You are viewing a plain text version of this content. The canonical link for it is here.
Posted to github@arrow.apache.org by "westonpace (via GitHub)" <gi...@apache.org> on 2023/06/06 21:27:29 UTC

[GitHub] [arrow] westonpace commented on a diff in pull request #35654: GH-35652: [Go][Compute] Allow executing Substrait Expressions using Go Compute

westonpace commented on code in PR #35654:
URL: https://github.com/apache/arrow/pull/35654#discussion_r1220389702


##########
go/arrow/compute/exprs/exec.go:
##########
@@ -0,0 +1,631 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+//go:build go1.18
+
+package exprs
+
+import (
+	"context"
+	"fmt"
+	"unsafe"
+
+	"github.com/apache/arrow/go/v13/arrow"
+	"github.com/apache/arrow/go/v13/arrow/array"
+	"github.com/apache/arrow/go/v13/arrow/compute"
+	"github.com/apache/arrow/go/v13/arrow/compute/internal/exec"
+	"github.com/apache/arrow/go/v13/arrow/decimal128"
+	"github.com/apache/arrow/go/v13/arrow/endian"
+	"github.com/apache/arrow/go/v13/arrow/internal/debug"
+	"github.com/apache/arrow/go/v13/arrow/memory"
+	"github.com/apache/arrow/go/v13/arrow/scalar"
+	"github.com/substrait-io/substrait-go/expr"
+	"github.com/substrait-io/substrait-go/extensions"
+	"github.com/substrait-io/substrait-go/types"
+)
+
+func makeExecBatch(ctx context.Context, schema *arrow.Schema, partial compute.Datum) (out compute.ExecBatch, err error) {
+	// cleanup if we get an error
+	defer func() {
+		if err != nil {
+			for _, v := range out.Values {
+				if v != nil {
+					v.Release()
+				}
+			}
+		}
+	}()
+
+	if partial.Kind() == compute.KindRecord {
+		partialBatch := partial.(*compute.RecordDatum).Value
+		batchSchema := partialBatch.Schema()
+
+		out.Values = make([]compute.Datum, len(schema.Fields()))
+		out.Len = partialBatch.NumRows()
+
+		for i, field := range schema.Fields() {
+			idxes := batchSchema.FieldIndices(field.Name)
+			switch len(idxes) {
+			case 0:
+				out.Values[i] = compute.NewDatum(scalar.MakeNullScalar(field.Type))
+			case 1:
+				col := partialBatch.Column(idxes[0])
+				if !arrow.TypeEqual(col.DataType(), field.Type) {
+					// referenced field was present but didn't have expected type
+					// we'll cast this case for now
+					col, err = compute.CastArray(ctx, col, compute.SafeCastOptions(field.Type))
+					if err != nil {
+						return compute.ExecBatch{}, err
+					}
+					defer col.Release()
+				}
+				out.Values[i] = compute.NewDatum(col)
+			default:
+				err = fmt.Errorf("%w: exec batch field '%s' ambiguous, more than one match",
+					arrow.ErrInvalid, field.Name)
+				return compute.ExecBatch{}, err
+			}
+		}
+		return
+	}
+
+	part, ok := partial.(compute.ArrayLikeDatum)
+	if !ok {
+		return out, fmt.Errorf("%w: MakeExecBatch from %s", arrow.ErrNotImplemented, partial)
+	}
+
+	// wasteful but useful for testing
+	if part.Type().ID() == arrow.STRUCT {
+		switch part := part.(type) {
+		case *compute.ArrayDatum:
+			arr := part.MakeArray().(*array.Struct)
+			defer arr.Release()
+
+			batch := array.RecordFromStructArray(arr, nil)
+			defer batch.Release()
+			return makeExecBatch(ctx, schema, compute.NewDatumWithoutOwning(batch))
+		case *compute.ScalarDatum:
+			out.Len = 1
+			out.Values = make([]compute.Datum, len(schema.Fields()))
+
+			s := part.Value.(*scalar.Struct)
+			dt := s.Type.(*arrow.StructType)
+
+			for i, field := range schema.Fields() {
+				idx, found := dt.FieldIdx(field.Name)
+				if !found {
+					out.Values[i] = compute.NewDatum(scalar.MakeNullScalar(field.Type))
+					continue
+				}
+
+				val := s.Value[idx]
+				if !arrow.TypeEqual(val.DataType(), field.Type) {
+					// referenced field was present but didn't have the expected
+					// type. for now we'll cast this
+					val, err = val.CastTo(field.Type)
+					if err != nil {
+						return compute.ExecBatch{}, err
+					}
+				}
+				out.Values[i] = compute.NewDatum(val)
+			}
+			return
+		}
+	}
+
+	return out, fmt.Errorf("%w: MakeExecBatch from %s", arrow.ErrNotImplemented, partial)
+}
+
+// ToArrowSchema takes a substrait NamedStruct and an extension set (for
+// type resolution mapping) and creates the equivalent Arrow Schema.
+func ToArrowSchema(base types.NamedStruct, ext ExtensionIDSet) (*arrow.Schema, error) {
+	fields := make([]arrow.Field, len(base.Names))
+	for i, typ := range base.Struct.Types {
+		dt, nullable, err := FromSubstraitType(typ, ext)
+		if err != nil {
+			return nil, err
+		}
+		fields[i] = arrow.Field{
+			Name:     base.Names[i],
+			Type:     dt,
+			Nullable: nullable,
+		}
+	}
+
+	return arrow.NewSchema(fields, nil), nil
+}
+
+type (
+	regCtxKey struct{}
+	extCtxKey struct{}
+)
+
+func WithExtensionRegistry(ctx context.Context, reg *ExtensionIDRegistry) context.Context {
+	return context.WithValue(ctx, regCtxKey{}, reg)
+}
+
+func GetExtensionRegistry(ctx context.Context) *ExtensionIDRegistry {
+	v, ok := ctx.Value(regCtxKey{}).(*ExtensionIDRegistry)
+	if !ok {
+		v = DefaultExtensionIDRegistry
+	}
+	return v
+}
+
+func WithExtensionIDSet(ctx context.Context, ext ExtensionIDSet) context.Context {
+	return context.WithValue(ctx, extCtxKey{}, ext)
+}
+
+func GetExtensionIDSet(ctx context.Context) ExtensionIDSet {
+	v, ok := ctx.Value(extCtxKey{}).(ExtensionIDSet)
+	if !ok {
+		return NewExtensionSet(
+			expr.NewEmptyExtensionRegistry(&extensions.DefaultCollection),
+			GetExtensionRegistry(ctx))
+	}
+	return v
+}
+
+func literalToDatum(mem memory.Allocator, lit expr.Literal, ext ExtensionIDSet) (compute.Datum, error) {
+	switch v := lit.(type) {
+	case *expr.PrimitiveLiteral[bool]:
+		return compute.NewDatum(scalar.NewBooleanScalar(v.Value)), nil
+	case *expr.PrimitiveLiteral[int8]:
+		return compute.NewDatum(scalar.NewInt8Scalar(v.Value)), nil
+	case *expr.PrimitiveLiteral[int16]:
+		return compute.NewDatum(scalar.NewInt16Scalar(v.Value)), nil
+	case *expr.PrimitiveLiteral[int32]:
+		return compute.NewDatum(scalar.NewInt32Scalar(v.Value)), nil
+	case *expr.PrimitiveLiteral[int64]:
+		return compute.NewDatum(scalar.NewInt64Scalar(v.Value)), nil
+	case *expr.PrimitiveLiteral[float32]:
+		return compute.NewDatum(scalar.NewFloat32Scalar(v.Value)), nil
+	case *expr.PrimitiveLiteral[float64]:
+		return compute.NewDatum(scalar.NewFloat64Scalar(v.Value)), nil
+	case *expr.PrimitiveLiteral[string]:
+		return compute.NewDatum(scalar.NewStringScalar(v.Value)), nil
+	case *expr.PrimitiveLiteral[types.Timestamp]:
+		return compute.NewDatum(scalar.NewTimestampScalar(arrow.Timestamp(v.Value), &arrow.TimestampType{Unit: arrow.Microsecond})), nil
+	case *expr.PrimitiveLiteral[types.TimestampTz]:
+		return compute.NewDatum(scalar.NewTimestampScalar(arrow.Timestamp(v.Value),
+			&arrow.TimestampType{Unit: arrow.Microsecond, TimeZone: TimestampTzTimezone})), nil
+	case *expr.PrimitiveLiteral[types.Date]:
+		return compute.NewDatum(scalar.NewDate32Scalar(arrow.Date32(v.Value))), nil
+	case *expr.PrimitiveLiteral[types.Time]:
+		return compute.NewDatum(scalar.NewTime64Scalar(arrow.Time64(v.Value), &arrow.Time64Type{Unit: arrow.Microsecond})), nil
+	case *expr.PrimitiveLiteral[types.FixedChar]:
+		length := int(v.Type.(*types.FixedCharType).Length)
+		return compute.NewDatum(scalar.NewExtensionScalar(
+			scalar.NewFixedSizeBinaryScalar(memory.NewBufferBytes([]byte(v.Value)),
+				&arrow.FixedSizeBinaryType{ByteWidth: length}), fixedChar(int32(length)))), nil
+	case *expr.ByteSliceLiteral[[]byte]:
+		return compute.NewDatum(scalar.NewBinaryScalar(memory.NewBufferBytes(v.Value), arrow.BinaryTypes.Binary)), nil
+	case *expr.ByteSliceLiteral[types.UUID]:
+		return compute.NewDatum(scalar.NewExtensionScalar(scalar.NewFixedSizeBinaryScalar(
+			memory.NewBufferBytes(v.Value), uuid().(arrow.ExtensionType).StorageType()), uuid())), nil
+	case *expr.ByteSliceLiteral[types.FixedBinary]:
+		return compute.NewDatum(scalar.NewFixedSizeBinaryScalar(memory.NewBufferBytes(v.Value),
+			&arrow.FixedSizeBinaryType{ByteWidth: int(v.Type.(*types.FixedBinaryType).Length)})), nil
+	case *expr.NullLiteral:
+		dt, _, err := FromSubstraitType(v.Type, ext)
+		if err != nil {
+			return nil, err
+		}
+		return compute.NewDatum(scalar.MakeNullScalar(dt)), nil
+	case *expr.ListLiteral:
+		var elemType arrow.DataType
+
+		values := make([]scalar.Scalar, len(v.Value))
+		for i, val := range v.Value {
+			d, err := literalToDatum(mem, val, ext)
+			if err != nil {
+				return nil, err
+			}
+			defer d.Release()
+			values[i] = d.(*compute.ScalarDatum).Value
+			if elemType != nil {
+				if !arrow.TypeEqual(values[i].DataType(), elemType) {
+					return nil, fmt.Errorf("%w: %s has a value whose type doesn't match the other list values",
+						arrow.ErrInvalid, v)
+				}
+			} else {
+				elemType = values[i].DataType()
+			}
+		}
+
+		bldr := array.NewBuilder(memory.DefaultAllocator, elemType)
+		defer bldr.Release()
+		if err := scalar.AppendSlice(bldr, values); err != nil {
+			return nil, err
+		}
+		arr := bldr.NewArray()
+		defer arr.Release()
+		return compute.NewDatum(scalar.NewListScalar(arr)), nil
+	case *expr.MapLiteral:
+		dt, _, err := FromSubstraitType(v.Type, ext)
+		if err != nil {
+			return nil, err
+		}
+
+		mapType, ok := dt.(*arrow.MapType)
+		if !ok {
+			return nil, fmt.Errorf("%w: map literal with non-map type", arrow.ErrInvalid)
+		}
+
+		keys, values := make([]scalar.Scalar, len(v.Value)), make([]scalar.Scalar, len(v.Value))
+		for i, kv := range v.Value {
+			k, err := literalToDatum(mem, kv.Key, ext)
+			if err != nil {
+				return nil, err
+			}
+			defer k.Release()
+			scalarKey := k.(*compute.ScalarDatum).Value
+
+			v, err := literalToDatum(mem, kv.Value, ext)
+			if err != nil {
+				return nil, err
+			}
+			defer v.Release()
+			scalarValue := v.(*compute.ScalarDatum).Value
+
+			if !arrow.TypeEqual(mapType.KeyType(), scalarKey.DataType()) {
+				return nil, fmt.Errorf("%w: key type mismatch for %s, got key with type %s",
+					arrow.ErrInvalid, mapType, scalarKey.DataType())
+			}
+			if !arrow.TypeEqual(mapType.ValueType(), scalarValue.DataType()) {
+				return nil, fmt.Errorf("%w: value type mismatch for %s, got key with type %s",
+					arrow.ErrInvalid, mapType, scalarValue.DataType())
+			}
+
+			keys[i], values[i] = scalarKey, scalarValue
+		}
+
+		keyBldr, valBldr := array.NewBuilder(mem, mapType.KeyType()), array.NewBuilder(mem, mapType.ValueType())
+		defer keyBldr.Release()
+		defer valBldr.Release()
+
+		if err := scalar.AppendSlice(keyBldr, keys); err != nil {
+			return nil, err
+		}
+		if err := scalar.AppendSlice(valBldr, values); err != nil {
+			return nil, err
+		}
+
+		keyArr, valArr := keyBldr.NewArray(), valBldr.NewArray()
+		defer keyArr.Release()
+		defer valArr.Release()
+
+		kvArr, err := array.NewStructArray([]arrow.Array{keyArr, valArr}, []string{"key", "value"})
+		if err != nil {
+			return nil, err
+		}
+		defer kvArr.Release()
+
+		return compute.NewDatumWithoutOwning(scalar.NewMapScalar(kvArr)), nil
+	case *expr.StructLiteral:
+		fields := make([]scalar.Scalar, len(v.Value))
+		names := make([]string, len(v.Value))
+
+		s, err := scalar.NewStructScalarWithNames(fields, names)
+		return compute.NewDatum(s), err
+	case *expr.ProtoLiteral:
+		switch v := v.Value.(type) {
+		case *types.Decimal:
+			if len(v.Value) != arrow.Decimal128SizeBytes {
+				return nil, fmt.Errorf("%w: decimal literal had %d bytes (expected %d)",
+					arrow.ErrInvalid, len(v.Value), arrow.Decimal128SizeBytes)
+			}
+
+			var val decimal128.Num
+			data := (*(*[arrow.Decimal128SizeBytes]byte)(unsafe.Pointer(&val)))[:]
+			copy(data, v.Value)
+			if endian.IsBigEndian {
+				// reverse the bytes
+				for i := len(data)/2 - 1; i >= 0; i-- {
+					opp := len(data) - 1 - i
+					data[i], data[opp] = data[opp], data[i]
+				}
+			}
+
+			return compute.NewDatum(scalar.NewDecimal128Scalar(val,
+				&arrow.Decimal128Type{Precision: v.Precision, Scale: v.Scale})), nil
+		case *types.UserDefinedLiteral: // not yet implemented
+		case *types.IntervalYearToMonth:
+			bldr := array.NewInt32Builder(memory.DefaultAllocator)
+			defer bldr.Release()
+			typ := intervalYear()
+			bldr.Append(v.Years)
+			bldr.Append(v.Months)
+			arr := bldr.NewArray()
+			defer arr.Release()
+			return &compute.ScalarDatum{Value: scalar.NewExtensionScalar(
+				scalar.NewFixedSizeListScalar(arr), typ)}, nil
+		case *types.IntervalDayToSecond:
+			bldr := array.NewInt32Builder(memory.DefaultAllocator)
+			defer bldr.Release()
+			typ := intervalDay()
+			bldr.Append(v.Days)
+			bldr.Append(v.Seconds)
+			arr := bldr.NewArray()
+			defer arr.Release()
+			return &compute.ScalarDatum{Value: scalar.NewExtensionScalar(
+				scalar.NewFixedSizeListScalar(arr), typ)}, nil
+		case *types.VarChar:
+			return compute.NewDatum(scalar.NewExtensionScalar(
+				scalar.NewStringScalar(v.Value), varChar(int32(v.Length)))), nil
+		}
+	}
+
+	return nil, arrow.ErrNotImplemented
+}
+
+// ExecuteScalarExpression executes the given substrait expression using the provided datum as input.
+// It will first create an exec batch using the input schema and the datum.
+// The datum may have missing or incorrectly ordered columns while the input schema
+// should describe the expected input schema for the expression. Missing fields will
+// be replaced with null scalars and incorrectly ordered columns will be re-ordered
+// according to the schema.
+//
+// You can provide an allocator to use through the context via compute.WithAllocator.
+//
+// You can provide the ExtensionIDSet to use through the context via WithExtensionIDSet.
+func ExecuteScalarExpression(ctx context.Context, inputSchema *arrow.Schema, expression expr.Expression, partialInput compute.Datum) (compute.Datum, error) {
+	if expression == nil {
+		return nil, arrow.ErrInvalid
+	}
+
+	batch, err := makeExecBatch(ctx, inputSchema, partialInput)
+	if err != nil {
+		return nil, err
+	}
+	defer func() {
+		for _, v := range batch.Values {
+			v.Release()
+		}
+	}()
+
+	return executeScalarBatch(ctx, batch, expression, GetExtensionIDSet(ctx))
+}
+
+// ExecuteScalarSubstrait uses the provided Substrait extended expression to
+// determine the expected input schema (replacing missing fields in the partial
+// input datum with null scalars and re-ordering columns if necessary) and
+// ExtensionIDSet to use. You can provide the extension registry to use
+// through the context via WithExtensionRegistry, otherwise the default
+// Arrow registry will be used. You can provide a memory.Allocator to use
+// the same way via compute.WithAllocator.
+func ExecuteScalarSubstrait(ctx context.Context, expression *expr.Extended, partialInput compute.Datum) (compute.Datum, error) {
+	if expression == nil {
+		return nil, arrow.ErrInvalid
+	}
+
+	var toExecute expr.Expression
+
+	switch len(expression.ReferredExpr) {
+	case 0:
+		return nil, fmt.Errorf("%w: no referred expression to execute", arrow.ErrInvalid)
+	case 1:
+		if toExecute = expression.ReferredExpr[0].GetExpr(); toExecute == nil {
+			return nil, fmt.Errorf("%w: measures not implemented", arrow.ErrNotImplemented)
+		}
+	default:
+		return nil, fmt.Errorf("%w: only single referred expression implemented", arrow.ErrNotImplemented)
+	}
+
+	reg := GetExtensionRegistry(ctx)
+	set := NewExtensionSet(expr.NewExtensionRegistry(expression.Extensions, &extensions.DefaultCollection), reg)
+	sc, err := ToArrowSchema(expression.BaseSchema, set)
+	if err != nil {
+		return nil, err
+	}
+
+	return ExecuteScalarExpression(WithExtensionIDSet(ctx, set), sc, toExecute, partialInput)
+}
+
+func execFieldRef(ctx context.Context, e *expr.FieldReference, input compute.ExecBatch, ext ExtensionIDSet) (compute.Datum, error) {
+	if e.Root != expr.RootReference {
+		return nil, fmt.Errorf("%w: only RootReference is implemented", arrow.ErrNotImplemented)
+	}
+
+	ref, ok := e.Reference.(expr.ReferenceSegment)
+	if !ok {
+		return nil, fmt.Errorf("%w: only direct references are implemented", arrow.ErrNotImplemented)
+	}
+
+	expectedType, _, err := FromSubstraitType(e.GetType(), ext)
+	if err != nil {
+		return nil, err
+	}
+
+	var param compute.Datum
+	if sref, ok := ref.(*expr.StructFieldRef); ok {
+		if sref.Field < 0 || sref.Field >= int32(len(input.Values)) {
+			return nil, arrow.ErrInvalid
+		}
+		param = input.Values[sref.Field]
+		ref = ref.GetChild()
+	}
+
+	out, err := GetReferencedValue(compute.GetAllocator(ctx), ref, param, ext)
+	if err == compute.ErrEmpty {
+		out = compute.NewDatum(param)
+	} else if err != nil {
+		return nil, err
+	}
+	if !arrow.TypeEqual(out.(compute.ArrayLikeDatum).Type(), expectedType) {
+		return nil, fmt.Errorf("%w: referenced field %s was %s, but should have been %s",
+			arrow.ErrInvalid, ref, out.(compute.ArrayLikeDatum).Type(), expectedType)
+	}
+
+	return out, nil
+}
+
+func executeScalarBatch(ctx context.Context, input compute.ExecBatch, exp expr.Expression, ext ExtensionIDSet) (compute.Datum, error) {
+	if !exp.IsScalar() {
+		return nil, fmt.Errorf("%w: ExecuteScalarExpression cannot execute non-scalar expressions",
+			arrow.ErrInvalid)
+	}
+
+	switch e := exp.(type) {
+	case expr.Literal:
+		return literalToDatum(compute.GetAllocator(ctx), e, ext)
+	case *expr.FieldReference:
+		return execFieldRef(ctx, e, input, ext)
+	case *expr.Cast:
+		if e.Input == nil {
+			return nil, fmt.Errorf("%w: cast without argument to cast", arrow.ErrInvalid)
+		}
+
+		arg, err := executeScalarBatch(ctx, input, e.Input, ext)
+		if err != nil {
+			return nil, err
+		}
+		defer arg.Release()
+
+		dt, _, err := FromSubstraitType(e.Type, ext)
+		if err != nil {
+			return nil, fmt.Errorf("%w: could not determine type for cast", err)
+		}
+
+		var opts *compute.CastOptions
+		switch e.FailureBehavior {
+		case types.BehaviorThrowException:

Review Comment:
   Correct.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscribe@arrow.apache.org

For queries about this service, please contact Infrastructure at:
users@infra.apache.org