You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@tvm.apache.org by GitBox <gi...@apache.org> on 2023/01/05 19:16:40 UTC

[GitHub] [tvm] Mousius commented on a diff in pull request #13704: Add support for named outputs in MLF archive

Mousius commented on code in PR #13704:
URL: https://github.com/apache/tvm/pull/13704#discussion_r1062811178


##########
tests/python/unittest/test_micro_model_library_format.py:
##########
@@ -632,5 +632,89 @@ def test_multiple_relay_modules_aot_graph():
     assert metadata["version"] == _GENERATED_VERSION
 
 
+@tvm.testing.requires_micro
+def test_output_name_single():
+    """Generate a conv2d Relay module for testing."""
+    input_a = tvm.relay.var("input_a", shape=(3, 4, 5), dtype="int64")
+    output_1 = input_a + tvm.relay.const(1, "int64")
+    attrs = tvm.ir.make_node("DictAttrs", output_tensor_names=["test_output_a"])
+    main_func = tvm.relay.Function([input_a], output_1, attrs=attrs)
+    mod = tvm.IRModule.from_expr(main_func)
+    mod = tvm.relay.transform.InferType()(mod)
+
+    executor = Executor("aot", {"unpacked-api": True, "interface-api": "c"})
+    runtime = Runtime("crt")
+    target = tvm.target.target.micro("host")
+
+    with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
+        factory = tvm.relay.build(mod, target, runtime=runtime, executor=executor, mod_name="mod1")
+    temp_dir = utils.tempdir()
+    mlf_tar_path = temp_dir.relpath("lib.tar")
+
+    micro.export_model_library_format(factory, mlf_tar_path)
+
+    tf = tarfile.open(mlf_tar_path)
+    extract_dir = temp_dir.relpath("extract")
+    os.mkdir(extract_dir)
+    tf.extractall(extract_dir)
+
+    with open(os.path.join(extract_dir, "metadata.json")) as f:
+        metadata = json.load(f)
+
+    assert metadata["modules"]["mod1"]["memory"]["functions"]["main"][0]["outputs"] == {
+        "test_output_a": {"size": 480, "dtype": "int64"}
+    }
+
+
+@tvm.testing.requires_micro
+def test_output_names_many():
+    """Generate a conv2d Relay module for testing."""
+    input_a = tvm.relay.var("input_a", shape=(3, 4, 5), dtype="int64")
+    input_b = tvm.relay.var("input_b", shape=(3, 4), dtype="int32")
+    input_c = tvm.relay.var("input_c", shape=(3,), dtype="float32")
+
+    output_1 = input_a + tvm.relay.const(1, "int64")
+    output_2 = input_b + tvm.relay.const(2)
+    output_3 = input_b + tvm.relay.const(3)
+    output_4 = input_c + tvm.relay.const(4.0)
+
+    full_output = tvm.relay.Tuple(
+        [output_1, tvm.relay.Tuple([tvm.relay.Tuple([output_2, output_3]), output_4])]
+    )
+    attrs = tvm.ir.make_node(
+        "DictAttrs",
+        output_tensor_names=["test_output_a", "test_output_b", "test_output_c", "test_output_d"],
+    )
+    main_func = tvm.relay.Function([input_a, input_b, input_c], full_output, attrs=attrs)
+    mod = tvm.IRModule.from_expr(main_func)
+    mod = tvm.relay.transform.InferType()(mod)
+
+    executor = Executor("aot", {"unpacked-api": True, "interface-api": "c"})
+    runtime = Runtime("crt")
+    target = tvm.target.target.micro("host")
+
+    with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}):
+        factory = tvm.relay.build(mod, target, runtime=runtime, executor=executor, mod_name="mod1")
+    temp_dir = utils.tempdir()
+    mlf_tar_path = temp_dir.relpath("lib.tar")
+
+    micro.export_model_library_format(factory, mlf_tar_path)
+
+    tf = tarfile.open(mlf_tar_path)
+    extract_dir = temp_dir.relpath("extract")
+    os.mkdir(extract_dir)
+    tf.extractall(extract_dir)
+
+    with open(os.path.join(extract_dir, "metadata.json")) as f:
+        metadata = json.load(f)
+
+    assert metadata["modules"]["mod1"]["memory"]["functions"]["main"][0]["outputs"] == {
+        "test_output_a": {"size": 480, "dtype": "int64"},
+        "test_output_b": {"size": 48, "dtype": "int32"},
+        "test_output_c": {"size": 48, "dtype": "int32"},
+        "test_output_d": {"size": 12, "dtype": "float32"},
+    }
+
+
 if __name__ == "__main__":
     sys.exit(pytest.main([__file__] + sys.argv[1:]))

Review Comment:
   This feels like it'd be better done as a blanket change rather than polluting many individual patches?



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: commits-unsubscribe@tvm.apache.org

For queries about this service, please contact Infrastructure at:
users@infra.apache.org