap {
-			if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
-				continue
-			}
-			kv.v = si.encName
-		} else {
-			// use the zero value.
-			// if a reference or struct, set to nil (so you do not output too much)
-			if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
-				switch kv.r.Kind() {
-				case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
-					kv.r = reflect.Value{} //encode as nil
-				}
-			}
-		}
-		fkvs[newlen] = kv
-		newlen++
-	}
-
-	// debugf(">>>> kStruct: newlen: %v", newlen)
-	// sep := !e.be
-	ee := e.e //don't dereference every time
-
-	if toMap {
-		ee.EncodeMapStart(newlen)
-		// asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
-		asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
-		for j := 0; j < newlen; j++ {
-			kv = fkvs[j]
-			if cr != nil {
-				cr.sendContainerState(containerMapKey)
-			}
-			if asSymbols {
-				ee.EncodeSymbol(kv.v)
-			} else {
-				ee.EncodeString(c_UTF8, kv.v)
-			}
-			if cr != nil {
-				cr.sendContainerState(containerMapValue)
-			}
-			e.encodeValue(kv.r, nil)
-		}
-		if cr != nil {
-			cr.sendContainerState(containerMapEnd)
-		}
-	} else {
-		ee.EncodeArrayStart(newlen)
-		for j := 0; j < newlen; j++ {
-			kv = fkvs[j]
-			if cr != nil {
-				cr.sendContainerState(containerArrayElem)
-			}
-			e.encodeValue(kv.r, nil)
-		}
-		if cr != nil {
-			cr.sendContainerState(containerArrayEnd)
-		}
-	}
-
-	// do not use defer. Instead, use explicit pool return at end of function.
-	// defer has a cost we are trying to avoid.
-	// If there is a panic and these slices are not returned, it is ok.
-	if pool != nil {
-		pool.Put(poolv)
-	}
-}
-
-// func (f *encFnInfo) kPtr(rv reflect.Value) {
-// 	debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
-// 	if rv.IsNil() {
-// 		f.e.e.encodeNil()
-// 		return
-// 	}
-// 	f.e.encodeValue(rv.Elem())
-// }
-
-// func (f *encFnInfo) kInterface(rv reflect.Value) {
-// 	println("kInterface called")
-// 	debug.PrintStack()
-// 	if rv.IsNil() {
-// 		f.e.e.EncodeNil()
-// 		return
-// 	}
-// 	f.e.encodeValue(rv.Elem(), nil)
-// }
-
-func (f *encFnInfo) kMap(rv reflect.Value) {
-	ee := f.e.e
-	if rv.IsNil() {
-		ee.EncodeNil()
-		return
-	}
-
-	l := rv.Len()
-	ee.EncodeMapStart(l)
-	e := f.e
-	cr := e.cr
-	if l == 0 {
-		if cr != nil {
-			cr.sendContainerState(containerMapEnd)
-		}
-		return
-	}
-	var asSymbols bool
-	// determine the underlying key and val encFn's for the map.
-	// This eliminates some work which is done for each loop iteration i.e.
-	// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
-	//
-	// However, if kind is reflect.Interface, do not pre-determine the
-	// encoding type, because preEncodeValue may break it down to
-	// a concrete type and kInterface will bomb.
-	var keyFn, valFn *encFn
-	ti := f.ti
-	rtkey := ti.rt.Key()
-	rtval := ti.rt.Elem()
-	rtkeyid := reflect.ValueOf(rtkey).Pointer()
-	// keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
-	var keyTypeIsString = rtkeyid == stringTypId
-	if keyTypeIsString {
-		asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
-	} else {
-		for rtkey.Kind() == reflect.Ptr {
-			rtkey = rtkey.Elem()
-		}
-		if rtkey.Kind() != reflect.Interface {
-			rtkeyid = reflect.ValueOf(rtkey).Pointer()
-			keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
-		}
-	}
-	for rtval.Kind() == reflect.Ptr {
-		rtval = rtval.Elem()
-	}
-	if rtval.Kind() != reflect.Interface {
-		rtvalid := reflect.ValueOf(rtval).Pointer()
-		valFn = e.getEncFn(rtvalid, rtval, true, true)
-	}
-	mks := rv.MapKeys()
-	// for j, lmks := 0, len(mks); j < lmks; j++ {
-
-	if e.h.Canonical {
-		e.kMapCanonical(rtkeyid, rtkey, rv, mks, valFn, asSymbols)
-	} else {
-		for j := range mks {
-			if cr != nil {
-				cr.sendContainerState(containerMapKey)
-			}
-			if keyTypeIsString {
-				if asSymbols {
-					ee.EncodeSymbol(mks[j].String())
-				} else {
-					ee.EncodeString(c_UTF8, mks[j].String())
-				}
-			} else {
-				e.encodeValue(mks[j], keyFn)
-			}
-			if cr != nil {
-				cr.sendContainerState(containerMapValue)
-			}
-			e.encodeValue(rv.MapIndex(mks[j]), valFn)
-		}
-	}
-	if cr != nil {
-		cr.sendContainerState(containerMapEnd)
-	}
-}
-
-func (e *Encoder) kMapCanonical(rtkeyid uintptr, rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *encFn, asSymbols bool) {
-	ee := e.e
-	cr := e.cr
-	// we previously did out-of-band if an extension was registered.
-	// This is not necessary, as the natural kind is sufficient for ordering.
-
-	if rtkeyid == uint8SliceTypId {
-		mksv := make([]bytesRv, len(mks))
-		for i, k := range mks {
-			v := &mksv[i]
-			v.r = k
-			v.v = k.Bytes()
-		}
-		sort.Sort(bytesRvSlice(mksv))
-		for i := range mksv {
-			if cr != nil {
-				cr.sendContainerState(containerMapKey)
-			}
-			ee.EncodeStringBytes(c_RAW, mksv[i].v)
-			if cr != nil {
-				cr.sendContainerState(containerMapValue)
-			}
-			e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-		}
-	} else {
-		switch rtkey.Kind() {
-		case reflect.Bool:
-			mksv := make([]boolRv, len(mks))
-			for i, k := range mks {
-				v := &mksv[i]
-				v.r = k
-				v.v = k.Bool()
-			}
-			sort.Sort(boolRvSlice(mksv))
-			for i := range mksv {
-				if cr != nil {
-					cr.sendContainerState(containerMapKey)
-				}
-				ee.EncodeBool(mksv[i].v)
-				if cr != nil {
-					cr.sendContainerState(containerMapValue)
-				}
-				e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-			}
-		case reflect.String:
-			mksv := make([]stringRv, len(mks))
-			for i, k := range mks {
-				v := &mksv[i]
-				v.r = k
-				v.v = k.String()
-			}
-			sort.Sort(stringRvSlice(mksv))
-			for i := range mksv {
-				if cr != nil {
-					cr.sendContainerState(containerMapKey)
-				}
-				if asSymbols {
-					ee.EncodeSymbol(mksv[i].v)
-				} else {
-					ee.EncodeString(c_UTF8, mksv[i].v)
-				}
-				if cr != nil {
-					cr.sendContainerState(containerMapValue)
-				}
-				e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-			}
-		case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
-			mksv := make([]uintRv, len(mks))
-			for i, k := range mks {
-				v := &mksv[i]
-				v.r = k
-				v.v = k.Uint()
-			}
-			sort.Sort(uintRvSlice(mksv))
-			for i := range mksv {
-				if cr != nil {
-					cr.sendContainerState(containerMapKey)
-				}
-				ee.EncodeUint(mksv[i].v)
-				if cr != nil {
-					cr.sendContainerState(containerMapValue)
-				}
-				e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-			}
-		case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
-			mksv := make([]intRv, len(mks))
-			for i, k := range mks {
-				v := &mksv[i]
-				v.r = k
-				v.v = k.Int()
-			}
-			sort.Sort(intRvSlice(mksv))
-			for i := range mksv {
-				if cr != nil {
-					cr.sendContainerState(containerMapKey)
-				}
-				ee.EncodeInt(mksv[i].v)
-				if cr != nil {
-					cr.sendContainerState(containerMapValue)
-				}
-				e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-			}
-		case reflect.Float32:
-			mksv := make([]floatRv, len(mks))
-			for i, k := range mks {
-				v := &mksv[i]
-				v.r = k
-				v.v = k.Float()
-			}
-			sort.Sort(floatRvSlice(mksv))
-			for i := range mksv {
-				if cr != nil {
-					cr.sendContainerState(containerMapKey)
-				}
-				ee.EncodeFloat32(float32(mksv[i].v))
-				if cr != nil {
-					cr.sendContainerState(containerMapValue)
-				}
-				e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-			}
-		case reflect.Float64:
-			mksv := make([]floatRv, len(mks))
-			for i, k := range mks {
-				v := &mksv[i]
-				v.r = k
-				v.v = k.Float()
-			}
-			sort.Sort(floatRvSlice(mksv))
-			for i := range mksv {
-				if cr != nil {
-					cr.sendContainerState(containerMapKey)
-				}
-				ee.EncodeFloat64(mksv[i].v)
-				if cr != nil {
-					cr.sendContainerState(containerMapValue)
-				}
-				e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-			}
-		default:
-			// out-of-band
-			// first encode each key to a []byte first, then sort them, then record
-			var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
-			e2 := NewEncoderBytes(&mksv, e.hh)
-			mksbv := make([]bytesRv, len(mks))
-			for i, k := range mks {
-				v := &mksbv[i]
-				l := len(mksv)
-				e2.MustEncode(k)
-				v.r = k
-				v.v = mksv[l:]
-				// fmt.Printf(">>>>> %s\n", mksv[l:])
-			}
-			sort.Sort(bytesRvSlice(mksbv))
-			for j := range mksbv {
-				if cr != nil {
-					cr.sendContainerState(containerMapKey)
-				}
-				e.asis(mksbv[j].v)
-				if cr != nil {
-					cr.sendContainerState(containerMapValue)
-				}
-				e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
-			}
-		}
-	}
-}
-
-// --------------------------------------------------
-
-// encFn encapsulates the captured variables and the encode function.
-// This way, we only do some calculations one times, and pass to the
-// code block that should be called (encapsulated in a function)
-// instead of executing the checks every time.
-type encFn struct {
-	i encFnInfo
-	f func(*encFnInfo, reflect.Value)
-}
-
-// --------------------------------------------------
-
-type encRtidFn struct {
-	rtid uintptr
-	fn   encFn
-}
-
-// An Encoder writes an object to an output stream in the codec format.
-type Encoder struct {
-	// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
-	e encDriver
-	// NOTE: Encoder shouldn't call it's write methods,
-	// as the handler MAY need to do some coordination.
-	w  encWriter
-	s  []encRtidFn
-	ci set
-	be bool // is binary encoding
-	js bool // is json handle
-
-	wi ioEncWriter
-	wb bytesEncWriter
-
-	h  *BasicHandle
-	hh Handle
-
-	cr containerStateRecv
-	as encDriverAsis
-
-	f map[uintptr]*encFn
-	b [scratchByteArrayLen]byte
-}
-
-// NewEncoder returns an Encoder for encoding into an io.Writer.
-//
-// For efficiency, Users are encouraged to pass in a memory buffered writer
-// (eg bufio.Writer, bytes.Buffer).
-func NewEncoder(w io.Writer, h Handle) *Encoder {
-	e := newEncoder(h)
-	e.Reset(w)
-	return e
-}
-
-// NewEncoderBytes returns an encoder for encoding directly and efficiently
-// into a byte slice, using zero-copying to temporary slices.
-//
-// It will potentially replace the output byte slice pointed to.
-// After encoding, the out parameter contains the encoded contents.
-func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
-	e := newEncoder(h)
-	e.ResetBytes(out)
-	return e
-}
-
-func newEncoder(h Handle) *Encoder {
-	e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
-	_, e.js = h.(*JsonHandle)
-	e.e = h.newEncDriver(e)
-	e.as, _ = e.e.(encDriverAsis)
-	e.cr, _ = e.e.(containerStateRecv)
-	return e
-}
-
-// Reset the Encoder with a new output stream.
-//
-// This accommodates using the state of the Encoder,
-// where it has "cached" information about sub-engines.
-func (e *Encoder) Reset(w io.Writer) {
-	ww, ok := w.(ioEncWriterWriter)
-	if ok {
-		e.wi.w = ww
-	} else {
-		sww := &e.wi.s
-		sww.w = w
-		sww.bw, _ = w.(io.ByteWriter)
-		sww.sw, _ = w.(ioEncStringWriter)
-		e.wi.w = sww
-		//ww = bufio.NewWriterSize(w, defEncByteBufSize)
-	}
-	e.w = &e.wi
-	e.e.reset()
-}
-
-func (e *Encoder) ResetBytes(out *[]byte) {
-	in := *out
-	if in == nil {
-		in = make([]byte, defEncByteBufSize)
-	}
-	e.wb.b, e.wb.out, e.wb.c = in, out, 0
-	e.w = &e.wb
-	e.e.reset()
-}
-
-// func (e *Encoder) sendContainerState(c containerState) {
-// 	if e.cr != nil {
-// 		e.cr.sendContainerState(c)
-// 	}
-// }
-
-// Encode writes an object into a stream.
-//
-// Encoding can be configured via the struct tag for the fields.
-// The "codec" key in struct field's tag value is the key name,
-// followed by an optional comma and options.
-// Note that the "json" key is used in the absence of the "codec" key.
-//
-// To set an option on all fields (e.g. omitempty on all fields), you
-// can create a field called _struct, and set flags on it.
-//
-// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
-//    - the field's tag is "-", OR
-//    - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
-//
-// When encoding as a map, the first string in the tag (before the comma)
-// is the map key string to use when encoding.
-//
-// However, struct values may encode as arrays. This happens when:
-//    - StructToArray Encode option is set, OR
-//    - the tag on the _struct field sets the "toarray" option
-//
-// Values with types that implement MapBySlice are encoded as stream maps.
-//
-// The empty values (for omitempty option) are false, 0, any nil pointer
-// or interface value, and any array, slice, map, or string of length zero.
-//
-// Anonymous fields are encoded inline except:
-//    - the struct tag specifies a replacement name (first value)
-//    - the field is of an interface type
-//
-// Examples:
-//
-//      // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
-//      type MyStruct struct {
-//          _struct bool    `codec:",omitempty"`   //set omitempty for every field
-//          Field1 string   `codec:"-"`            //skip this field
-//          Field2 int      `codec:"myName"`       //Use key "myName" in encode stream
-//          Field3 int32    `codec:",omitempty"`   //use key "Field3". Omit if empty.
-//          Field4 bool     `codec:"f4,omitempty"` //use key "f4". Omit if empty.
-//          io.Reader                              //use key "Reader".
-//          MyStruct        `codec:"my1"           //use key "my1".
-//          MyStruct                               //inline it
-//          ...
-//      }
-//
-//      type MyStruct struct {
-//          _struct bool    `codec:",omitempty,toarray"`   //set omitempty for every field
-//                                                         //and encode struct as an array
-//      }
-//
-// The mode of encoding is based on the type of the value. When a value is seen:
-//   - If a Selfer, call its CodecEncodeSelf method
-//   - If an extension is registered for it, call that extension function
-//   - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
-//   - Else encode it based on its reflect.Kind
-//
-// Note that struct field names and keys in map[string]XXX will be treated as symbols.
-// Some formats support symbols (e.g. binc) and will properly encode the string
-// only once in the stream, and use a tag to refer to it thereafter.
-func (e *Encoder) Encode(v interface{}) (err error) {
-	defer panicToErr(&err)
-	e.encode(v)
-	e.w.atEndOfEncode()
-	return
-}
-
-// MustEncode is like Encode, but panics if unable to Encode.
-// This provides insight to the code location that triggered the error.
-func (e *Encoder) MustEncode(v interface{}) {
-	e.encode(v)
-	e.w.atEndOfEncode()
-}
-
-func (e *Encoder) encode(iv interface{}) {
-	// if ics, ok := iv.(Selfer); ok {
-	// 	ics.CodecEncodeSelf(e)
-	// 	return
-	// }
-
-	switch v := iv.(type) {
-	case nil:
-		e.e.EncodeNil()
-	case Selfer:
-		v.CodecEncodeSelf(e)
-	case Raw:
-		e.raw(v)
-	case reflect.Value:
-		e.encodeValue(v, nil)
-
-	case string:
-		e.e.EncodeString(c_UTF8, v)
-	case bool:
-		e.e.EncodeBool(v)
-	case int:
-		e.e.EncodeInt(int64(v))
-	case int8:
-		e.e.EncodeInt(int64(v))
-	case int16:
-		e.e.EncodeInt(int64(v))
-	case int32:
-		e.e.EncodeInt(int64(v))
-	case int64:
-		e.e.EncodeInt(v)
-	case uint:
-		e.e.EncodeUint(uint64(v))
-	case uint8:
-		e.e.EncodeUint(uint64(v))
-	case uint16:
-		e.e.EncodeUint(uint64(v))
-	case uint32:
-		e.e.EncodeUint(uint64(v))
-	case uint64:
-		e.e.EncodeUint(v)
-	case float32:
-		e.e.EncodeFloat32(v)
-	case float64:
-		e.e.EncodeFloat64(v)
-
-	case []uint8:
-		e.e.EncodeStringBytes(c_RAW, v)
-
-	case *string:
-		e.e.EncodeString(c_UTF8, *v)
-	case *bool:
-		e.e.EncodeBool(*v)
-	case *int:
-		e.e.EncodeInt(int64(*v))
-	case *int8:
-		e.e.EncodeInt(int64(*v))
-	case *int16:
-		e.e.EncodeInt(int64(*v))
-	case *int32:
-		e.e.EncodeInt(int64(*v))
-	case *int64:
-		e.e.EncodeInt(*v)
-	case *uint:
-		e.e.EncodeUint(uint64(*v))
-	case *uint8:
-		e.e.EncodeUint(uint64(*v))
-	case *uint16:
-		e.e.EncodeUint(uint64(*v))
-	case *uint32:
-		e.e.EncodeUint(uint64(*v))
-	case *uint64:
-		e.e.EncodeUint(*v)
-	case *float32:
-		e.e.EncodeFloat32(*v)
-	case *float64:
-		e.e.EncodeFloat64(*v)
-
-	case *[]uint8:
-		e.e.EncodeStringBytes(c_RAW, *v)
-
-	default:
-		const checkCodecSelfer1 = true // in case T is passed, where *T is a Selfer, still checkCodecSelfer
-		if !fastpathEncodeTypeSwitch(iv, e) {
-			e.encodeI(iv, false, checkCodecSelfer1)
-		}
-	}
-}
-
-func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, sptr uintptr, proceed bool) {
-	// use a goto statement instead of a recursive function for ptr/interface.
-TOP:
-	switch rv.Kind() {
-	case reflect.Ptr:
-		if rv.IsNil() {
-			e.e.EncodeNil()
-			return
-		}
-		rv = rv.Elem()
-		if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
-			// TODO: Movable pointers will be an issue here. Future problem.
-			sptr = rv.UnsafeAddr()
-			break TOP
-		}
-		goto TOP
-	case reflect.Interface:
-		if rv.IsNil() {
-			e.e.EncodeNil()
-			return
-		}
-		rv = rv.Elem()
-		goto TOP
-	case reflect.Slice, reflect.Map:
-		if rv.IsNil() {
-			e.e.EncodeNil()
-			return
-		}
-	case reflect.Invalid, reflect.Func:
-		e.e.EncodeNil()
-		return
-	}
-
-	proceed = true
-	rv2 = rv
-	return
-}
-
-func (e *Encoder) doEncodeValue(rv reflect.Value, fn *encFn, sptr uintptr,
-	checkFastpath, checkCodecSelfer bool) {
-	if sptr != 0 {
-		if (&e.ci).add(sptr) {
-			e.errorf("circular reference found: # %d", sptr)
-		}
-	}
-	if fn == nil {
-		rt := rv.Type()
-		rtid := reflect.ValueOf(rt).Pointer()
-		// fn = e.getEncFn(rtid, rt, true, true)
-		fn = e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
-	}
-	fn.f(&fn.i, rv)
-	if sptr != 0 {
-		(&e.ci).remove(sptr)
-	}
-}
-
-func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
-	if rv, sptr, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
-		e.doEncodeValue(rv, nil, sptr, checkFastpath, checkCodecSelfer)
-	}
-}
-
-func (e *Encoder) encodeValue(rv reflect.Value, fn *encFn) {
-	// if a valid fn is passed, it MUST BE for the dereferenced type of rv
-	if rv, sptr, proceed := e.preEncodeValue(rv); proceed {
-		e.doEncodeValue(rv, fn, sptr, true, true)
-	}
-}
-
-func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *encFn) {
-	// rtid := reflect.ValueOf(rt).Pointer()
-	var ok bool
-	if useMapForCodecCache {
-		fn, ok = e.f[rtid]
-	} else {
-		for i := range e.s {
-			v := &(e.s[i])
-			if v.rtid == rtid {
-				fn, ok = &(v.fn), true
-				break
-			}
-		}
-	}
-	if ok {
-		return
-	}
-
-	if useMapForCodecCache {
-		if e.f == nil {
-			e.f = make(map[uintptr]*encFn, initCollectionCap)
-		}
-		fn = new(encFn)
-		e.f[rtid] = fn
-	} else {
-		if e.s == nil {
-			e.s = make([]encRtidFn, 0, initCollectionCap)
-		}
-		e.s = append(e.s, encRtidFn{rtid: rtid})
-		fn = &(e.s[len(e.s)-1]).fn
-	}
-
-	ti := e.h.getTypeInfo(rtid, rt)
-	fi := &(fn.i)
-	fi.e = e
-	fi.ti = ti
-
-	if checkCodecSelfer && ti.cs {
-		fn.f = (*encFnInfo).selferMarshal
-	} else if rtid == rawTypId {
-		fn.f = (*encFnInfo).raw
-	} else if rtid == rawExtTypId {
-		fn.f = (*encFnInfo).rawExt
-	} else if e.e.IsBuiltinType(rtid) {
-		fn.f = (*encFnInfo).builtin
-	} else if xfFn := e.h.getExt(rtid); xfFn != nil {
-		fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
-		fn.f = (*encFnInfo).ext
-	} else if supportMarshalInterfaces && e.be && ti.bm {
-		fn.f = (*encFnInfo).binaryMarshal
-	} else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
-		//If JSON, we should check JSONMarshal before textMarshal
-		fn.f = (*encFnInfo).jsonMarshal
-	} else if supportMarshalInterfaces && !e.be && ti.tm {
-		fn.f = (*encFnInfo).textMarshal
-	} else {
-		rk := rt.Kind()
-		if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
-			if rt.PkgPath() == "" { // un-named slice or map
-				if idx := fastpathAV.index(rtid); idx != -1 {
-					fn.f = fastpathAV[idx].encfn
-				}
-			} else {
-				ok = false
-				// use mapping for underlying type if there
-				var rtu reflect.Type
-				if rk == reflect.Map {
-					rtu = reflect.MapOf(rt.Key(), rt.Elem())
-				} else {
-					rtu = reflect.SliceOf(rt.Elem())
-				}
-				rtuid := reflect.ValueOf(rtu).Pointer()
-				if idx := fastpathAV.index(rtuid); idx != -1 {
-					xfnf := fastpathAV[idx].encfn
-					xrt := fastpathAV[idx].rt
-					fn.f = func(xf *encFnInfo, xrv reflect.Value) {
-						xfnf(xf, xrv.Convert(xrt))
-					}
-				}
-			}
-		}
-		if fn.f == nil {
-			switch rk {
-			case reflect.Bool:
-				fn.f = (*encFnInfo).kBool
-			case reflect.String:
-				fn.f = (*encFnInfo).kString
-			case reflect.Float64:
-				fn.f = (*encFnInfo).kFloat64
-			case reflect.Float32:
-				fn.f = (*encFnInfo).kFloat32
-			case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
-				fn.f = (*encFnInfo).kInt
-			case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16, reflect.Uintptr:
-				fn.f = (*encFnInfo).kUint
-			case reflect.Invalid:
-				fn.f = (*encFnInfo).kInvalid
-			case reflect.Chan:
-				fi.seq = seqTypeChan
-				fn.f = (*encFnInfo).kSlice
-			case reflect.Slice:
-				fi.seq = seqTypeSlice
-				fn.f = (*encFnInfo).kSlice
-			case reflect.Array:
-				fi.seq = seqTypeArray
-				fn.f = (*encFnInfo).kSlice
-			case reflect.Struct:
-				fn.f = (*encFnInfo).kStruct
-				// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
-				// case reflect.Ptr:
-				// 	fn.f = (*encFnInfo).kPtr
-				// case reflect.Interface:
-				// 	fn.f = (*encFnInfo).kInterface
-			case reflect.Map:
-				fn.f = (*encFnInfo).kMap
-			default:
-				fn.f = (*encFnInfo).kErr
-			}
-		}
-	}
-
-	return
-}
-
-func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
-	if fnerr != nil {
-		panic(fnerr)
-	}
-	if bs == nil {
-		e.e.EncodeNil()
-	} else if asis {
-		e.asis(bs)
-	} else {
-		e.e.EncodeStringBytes(c, bs)
-	}
-}
-
-func (e *Encoder) asis(v []byte) {
-	if e.as == nil {
-		e.w.writeb(v)
-	} else {
-		e.as.EncodeAsis(v)
-	}
-}
-
-func (e *Encoder) raw(vv Raw) {
-	v := []byte(vv)
-	if !e.h.Raw {
-		e.errorf("Raw values cannot be encoded: %v", v)
-	}
-	if e.as == nil {
-		e.w.writeb(v)
-	} else {
-		e.as.EncodeAsis(v)
-	}
-}
-
-func (e *Encoder) errorf(format string, params ...interface{}) {
-	err := fmt.Errorf(format, params...)
-	panic(err)
-}
-
-// ----------------------------------------
-
-const encStructPoolLen = 5
-
-// encStructPool is an array of sync.Pool.
-// Each element of the array pools one of encStructPool(8|16|32|64).
-// It allows the re-use of slices up to 64 in length.
-// A performance cost of encoding structs was collecting
-// which values were empty and should be omitted.
-// We needed slices of reflect.Value and string to collect them.
-// This shared pool reduces the amount of unnecessary creation we do.
-// The cost is that of locking sometimes, but sync.Pool is efficient
-// enough to reduce thread contention.
-var encStructPool [encStructPoolLen]sync.Pool
-
-func init() {
-	encStructPool[0].New = func() interface{} { return new([8]stringRv) }
-	encStructPool[1].New = func() interface{} { return new([16]stringRv) }
-	encStructPool[2].New = func() interface{} { return new([32]stringRv) }
-	encStructPool[3].New = func() interface{} { return new([64]stringRv) }
-	encStructPool[4].New = func() interface{} { return new([128]stringRv) }
-}
-
-func encStructPoolGet(newlen int) (p *sync.Pool, v interface{}, s []stringRv) {
-	// if encStructPoolLen != 5 { // constant chec, so removed at build time.
-	// 	panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
-	// }
-	// idxpool := newlen / 8
-	if newlen <= 8 {
-		p = &encStructPool[0]
-		v = p.Get()
-		s = v.(*[8]stringRv)[:newlen]
-	} else if newlen <= 16 {
-		p = &encStructPool[1]
-		v = p.Get()
-		s = v.(*[16]stringRv)[:newlen]
-	} else if newlen <= 32 {
-		p = &encStructPool[2]
-		v = p.Get()
-		s = v.(*[32]stringRv)[:newlen]
-	} else if newlen <= 64 {
-		p = &encStructPool[3]
-		v = p.Get()
-		s = v.(*[64]stringRv)[:newlen]
-	} else if newlen <= 128 {
-		p = &encStructPool[4]
-		v = p.Get()
-		s = v.(*[128]stringRv)[:newlen]
-	} else {
-		s = make([]stringRv, newlen)
-	}
-	return
-}
-
-// ----------------------------------------
-
-// func encErr(format string, params ...interface{}) {
-// 	doPanic(msgTagEnc, format, params...)
-// }