You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@commons.apache.org by er...@apache.org on 2017/05/25 00:04:35 UTC

[2/2] [math] MATH-1416: Delete utilities now in "Commons Numbers".

MATH-1416: Delete utilities now in "Commons Numbers".


Project: http://git-wip-us.apache.org/repos/asf/commons-math/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-math/commit/4a372738
Tree: http://git-wip-us.apache.org/repos/asf/commons-math/tree/4a372738
Diff: http://git-wip-us.apache.org/repos/asf/commons-math/diff/4a372738

Branch: refs/heads/master
Commit: 4a37273818d2d7fe684136e84511e4e46e6cb1b0
Parents: 3200db1
Author: Gilles <er...@apache.org>
Authored: Thu May 25 02:02:16 2017 +0200
Committer: Gilles <er...@apache.org>
Committed: Thu May 25 02:02:16 2017 +0200

----------------------------------------------------------------------
 .../apache/commons/math4/util/MathArrays.java   | 475 -------------------
 .../math4/ExtendedFieldElementAbstractTest.java |  19 +-
 .../hull/ConvexHullGenerator2DAbstractTest.java |  10 +-
 .../commons/math4/util/MathArraysTest.java      | 298 ------------
 4 files changed, 15 insertions(+), 787 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-math/blob/4a372738/src/main/java/org/apache/commons/math4/util/MathArrays.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/util/MathArrays.java b/src/main/java/org/apache/commons/math4/util/MathArrays.java
index 768afd1..0f7046e 100644
--- a/src/main/java/org/apache/commons/math4/util/MathArrays.java
+++ b/src/main/java/org/apache/commons/math4/util/MathArrays.java
@@ -244,18 +244,6 @@ public class MathArrays {
     }
 
     /**
-     * Calculates the cosine of the angle between two vectors.
-     *
-     * @param v1 Cartesian coordinates of the first vector.
-     * @param v2 Cartesian coordinates of the second vector.
-     * @return the cosine of the angle between the vectors.
-     * @since 3.6
-     */
-    public static double cosAngle(double[] v1, double[] v2) {
-        return linearCombination(v1, v2) / (safeNorm(v1) * safeNorm(v2));
-    }
-
-    /**
      * Calculates the L<sub>2</sub> (Euclidean) distance between two points.
      *
      * @param p1 the first point
@@ -635,121 +623,6 @@ public class MathArrays {
     }
 
     /**
-     * Returns the Cartesian norm (2-norm), handling both overflow and underflow.
-     * Translation of the minpack enorm subroutine.
-     * <p>
-     * The redistribution policy for MINPACK is available
-     * <a href="http://www.netlib.org/minpack/disclaimer">here</a>, for
-     * convenience, it is reproduced below.</p>
-     *
-     * <table style="text-align: center; background-color: #E0E0E0" border="0" width="80%" cellpadding="10" summary="MINPACK redistribution policy">
-     * <tr><td>
-     *    Minpack Copyright Notice (1999) University of Chicago.
-     *    All rights reserved
-     * </td></tr>
-     * <tr><td>
-     * Redistribution and use in source and binary forms, with or without
-     * modification, are permitted provided that the following conditions
-     * are met:
-     * <ol>
-     *  <li>Redistributions of source code must retain the above copyright
-     *      notice, this list of conditions and the following disclaimer.</li>
-     * <li>Redistributions in binary form must reproduce the above
-     *     copyright notice, this list of conditions and the following
-     *     disclaimer in the documentation and/or other materials provided
-     *     with the distribution.</li>
-     * <li>The end-user documentation included with the redistribution, if any,
-     *     must include the following acknowledgment:
-     *     {@code This product includes software developed by the University of
-     *           Chicago, as Operator of Argonne National Laboratory.}
-     *     Alternately, this acknowledgment may appear in the software itself,
-     *     if and wherever such third-party acknowledgments normally appear.</li>
-     * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
-     *     WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
-     *     UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
-     *     THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
-     *     IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
-     *     OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
-     *     OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
-     *     OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
-     *     USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
-     *     THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
-     *     DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
-     *     UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
-     *     BE CORRECTED.</strong></li>
-     * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
-     *     HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
-     *     ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
-     *     INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
-     *     ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
-     *     PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
-     *     SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
-     *     (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
-     *     EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
-     *     POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
-     * </ol></td></tr>
-     * </table>
-     *
-     * @param v Vector of doubles.
-     * @return the 2-norm of the vector.
-     * @since 2.2
-     */
-    public static double safeNorm(double[] v) {
-        double rdwarf = 3.834e-20;
-        double rgiant = 1.304e+19;
-        double s1 = 0;
-        double s2 = 0;
-        double s3 = 0;
-        double x1max = 0;
-        double x3max = 0;
-        double floatn = v.length;
-        double agiant = rgiant / floatn;
-        for (int i = 0; i < v.length; i++) {
-            double xabs = FastMath.abs(v[i]);
-            if (xabs < rdwarf || xabs > agiant) {
-                if (xabs > rdwarf) {
-                    if (xabs > x1max) {
-                        double r = x1max / xabs;
-                        s1= 1 + s1 * r * r;
-                        x1max = xabs;
-                    } else {
-                        double r = xabs / x1max;
-                        s1 += r * r;
-                    }
-                } else {
-                    if (xabs > x3max) {
-                        double r = x3max / xabs;
-                        s3= 1 + s3 * r * r;
-                        x3max = xabs;
-                    } else {
-                        if (xabs != 0) {
-                            double r = xabs / x3max;
-                            s3 += r * r;
-                        }
-                    }
-                }
-            } else {
-                s2 += xabs * xabs;
-            }
-        }
-        double norm;
-        if (s1 != 0) {
-            norm = x1max * Math.sqrt(s1 + (s2 / x1max) / x1max);
-        } else {
-            if (s2 == 0) {
-                norm = x3max * Math.sqrt(s3);
-            } else {
-                if (s2 >= x3max) {
-                    norm = Math.sqrt(s2 * (1 + (x3max / s2) * (x3max * s3)));
-                } else {
-                    norm = Math.sqrt(x3max * ((s2 / x3max) + (x3max * s3)));
-                }
-            }
-        }
-        return norm;
-    }
-
-    /**
      * Sort an array in ascending order in place and perform the same reordering
      * of entries on other arrays. For example, if
      * {@code x = [3, 1, 2], y = [1, 2, 3]} and {@code z = [0, 5, 7]}, then
@@ -958,354 +831,6 @@ public class MathArrays {
      }
 
     /**
-     * Compute a linear combination accurately.
-     * This method computes the sum of the products
-     * <code>a<sub>i</sub> b<sub>i</sub></code> to high accuracy.
-     * It does so by using specific multiplication and addition algorithms to
-     * preserve accuracy and reduce cancellation effects.
-     * <br>
-     * It is based on the 2005 paper
-     * <a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547">
-     * Accurate Sum and Dot Product</a> by Takeshi Ogita, Siegfried M. Rump,
-     * and Shin'ichi Oishi published in SIAM J. Sci. Comput.
-     *
-     * @param a Factors.
-     * @param b Factors.
-     * @return <code>&Sigma;<sub>i</sub> a<sub>i</sub> b<sub>i</sub></code>.
-     * @throws DimensionMismatchException if arrays dimensions don't match
-     */
-    public static double linearCombination(final double[] a, final double[] b)
-        throws DimensionMismatchException {
-        checkEqualLength(a, b);
-        final int len = a.length;
-
-        if (len == 1) {
-            // Revert to scalar multiplication.
-            return a[0] * b[0];
-        }
-
-        final double[] prodHigh = new double[len];
-        double prodLowSum = 0;
-
-        for (int i = 0; i < len; i++) {
-            final double ai    = a[i];
-            final double aHigh = Double.longBitsToDouble(Double.doubleToRawLongBits(ai) & ((-1L) << 27));
-            final double aLow  = ai - aHigh;
-
-            final double bi    = b[i];
-            final double bHigh = Double.longBitsToDouble(Double.doubleToRawLongBits(bi) & ((-1L) << 27));
-            final double bLow  = bi - bHigh;
-            prodHigh[i] = ai * bi;
-            final double prodLow = aLow * bLow - (((prodHigh[i] -
-                                                    aHigh * bHigh) -
-                                                   aLow * bHigh) -
-                                                  aHigh * bLow);
-            prodLowSum += prodLow;
-        }
-
-
-        final double prodHighCur = prodHigh[0];
-        double prodHighNext = prodHigh[1];
-        double sHighPrev = prodHighCur + prodHighNext;
-        double sPrime = sHighPrev - prodHighNext;
-        double sLowSum = (prodHighNext - (sHighPrev - sPrime)) + (prodHighCur - sPrime);
-
-        final int lenMinusOne = len - 1;
-        for (int i = 1; i < lenMinusOne; i++) {
-            prodHighNext = prodHigh[i + 1];
-            final double sHighCur = sHighPrev + prodHighNext;
-            sPrime = sHighCur - prodHighNext;
-            sLowSum += (prodHighNext - (sHighCur - sPrime)) + (sHighPrev - sPrime);
-            sHighPrev = sHighCur;
-        }
-
-        double result = sHighPrev + (prodLowSum + sLowSum);
-
-        if (Double.isNaN(result)) {
-            // either we have split infinite numbers or some coefficients were NaNs,
-            // just rely on the naive implementation and let IEEE754 handle this
-            result = 0;
-            for (int i = 0; i < len; ++i) {
-                result += a[i] * b[i];
-            }
-        }
-
-        return result;
-    }
-
-    /**
-     * Compute a linear combination accurately.
-     * <p>
-     * This method computes a<sub>1</sub>&times;b<sub>1</sub> +
-     * a<sub>2</sub>&times;b<sub>2</sub> to high accuracy. It does
-     * so by using specific multiplication and addition algorithms to
-     * preserve accuracy and reduce cancellation effects. It is based
-     * on the 2005 paper <a
-     * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547">
-     * Accurate Sum and Dot Product</a> by Takeshi Ogita,
-     * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
-     * </p>
-     * @param a1 first factor of the first term
-     * @param b1 second factor of the first term
-     * @param a2 first factor of the second term
-     * @param b2 second factor of the second term
-     * @return a<sub>1</sub>&times;b<sub>1</sub> +
-     * a<sub>2</sub>&times;b<sub>2</sub>
-     * @see #linearCombination(double, double, double, double, double, double)
-     * @see #linearCombination(double, double, double, double, double, double, double, double)
-     */
-    public static double linearCombination(final double a1, final double b1,
-                                           final double a2, final double b2) {
-
-        // the code below is split in many additions/subtractions that may
-        // appear redundant. However, they should NOT be simplified, as they
-        // use IEEE754 floating point arithmetic rounding properties.
-        // The variable naming conventions are that xyzHigh contains the most significant
-        // bits of xyz and xyzLow contains its least significant bits. So theoretically
-        // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
-        // be represented in only one double precision number so we preserve two numbers
-        // to hold it as long as we can, combining the high and low order bits together
-        // only at the end, after cancellation may have occurred on high order bits
-
-        // split a1 and b1 as one 26 bits number and one 27 bits number
-        final double a1High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a1) & ((-1L) << 27));
-        final double a1Low      = a1 - a1High;
-        final double b1High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b1) & ((-1L) << 27));
-        final double b1Low      = b1 - b1High;
-
-        // accurate multiplication a1 * b1
-        final double prod1High  = a1 * b1;
-        final double prod1Low   = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);
-
-        // split a2 and b2 as one 26 bits number and one 27 bits number
-        final double a2High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a2) & ((-1L) << 27));
-        final double a2Low      = a2 - a2High;
-        final double b2High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b2) & ((-1L) << 27));
-        final double b2Low      = b2 - b2High;
-
-        // accurate multiplication a2 * b2
-        final double prod2High  = a2 * b2;
-        final double prod2Low   = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);
-
-        // accurate addition a1 * b1 + a2 * b2
-        final double s12High    = prod1High + prod2High;
-        final double s12Prime   = s12High - prod2High;
-        final double s12Low     = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);
-
-        // final rounding, s12 may have suffered many cancellations, we try
-        // to recover some bits from the extra words we have saved up to now
-        double result = s12High + (prod1Low + prod2Low + s12Low);
-
-        if (Double.isNaN(result)) {
-            // either we have split infinite numbers or some coefficients were NaNs,
-            // just rely on the naive implementation and let IEEE754 handle this
-            result = a1 * b1 + a2 * b2;
-        }
-
-        return result;
-    }
-
-    /**
-     * Compute a linear combination accurately.
-     * <p>
-     * This method computes a<sub>1</sub>&times;b<sub>1</sub> +
-     * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub>
-     * to high accuracy. It does so by using specific multiplication and
-     * addition algorithms to preserve accuracy and reduce cancellation effects.
-     * It is based on the 2005 paper <a
-     * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547">
-     * Accurate Sum and Dot Product</a> by Takeshi Ogita,
-     * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
-     * </p>
-     * @param a1 first factor of the first term
-     * @param b1 second factor of the first term
-     * @param a2 first factor of the second term
-     * @param b2 second factor of the second term
-     * @param a3 first factor of the third term
-     * @param b3 second factor of the third term
-     * @return a<sub>1</sub>&times;b<sub>1</sub> +
-     * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub>
-     * @see #linearCombination(double, double, double, double)
-     * @see #linearCombination(double, double, double, double, double, double, double, double)
-     */
-    public static double linearCombination(final double a1, final double b1,
-                                           final double a2, final double b2,
-                                           final double a3, final double b3) {
-
-        // the code below is split in many additions/subtractions that may
-        // appear redundant. However, they should NOT be simplified, as they
-        // do use IEEE754 floating point arithmetic rounding properties.
-        // The variables naming conventions are that xyzHigh contains the most significant
-        // bits of xyz and xyzLow contains its least significant bits. So theoretically
-        // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
-        // be represented in only one double precision number so we preserve two numbers
-        // to hold it as long as we can, combining the high and low order bits together
-        // only at the end, after cancellation may have occurred on high order bits
-
-        // split a1 and b1 as one 26 bits number and one 27 bits number
-        final double a1High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a1) & ((-1L) << 27));
-        final double a1Low      = a1 - a1High;
-        final double b1High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b1) & ((-1L) << 27));
-        final double b1Low      = b1 - b1High;
-
-        // accurate multiplication a1 * b1
-        final double prod1High  = a1 * b1;
-        final double prod1Low   = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);
-
-        // split a2 and b2 as one 26 bits number and one 27 bits number
-        final double a2High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a2) & ((-1L) << 27));
-        final double a2Low      = a2 - a2High;
-        final double b2High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b2) & ((-1L) << 27));
-        final double b2Low      = b2 - b2High;
-
-        // accurate multiplication a2 * b2
-        final double prod2High  = a2 * b2;
-        final double prod2Low   = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);
-
-        // split a3 and b3 as one 26 bits number and one 27 bits number
-        final double a3High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a3) & ((-1L) << 27));
-        final double a3Low      = a3 - a3High;
-        final double b3High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b3) & ((-1L) << 27));
-        final double b3Low      = b3 - b3High;
-
-        // accurate multiplication a3 * b3
-        final double prod3High  = a3 * b3;
-        final double prod3Low   = a3Low * b3Low - (((prod3High - a3High * b3High) - a3Low * b3High) - a3High * b3Low);
-
-        // accurate addition a1 * b1 + a2 * b2
-        final double s12High    = prod1High + prod2High;
-        final double s12Prime   = s12High - prod2High;
-        final double s12Low     = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);
-
-        // accurate addition a1 * b1 + a2 * b2 + a3 * b3
-        final double s123High   = s12High + prod3High;
-        final double s123Prime  = s123High - prod3High;
-        final double s123Low    = (prod3High - (s123High - s123Prime)) + (s12High - s123Prime);
-
-        // final rounding, s123 may have suffered many cancellations, we try
-        // to recover some bits from the extra words we have saved up to now
-        double result = s123High + (prod1Low + prod2Low + prod3Low + s12Low + s123Low);
-
-        if (Double.isNaN(result)) {
-            // either we have split infinite numbers or some coefficients were NaNs,
-            // just rely on the naive implementation and let IEEE754 handle this
-            result = a1 * b1 + a2 * b2 + a3 * b3;
-        }
-
-        return result;
-    }
-
-    /**
-     * Compute a linear combination accurately.
-     * <p>
-     * This method computes a<sub>1</sub>&times;b<sub>1</sub> +
-     * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub> +
-     * a<sub>4</sub>&times;b<sub>4</sub>
-     * to high accuracy. It does so by using specific multiplication and
-     * addition algorithms to preserve accuracy and reduce cancellation effects.
-     * It is based on the 2005 paper <a
-     * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547">
-     * Accurate Sum and Dot Product</a> by Takeshi Ogita,
-     * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
-     * </p>
-     * @param a1 first factor of the first term
-     * @param b1 second factor of the first term
-     * @param a2 first factor of the second term
-     * @param b2 second factor of the second term
-     * @param a3 first factor of the third term
-     * @param b3 second factor of the third term
-     * @param a4 first factor of the third term
-     * @param b4 second factor of the third term
-     * @return a<sub>1</sub>&times;b<sub>1</sub> +
-     * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub> +
-     * a<sub>4</sub>&times;b<sub>4</sub>
-     * @see #linearCombination(double, double, double, double)
-     * @see #linearCombination(double, double, double, double, double, double)
-     */
-    public static double linearCombination(final double a1, final double b1,
-                                           final double a2, final double b2,
-                                           final double a3, final double b3,
-                                           final double a4, final double b4) {
-
-        // the code below is split in many additions/subtractions that may
-        // appear redundant. However, they should NOT be simplified, as they
-        // do use IEEE754 floating point arithmetic rounding properties.
-        // The variables naming conventions are that xyzHigh contains the most significant
-        // bits of xyz and xyzLow contains its least significant bits. So theoretically
-        // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
-        // be represented in only one double precision number so we preserve two numbers
-        // to hold it as long as we can, combining the high and low order bits together
-        // only at the end, after cancellation may have occurred on high order bits
-
-        // split a1 and b1 as one 26 bits number and one 27 bits number
-        final double a1High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a1) & ((-1L) << 27));
-        final double a1Low      = a1 - a1High;
-        final double b1High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b1) & ((-1L) << 27));
-        final double b1Low      = b1 - b1High;
-
-        // accurate multiplication a1 * b1
-        final double prod1High  = a1 * b1;
-        final double prod1Low   = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);
-
-        // split a2 and b2 as one 26 bits number and one 27 bits number
-        final double a2High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a2) & ((-1L) << 27));
-        final double a2Low      = a2 - a2High;
-        final double b2High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b2) & ((-1L) << 27));
-        final double b2Low      = b2 - b2High;
-
-        // accurate multiplication a2 * b2
-        final double prod2High  = a2 * b2;
-        final double prod2Low   = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);
-
-        // split a3 and b3 as one 26 bits number and one 27 bits number
-        final double a3High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a3) & ((-1L) << 27));
-        final double a3Low      = a3 - a3High;
-        final double b3High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b3) & ((-1L) << 27));
-        final double b3Low      = b3 - b3High;
-
-        // accurate multiplication a3 * b3
-        final double prod3High  = a3 * b3;
-        final double prod3Low   = a3Low * b3Low - (((prod3High - a3High * b3High) - a3Low * b3High) - a3High * b3Low);
-
-        // split a4 and b4 as one 26 bits number and one 27 bits number
-        final double a4High     = Double.longBitsToDouble(Double.doubleToRawLongBits(a4) & ((-1L) << 27));
-        final double a4Low      = a4 - a4High;
-        final double b4High     = Double.longBitsToDouble(Double.doubleToRawLongBits(b4) & ((-1L) << 27));
-        final double b4Low      = b4 - b4High;
-
-        // accurate multiplication a4 * b4
-        final double prod4High  = a4 * b4;
-        final double prod4Low   = a4Low * b4Low - (((prod4High - a4High * b4High) - a4Low * b4High) - a4High * b4Low);
-
-        // accurate addition a1 * b1 + a2 * b2
-        final double s12High    = prod1High + prod2High;
-        final double s12Prime   = s12High - prod2High;
-        final double s12Low     = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);
-
-        // accurate addition a1 * b1 + a2 * b2 + a3 * b3
-        final double s123High   = s12High + prod3High;
-        final double s123Prime  = s123High - prod3High;
-        final double s123Low    = (prod3High - (s123High - s123Prime)) + (s12High - s123Prime);
-
-        // accurate addition a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4
-        final double s1234High  = s123High + prod4High;
-        final double s1234Prime = s1234High - prod4High;
-        final double s1234Low   = (prod4High - (s1234High - s1234Prime)) + (s123High - s1234Prime);
-
-        // final rounding, s1234 may have suffered many cancellations, we try
-        // to recover some bits from the extra words we have saved up to now
-        double result = s1234High + (prod1Low + prod2Low + prod3Low + prod4Low + s12Low + s123Low + s1234Low);
-
-        if (Double.isNaN(result)) {
-            // either we have split infinite numbers or some coefficients were NaNs,
-            // just rely on the naive implementation and let IEEE754 handle this
-            result = a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4;
-        }
-
-        return result;
-    }
-
-    /**
      * Returns true iff both arguments are null or have same dimensions and all
      * their elements are equal as defined by
      * {@link Precision#equals(float,float)}.

http://git-wip-us.apache.org/repos/asf/commons-math/blob/4a372738/src/test/java/org/apache/commons/math4/ExtendedFieldElementAbstractTest.java
----------------------------------------------------------------------
diff --git a/src/test/java/org/apache/commons/math4/ExtendedFieldElementAbstractTest.java b/src/test/java/org/apache/commons/math4/ExtendedFieldElementAbstractTest.java
index 7f24b7b..b31445c 100644
--- a/src/test/java/org/apache/commons/math4/ExtendedFieldElementAbstractTest.java
+++ b/src/test/java/org/apache/commons/math4/ExtendedFieldElementAbstractTest.java
@@ -16,9 +16,10 @@
  */
 package org.apache.commons.math4;
 
-import org.apache.commons.math4.RealFieldElement;
+import org.apache.commons.numbers.arrays.LinearCombination;
 import org.apache.commons.rng.UniformRandomProvider;
 import org.apache.commons.rng.simple.RandomSource;
+import org.apache.commons.math4.RealFieldElement;
 import org.apache.commons.math4.util.FastMath;
 import org.apache.commons.math4.util.MathArrays;
 import org.junit.Assert;
@@ -399,7 +400,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
             double[] bD = generateDouble(r, 10);
             T[] aF      = toFieldArray(aD);
             T[] bF      = toFieldArray(bD);
-            checkRelative(MathArrays.linearCombination(aD, bD),
+            checkRelative(LinearCombination.value(aD, bD),
                           aF[0].linearCombination(aF, bF));
         }
     }
@@ -411,7 +412,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
             double[] aD = generateDouble(r, 10);
             double[] bD = generateDouble(r, 10);
             T[] bF      = toFieldArray(bD);
-            checkRelative(MathArrays.linearCombination(aD, bD),
+            checkRelative(LinearCombination.value(aD, bD),
                           bF[0].linearCombination(aD, bF));
         }
     }
@@ -424,7 +425,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
             double[] bD = generateDouble(r, 2);
             T[] aF      = toFieldArray(aD);
             T[] bF      = toFieldArray(bD);
-            checkRelative(MathArrays.linearCombination(aD[0], bD[0], aD[1], bD[1]),
+            checkRelative(LinearCombination.value(aD[0], bD[0], aD[1], bD[1]),
                           aF[0].linearCombination(aF[0], bF[0], aF[1], bF[1]));
         }
     }
@@ -436,7 +437,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
             double[] aD = generateDouble(r, 2);
             double[] bD = generateDouble(r, 2);
             T[] bF      = toFieldArray(bD);
-            checkRelative(MathArrays.linearCombination(aD[0], bD[0], aD[1], bD[1]),
+            checkRelative(LinearCombination.value(aD[0], bD[0], aD[1], bD[1]),
                           bF[0].linearCombination(aD[0], bF[0], aD[1], bF[1]));
         }
     }
@@ -449,7 +450,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
             double[] bD = generateDouble(r, 3);
             T[] aF      = toFieldArray(aD);
             T[] bF      = toFieldArray(bD);
-            checkRelative(MathArrays.linearCombination(aD[0], bD[0], aD[1], bD[1], aD[2], bD[2]),
+            checkRelative(LinearCombination.value(aD[0], bD[0], aD[1], bD[1], aD[2], bD[2]),
                           aF[0].linearCombination(aF[0], bF[0], aF[1], bF[1], aF[2], bF[2]));
         }
     }
@@ -461,7 +462,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
             double[] aD = generateDouble(r, 3);
             double[] bD = generateDouble(r, 3);
             T[] bF      = toFieldArray(bD);
-            checkRelative(MathArrays.linearCombination(aD[0], bD[0], aD[1], bD[1], aD[2], bD[2]),
+            checkRelative(LinearCombination.value(aD[0], bD[0], aD[1], bD[1], aD[2], bD[2]),
                           bF[0].linearCombination(aD[0], bF[0], aD[1], bF[1], aD[2], bF[2]));
         }
     }
@@ -474,7 +475,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
             double[] bD = generateDouble(r, 4);
             T[] aF      = toFieldArray(aD);
             T[] bF      = toFieldArray(bD);
-            checkRelative(MathArrays.linearCombination(aD[0], bD[0], aD[1], bD[1], aD[2], bD[2], aD[3], bD[3]),
+            checkRelative(LinearCombination.value(aD[0], bD[0], aD[1], bD[1], aD[2], bD[2], aD[3], bD[3]),
                           aF[0].linearCombination(aF[0], bF[0], aF[1], bF[1], aF[2], bF[2], aF[3], bF[3]));
         }
     }
@@ -486,7 +487,7 @@ public abstract class ExtendedFieldElementAbstractTest<T extends RealFieldElemen
             double[] aD = generateDouble(r, 4);
             double[] bD = generateDouble(r, 4);
             T[] bF      = toFieldArray(bD);
-            checkRelative(MathArrays.linearCombination(aD[0], bD[0], aD[1], bD[1], aD[2], bD[2], aD[3], bD[3]),
+            checkRelative(LinearCombination.value(aD[0], bD[0], aD[1], bD[1], aD[2], bD[2], aD[3], bD[3]),
                           bF[0].linearCombination(aD[0], bF[0], aD[1], bF[1], aD[2], bF[2], aD[3], bF[3]));
         }
     }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/4a372738/src/test/java/org/apache/commons/math4/geometry/euclidean/twod/hull/ConvexHullGenerator2DAbstractTest.java
----------------------------------------------------------------------
diff --git a/src/test/java/org/apache/commons/math4/geometry/euclidean/twod/hull/ConvexHullGenerator2DAbstractTest.java b/src/test/java/org/apache/commons/math4/geometry/euclidean/twod/hull/ConvexHullGenerator2DAbstractTest.java
index dd6693f..4bf88e1 100644
--- a/src/test/java/org/apache/commons/math4/geometry/euclidean/twod/hull/ConvexHullGenerator2DAbstractTest.java
+++ b/src/test/java/org/apache/commons/math4/geometry/euclidean/twod/hull/ConvexHullGenerator2DAbstractTest.java
@@ -22,6 +22,10 @@ import java.util.Collection;
 import java.util.Collections;
 import java.util.List;
 
+import org.apache.commons.numbers.core.Precision;
+import org.apache.commons.numbers.arrays.LinearCombination;
+import org.apache.commons.rng.UniformRandomProvider;
+import org.apache.commons.rng.simple.RandomSource;
 import org.apache.commons.math4.exception.NullArgumentException;
 import org.apache.commons.math4.geometry.euclidean.twod.Euclidean2D;
 import org.apache.commons.math4.geometry.euclidean.twod.Cartesian2D;
@@ -29,11 +33,7 @@ import org.apache.commons.math4.geometry.euclidean.twod.hull.ConvexHull2D;
 import org.apache.commons.math4.geometry.euclidean.twod.hull.ConvexHullGenerator2D;
 import org.apache.commons.math4.geometry.partitioning.Region;
 import org.apache.commons.math4.geometry.partitioning.Region.Location;
-import org.apache.commons.rng.UniformRandomProvider;
-import org.apache.commons.rng.simple.RandomSource;
 import org.apache.commons.math4.util.FastMath;
-import org.apache.commons.math4.util.MathArrays;
-import org.apache.commons.numbers.core.Precision;
 import org.junit.Assert;
 import org.junit.Before;
 import org.junit.Test;
@@ -409,7 +409,7 @@ public abstract class ConvexHullGenerator2DAbstractTest {
             Assert.assertTrue(d1.getNorm() > 1e-10);
             Assert.assertTrue(d2.getNorm() > 1e-10);
 
-            final double cross = MathArrays.linearCombination(d1.getX(), d2.getY(), -d1.getY(), d2.getX());
+            final double cross = LinearCombination.value(d1.getX(), d2.getY(), -d1.getY(), d2.getX());
             final int cmp = Precision.compareTo(cross, 0.0, tolerance);
 
             if (sign != 0 && cmp != sign) {

http://git-wip-us.apache.org/repos/asf/commons-math/blob/4a372738/src/test/java/org/apache/commons/math4/util/MathArraysTest.java
----------------------------------------------------------------------
diff --git a/src/test/java/org/apache/commons/math4/util/MathArraysTest.java b/src/test/java/org/apache/commons/math4/util/MathArraysTest.java
index 950b980..f4a5e6c 100644
--- a/src/test/java/org/apache/commons/math4/util/MathArraysTest.java
+++ b/src/test/java/org/apache/commons/math4/util/MathArraysTest.java
@@ -177,61 +177,6 @@ public class MathArraysTest {
     }
 
     @Test
-    public void testCosAngle2D() {
-        double expected;
-
-        final double[] v1 = { 1, 0 };
-        expected = 1;
-        Assert.assertEquals(expected, MathArrays.cosAngle(v1, v1), 0d);
-
-        final double[] v2 = { 0, 1 };
-        expected = 0;
-        Assert.assertEquals(expected, MathArrays.cosAngle(v1, v2), 0d);
-
-        final double[] v3 = { 7, 7 };
-        expected = Math.sqrt(2) / 2;
-        Assert.assertEquals(expected, MathArrays.cosAngle(v1, v3), 1e-15);
-        Assert.assertEquals(expected, MathArrays.cosAngle(v3, v2), 1e-15);
-
-        final double[] v4 = { -5, 0 };
-        expected = -1;
-        Assert.assertEquals(expected, MathArrays.cosAngle(v1, v4), 0);
-
-        final double[] v5 = { -100, 100 };
-        expected = 0;
-        Assert.assertEquals(expected, MathArrays.cosAngle(v3, v5), 0);
-    }
-
-    @Test
-    public void testCosAngle3D() {
-        double expected;
-
-        final double[] v1 = { 1, 1, 0 };
-        expected = 1;
-        Assert.assertEquals(expected, MathArrays.cosAngle(v1, v1), 1e-15);
-
-        final double[] v2 = { 1, 1, 1 };
-        expected = Math.sqrt(2) / Math.sqrt(3);
-        Assert.assertEquals(expected, MathArrays.cosAngle(v1, v2), 1e-15);
-    }
-
-    @Test
-    public void testCosAngleExtreme() {
-        double expected;
-
-        final double tiny = 1e-200;
-        final double[] v1 = { tiny, tiny };
-        final double big = 1e200;
-        final double[] v2 = { -big, -big };
-        expected = -1;
-        Assert.assertEquals(expected, MathArrays.cosAngle(v1, v2), 1e-15);
-
-        final double[] v3 = { big, -big };
-        expected = 0;
-        Assert.assertEquals(expected, MathArrays.cosAngle(v1, v3), 1e-15);
-    }
-
-    @Test
     public void testCheckOrder() {
         MathArrays.checkOrder(new double[] {-15, -5.5, -1, 2, 15},
                              MathArrays.OrderDirection.INCREASING, true);
@@ -723,249 +668,6 @@ public class MathArraysTest {
         }
     }
 
-    // MATH-1005
-    @Test
-    public void testLinearCombinationWithSingleElementArray() {
-        final double[] a = { 1.23456789 };
-        final double[] b = { 98765432.1 };
-
-        Assert.assertEquals(a[0] * b[0], MathArrays.linearCombination(a, b), 0d);
-    }
-
-    @Test
-    public void testLinearCombination1() {
-        final double[] a = new double[] {
-            -1321008684645961.0 / 268435456.0,
-            -5774608829631843.0 / 268435456.0,
-            -7645843051051357.0 / 8589934592.0
-        };
-        final double[] b = new double[] {
-            -5712344449280879.0 / 2097152.0,
-            -4550117129121957.0 / 2097152.0,
-            8846951984510141.0 / 131072.0
-        };
-
-        final double abSumInline = MathArrays.linearCombination(a[0], b[0],
-                                                                a[1], b[1],
-                                                                a[2], b[2]);
-        final double abSumArray = MathArrays.linearCombination(a, b);
-
-        Assert.assertEquals(abSumInline, abSumArray, 0);
-        Assert.assertEquals(-1.8551294182586248737720779899, abSumInline, 1.0e-15);
-
-        final double naive = a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
-        Assert.assertTrue(FastMath.abs(naive - abSumInline) > 1.5);
-
-    }
-
-    @Test
-    public void testLinearCombination2() {
-        // we compare accurate versus naive dot product implementations
-        // on regular vectors (i.e. not extreme cases like in the previous test)
-        UniformRandomProvider random = RandomSource.create(RandomSource.XOR_SHIFT_1024_S,
-                                                           553267312521321234l);
-
-        for (int i = 0; i < 10000; ++i) {
-            final double ux = 1e17 * random.nextDouble();
-            final double uy = 1e17 * random.nextDouble();
-            final double uz = 1e17 * random.nextDouble();
-            final double vx = 1e17 * random.nextDouble();
-            final double vy = 1e17 * random.nextDouble();
-            final double vz = 1e17 * random.nextDouble();
-            final double sInline = MathArrays.linearCombination(ux, vx,
-                                                                uy, vy,
-                                                                uz, vz);
-            final double sArray = MathArrays.linearCombination(new double[] {ux, uy, uz},
-                                                               new double[] {vx, vy, vz});
-            Assert.assertEquals(sInline, sArray, 0);
-        }
-    }
-
-    @Test
-    public void testLinearCombinationHuge() {
-        int scale = 971;
-        final double[] a = new double[] {
-                                         -1321008684645961.0 / 268435456.0,
-                                         -5774608829631843.0 / 268435456.0,
-                                         -7645843051051357.0 / 8589934592.0
-                                     };
-        final double[] b = new double[] {
-                                         -5712344449280879.0 / 2097152.0,
-                                         -4550117129121957.0 / 2097152.0,
-                                          8846951984510141.0 / 131072.0
-                                     };
-
-        double[] scaledA = new double[a.length];
-        double[] scaledB = new double[b.length];
-        for (int i = 0; i < scaledA.length; ++i) {
-            scaledA[i] = FastMath.scalb(a[i], -scale);
-            scaledB[i] = FastMath.scalb(b[i], +scale);
-        }
-        final double abSumInline = MathArrays.linearCombination(scaledA[0], scaledB[0],
-                                                                scaledA[1], scaledB[1],
-                                                                scaledA[2], scaledB[2]);
-        final double abSumArray = MathArrays.linearCombination(scaledA, scaledB);
-
-        Assert.assertEquals(abSumInline, abSumArray, 0);
-        Assert.assertEquals(-1.8551294182586248737720779899, abSumInline, 1.0e-15);
-
-        final double naive = scaledA[0] * scaledB[0] + scaledA[1] * scaledB[1] + scaledA[2] * scaledB[2];
-        Assert.assertTrue(FastMath.abs(naive - abSumInline) > 1.5);
-
-    }
-
-    @Test
-    public void testLinearCombinationInfinite() {
-        final double[][] a = new double[][] {
-            { 1, 2, 3, 4},
-            { 1, Double.POSITIVE_INFINITY, 3, 4},
-            { 1, 2, Double.POSITIVE_INFINITY, 4},
-            { 1, Double.POSITIVE_INFINITY, 3, Double.NEGATIVE_INFINITY},
-            { 1, 2, 3, 4},
-            { 1, 2, 3, 4},
-            { 1, 2, 3, 4},
-            { 1, 2, 3, 4}
-        };
-        final double[][] b = new double[][] {
-            { 1, -2, 3, 4},
-            { 1, -2, 3, 4},
-            { 1, -2, 3, 4},
-            { 1, -2, 3, 4},
-            { 1, Double.POSITIVE_INFINITY, 3, 4},
-            { 1, -2, Double.POSITIVE_INFINITY, 4},
-            { 1, Double.POSITIVE_INFINITY, 3, Double.NEGATIVE_INFINITY},
-            { Double.NaN, -2, 3, 4}
-        };
-
-        Assert.assertEquals(-3,
-                            MathArrays.linearCombination(a[0][0], b[0][0],
-                                                         a[0][1], b[0][1]),
-                            1.0e-10);
-        Assert.assertEquals(6,
-                            MathArrays.linearCombination(a[0][0], b[0][0],
-                                                         a[0][1], b[0][1],
-                                                         a[0][2], b[0][2]),
-                            1.0e-10);
-        Assert.assertEquals(22,
-                            MathArrays.linearCombination(a[0][0], b[0][0],
-                                                         a[0][1], b[0][1],
-                                                         a[0][2], b[0][2],
-                                                         a[0][3], b[0][3]),
-                            1.0e-10);
-        Assert.assertEquals(22, MathArrays.linearCombination(a[0], b[0]), 1.0e-10);
-
-        Assert.assertEquals(Double.NEGATIVE_INFINITY,
-                            MathArrays.linearCombination(a[1][0], b[1][0],
-                                                         a[1][1], b[1][1]),
-                            1.0e-10);
-        Assert.assertEquals(Double.NEGATIVE_INFINITY,
-                            MathArrays.linearCombination(a[1][0], b[1][0],
-                                                         a[1][1], b[1][1],
-                                                         a[1][2], b[1][2]),
-                            1.0e-10);
-        Assert.assertEquals(Double.NEGATIVE_INFINITY,
-                            MathArrays.linearCombination(a[1][0], b[1][0],
-                                                         a[1][1], b[1][1],
-                                                         a[1][2], b[1][2],
-                                                         a[1][3], b[1][3]),
-                            1.0e-10);
-        Assert.assertEquals(Double.NEGATIVE_INFINITY, MathArrays.linearCombination(a[1], b[1]), 1.0e-10);
-
-        Assert.assertEquals(-3,
-                            MathArrays.linearCombination(a[2][0], b[2][0],
-                                                         a[2][1], b[2][1]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[2][0], b[2][0],
-                                                         a[2][1], b[2][1],
-                                                         a[2][2], b[2][2]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[2][0], b[2][0],
-                                                         a[2][1], b[2][1],
-                                                         a[2][2], b[2][2],
-                                                         a[2][3], b[2][3]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY, MathArrays.linearCombination(a[2], b[2]), 1.0e-10);
-
-        Assert.assertEquals(Double.NEGATIVE_INFINITY,
-                            MathArrays.linearCombination(a[3][0], b[3][0],
-                                                         a[3][1], b[3][1]),
-                            1.0e-10);
-        Assert.assertEquals(Double.NEGATIVE_INFINITY,
-                            MathArrays.linearCombination(a[3][0], b[3][0],
-                                                         a[3][1], b[3][1],
-                                                         a[3][2], b[3][2]),
-                            1.0e-10);
-        Assert.assertEquals(Double.NEGATIVE_INFINITY,
-                            MathArrays.linearCombination(a[3][0], b[3][0],
-                                                         a[3][1], b[3][1],
-                                                         a[3][2], b[3][2],
-                                                         a[3][3], b[3][3]),
-                            1.0e-10);
-        Assert.assertEquals(Double.NEGATIVE_INFINITY, MathArrays.linearCombination(a[3], b[3]), 1.0e-10);
-
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[4][0], b[4][0],
-                                                         a[4][1], b[4][1]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[4][0], b[4][0],
-                                                         a[4][1], b[4][1],
-                                                         a[4][2], b[4][2]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[4][0], b[4][0],
-                                                         a[4][1], b[4][1],
-                                                         a[4][2], b[4][2],
-                                                         a[4][3], b[4][3]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY, MathArrays.linearCombination(a[4], b[4]), 1.0e-10);
-
-        Assert.assertEquals(-3,
-                            MathArrays.linearCombination(a[5][0], b[5][0],
-                                                         a[5][1], b[5][1]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[5][0], b[5][0],
-                                                         a[5][1], b[5][1],
-                                                         a[5][2], b[5][2]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[5][0], b[5][0],
-                                                         a[5][1], b[5][1],
-                                                         a[5][2], b[5][2],
-                                                         a[5][3], b[5][3]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY, MathArrays.linearCombination(a[5], b[5]), 1.0e-10);
-
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[6][0], b[6][0],
-                                                         a[6][1], b[6][1]),
-                            1.0e-10);
-        Assert.assertEquals(Double.POSITIVE_INFINITY,
-                            MathArrays.linearCombination(a[6][0], b[6][0],
-                                                         a[6][1], b[6][1],
-                                                         a[6][2], b[6][2]),
-                            1.0e-10);
-        Assert.assertTrue(Double.isNaN(MathArrays.linearCombination(a[6][0], b[6][0],
-                                                                    a[6][1], b[6][1],
-                                                                    a[6][2], b[6][2],
-                                                                    a[6][3], b[6][3])));
-        Assert.assertTrue(Double.isNaN(MathArrays.linearCombination(a[6], b[6])));
-
-        Assert.assertTrue(Double.isNaN(MathArrays.linearCombination(a[7][0], b[7][0],
-                                                                    a[7][1], b[7][1])));
-        Assert.assertTrue(Double.isNaN(MathArrays.linearCombination(a[7][0], b[7][0],
-                                                                    a[7][1], b[7][1],
-                                                                    a[7][2], b[7][2])));
-        Assert.assertTrue(Double.isNaN(MathArrays.linearCombination(a[7][0], b[7][0],
-                                                                    a[7][1], b[7][1],
-                                                                    a[7][2], b[7][2],
-                                                                    a[7][3], b[7][3])));
-        Assert.assertTrue(Double.isNaN(MathArrays.linearCombination(a[7], b[7])));
-    }
-
     @Test
     public void testArrayEquals() {
         Assert.assertFalse(MathArrays.equals(new double[] { 1d }, null));