You are viewing a plain text version of this content. The canonical link for it is here.
Posted to commits@hawq.apache.org by rl...@apache.org on 2016/09/07 02:57:46 UTC

[08/13] incubator-hawq git commit: HAWQ-1007. Add the pgcrypto code into hawq

http://git-wip-us.apache.org/repos/asf/incubator-hawq/blob/801100ed/contrib/pgcrypto/imath.c
----------------------------------------------------------------------
diff --git a/contrib/pgcrypto/imath.c b/contrib/pgcrypto/imath.c
new file mode 100644
index 0000000..3286cd9
--- /dev/null
+++ b/contrib/pgcrypto/imath.c
@@ -0,0 +1,3681 @@
+/* imath version 1.3 */
+/*
+  Name:		imath.c
+  Purpose:	Arbitrary precision integer arithmetic routines.
+  Author:	M. J. Fromberger <http://spinning-yarns.org/michael/sw/>
+  Info:		Id: imath.c 21 2006-04-02 18:58:36Z sting
+
+  Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
+
+  Permission is hereby granted, free of charge, to any person
+  obtaining a copy of this software and associated documentation files
+  (the "Software"), to deal in the Software without restriction,
+  including without limitation the rights to use, copy, modify, merge,
+  publish, distribute, sublicense, and/or sell copies of the Software,
+  and to permit persons to whom the Software is furnished to do so,
+  subject to the following conditions:
+
+  The above copyright notice and this permission notice shall be
+  included in all copies or substantial portions of the Software.
+
+  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+  NONINFRINGEMENT.	IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+  ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+  CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+  SOFTWARE.
+ */
+/* contrib/pgcrypto/imath.c */
+
+#include "postgres.h"
+#include "px.h"
+#include "imath.h"
+
+#undef assert
+#define assert(TEST) Assert(TEST)
+#define TRACEABLE_CLAMP 0
+#define TRACEABLE_FREE 0
+
+/* {{{ Constants */
+
+const mp_result MP_OK = 0;		/* no error, all is well  */
+const mp_result MP_FALSE = 0;	/* boolean false		  */
+const mp_result MP_TRUE = -1;	/* boolean true			  */
+const mp_result MP_MEMORY = -2; /* out of memory		  */
+const mp_result MP_RANGE = -3;	/* argument out of range  */
+const mp_result MP_UNDEF = -4;	/* result undefined		  */
+const mp_result MP_TRUNC = -5;	/* output truncated		  */
+const mp_result MP_BADARG = -6; /* invalid null argument  */
+
+const mp_sign MP_NEG = 1;		/* value is strictly negative */
+const mp_sign MP_ZPOS = 0;		/* value is non-negative	  */
+
+static const char *s_unknown_err = "unknown result code";
+static const char *s_error_msg[] = {
+	"error code 0",
+	"boolean true",
+	"out of memory",
+	"argument out of range",
+	"result undefined",
+	"output truncated",
+	"invalid null argument",
+	NULL
+};
+
+/* }}} */
+
+/* Optional library flags */
+#define MP_CAP_DIGITS	1		/* flag bit to capitalize letter digits */
+
+/* Argument checking macros
+   Use CHECK() where a return value is required; NRCHECK() elsewhere */
+#define CHECK(TEST)   assert(TEST)
+#define NRCHECK(TEST) assert(TEST)
+
+/* {{{ Logarithm table for computing output sizes */
+
+/* The ith entry of this table gives the value of log_i(2).
+
+   An integer value n requires ceil(log_i(n)) digits to be represented
+   in base i.  Since it is easy to compute lg(n), by counting bits, we
+   can compute log_i(n) = lg(n) * log_i(2).
+ */
+static const double s_log2[] = {
+	0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0  1  2	3 */
+	0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4  5  6	7 */
+	0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8  9 10 11 */
+	0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
+	0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
+	0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
+	0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
+	0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
+	0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
+	0.193426404, 0.191958720, 0.190551412, 0.189200360, /* 36 37 38 39 */
+	0.187901825, 0.186652411, 0.185449023, 0.184288833, /* 40 41 42 43 */
+	0.183169251, 0.182087900, 0.181042597, 0.180031327, /* 44 45 46 47 */
+	0.179052232, 0.178103594, 0.177183820, 0.176291434, /* 48 49 50 51 */
+	0.175425064, 0.174583430, 0.173765343, 0.172969690, /* 52 53 54 55 */
+	0.172195434, 0.171441601, 0.170707280, 0.169991616, /* 56 57 58 59 */
+	0.169293808, 0.168613099, 0.167948779, 0.167300179, /* 60 61 62 63 */
+	0.166666667
+};
+
+/* }}} */
+/* {{{ Various macros */
+
+/* Return the number of digits needed to represent a static value */
+#define MP_VALUE_DIGITS(V) \
+((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
+
+/* Round precision P to nearest word boundary */
+#define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
+
+/* Set array P of S digits to zero */
+#define ZERO(P, S) \
+do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P);memset(p__,0,i__);}while(0)
+
+/* Copy S digits from array P to array Q */
+#define COPY(P, Q, S) \
+do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P),*q__=(Q);\
+memcpy(q__,p__,i__);}while(0)
+
+/* Reverse N elements of type T in array A */
+#define REV(T, A, N) \
+do{T *u_=(A),*v_=u_+(N)-1;while(u_<v_){T xch=*u_;*u_++=*v_;*v_--=xch;}}while(0)
+
+#if TRACEABLE_CLAMP
+#define CLAMP(Z) s_clamp(Z)
+#else
+#define CLAMP(Z) \
+do{mp_int z_=(Z);mp_size uz_=MP_USED(z_);mp_digit *dz_=MP_DIGITS(z_)+uz_-1;\
+while(uz_ > 1 && (*dz_-- == 0)) --uz_;MP_USED(z_)=uz_;}while(0)
+#endif
+
+#undef MIN
+#undef MAX
+#define MIN(A, B) ((B)<(A)?(B):(A))
+#define MAX(A, B) ((B)>(A)?(B):(A))
+#define SWAP(T, A, B) do{T t_=(A);A=(B);B=t_;}while(0)
+
+#define TEMP(K) (temp + (K))
+#define SETUP(E, C) \
+do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
+
+#define CMPZ(Z) \
+(((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1)
+
+#define UMUL(X, Y, Z) \
+do{mp_size ua_=MP_USED(X),ub_=MP_USED(Y);mp_size o_=ua_+ub_;\
+ZERO(MP_DIGITS(Z),o_);\
+(void) s_kmul(MP_DIGITS(X),MP_DIGITS(Y),MP_DIGITS(Z),ua_,ub_);\
+MP_USED(Z)=o_;CLAMP(Z);}while(0)
+
+#define USQR(X, Z) \
+do{mp_size ua_=MP_USED(X),o_=ua_+ua_;ZERO(MP_DIGITS(Z),o_);\
+(void) s_ksqr(MP_DIGITS(X),MP_DIGITS(Z),ua_);MP_USED(Z)=o_;CLAMP(Z);}while(0)
+
+#define UPPER_HALF(W)			((mp_word)((W) >> MP_DIGIT_BIT))
+#define LOWER_HALF(W)			((mp_digit)(W))
+#define HIGH_BIT_SET(W)			((W) >> (MP_WORD_BIT - 1))
+#define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
+
+/* }}} */
+
+/* Default number of digits allocated to a new mp_int */
+static mp_size default_precision = 64;
+
+/* Minimum number of digits to invoke recursive multiply */
+static mp_size multiply_threshold = 32;
+
+/* Default library configuration flags */
+static mp_word mp_flags = MP_CAP_DIGITS;
+
+/* Allocate a buffer of (at least) num digits, or return
+   NULL if that couldn't be done.  */
+static mp_digit *s_alloc(mp_size num);
+
+#if TRACEABLE_FREE
+static void s_free(void *ptr);
+#else
+#define s_free(P) px_free(P)
+#endif
+
+/* Insure that z has at least min digits allocated, resizing if
+   necessary.  Returns true if successful, false if out of memory. */
+static int	s_pad(mp_int z, mp_size min);
+
+/* Normalize by removing leading zeroes (except when z = 0) */
+#if TRACEABLE_CLAMP
+static void s_clamp(mp_int z);
+#endif
+
+/* Fill in a "fake" mp_int on the stack with a given value */
+static void s_fake(mp_int z, int value, mp_digit vbuf[]);
+
+/* Compare two runs of digits of given length, returns <0, 0, >0 */
+static int	s_cdig(mp_digit *da, mp_digit *db, mp_size len);
+
+/* Pack the unsigned digits of v into array t */
+static int	s_vpack(int v, mp_digit t[]);
+
+/* Compare magnitudes of a and b, returns <0, 0, >0 */
+static int	s_ucmp(mp_int a, mp_int b);
+
+/* Compare magnitudes of a and v, returns <0, 0, >0 */
+static int	s_vcmp(mp_int a, int v);
+
+/* Unsigned magnitude addition; assumes dc is big enough.
+   Carry out is returned (no memory allocated). */
+static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
+	   mp_size size_a, mp_size size_b);
+
+/* Unsigned magnitude subtraction.	Assumes dc is big enough. */
+static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
+	   mp_size size_a, mp_size size_b);
+
+/* Unsigned recursive multiplication.  Assumes dc is big enough. */
+static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
+	   mp_size size_a, mp_size size_b);
+
+/* Unsigned magnitude multiplication.  Assumes dc is big enough. */
+static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
+	   mp_size size_a, mp_size size_b);
+
+/* Unsigned recursive squaring.  Assumes dc is big enough. */
+static int	s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
+
+/* Unsigned magnitude squaring.  Assumes dc is big enough. */
+static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
+
+/* Single digit addition.  Assumes a is big enough. */
+static void s_dadd(mp_int a, mp_digit b);
+
+/* Single digit multiplication.  Assumes a is big enough. */
+static void s_dmul(mp_int a, mp_digit b);
+
+/* Single digit multiplication on buffers; assumes dc is big enough. */
+static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
+		mp_size size_a);
+
+/* Single digit division.  Replaces a with the quotient,
+   returns the remainder.  */
+static mp_digit s_ddiv(mp_int a, mp_digit b);
+
+/* Quick division by a power of 2, replaces z (no allocation) */
+static void s_qdiv(mp_int z, mp_size p2);
+
+/* Quick remainder by a power of 2, replaces z (no allocation) */
+static void s_qmod(mp_int z, mp_size p2);
+
+/* Quick multiplication by a power of 2, replaces z.
+   Allocates if necessary; returns false in case this fails. */
+static int	s_qmul(mp_int z, mp_size p2);
+
+/* Quick subtraction from a power of 2, replaces z.
+   Allocates if necessary; returns false in case this fails. */
+static int	s_qsub(mp_int z, mp_size p2);
+
+/* Return maximum k such that 2^k divides z. */
+static int	s_dp2k(mp_int z);
+
+/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
+static int	s_isp2(mp_int z);
+
+/* Set z to 2^k.  May allocate; returns false in case this fails. */
+static int	s_2expt(mp_int z, int k);
+
+/* Normalize a and b for division, returns normalization constant */
+static int	s_norm(mp_int a, mp_int b);
+
+/* Compute constant mu for Barrett reduction, given modulus m, result
+   replaces z, m is untouched. */
+static mp_result s_brmu(mp_int z, mp_int m);
+
+/* Reduce a modulo m, using Barrett's algorithm. */
+static int	s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
+
+/* Modular exponentiation, using Barrett reduction */
+static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
+
+/* Unsigned magnitude division.  Assumes |a| > |b|.  Allocates
+   temporaries; overwrites a with quotient, b with remainder. */
+static mp_result s_udiv(mp_int a, mp_int b);
+
+/* Compute the number of digits in radix r required to represent the
+   given value.  Does not account for sign flags, terminators, etc. */
+static int	s_outlen(mp_int z, mp_size r);
+
+/* Guess how many digits of precision will be needed to represent a
+   radix r value of the specified number of digits.  Returns a value
+   guaranteed to be no smaller than the actual number required. */
+static mp_size s_inlen(int len, mp_size r);
+
+/* Convert a character to a digit value in radix r, or
+   -1 if out of range */
+static int	s_ch2val(char c, int r);
+
+/* Convert a digit value to a character */
+static char s_val2ch(int v, int caps);
+
+/* Take 2's complement of a buffer in place */
+static void s_2comp(unsigned char *buf, int len);
+
+/* Convert a value to binary, ignoring sign.  On input, *limpos is the
+   bound on how many bytes should be written to buf; on output, *limpos
+   is set to the number of bytes actually written. */
+static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
+
+#if 0
+/* Dump a representation of the mp_int to standard output */
+void		s_print(char *tag, mp_int z);
+void		s_print_buf(char *tag, mp_digit *buf, mp_size num);
+#endif
+
+/* {{{ get_default_precision() */
+
+mp_size
+mp_get_default_precision(void)
+{
+	return default_precision;
+}
+
+/* }}} */
+
+/* {{{ mp_set_default_precision(s) */
+
+void
+mp_set_default_precision(mp_size s)
+{
+	NRCHECK(s > 0);
+
+	default_precision = (mp_size) ROUND_PREC(s);
+}
+
+/* }}} */
+
+/* {{{ mp_get_multiply_threshold() */
+
+mp_size
+mp_get_multiply_threshold(void)
+{
+	return multiply_threshold;
+}
+
+/* }}} */
+
+/* {{{ mp_set_multiply_threshold(s) */
+
+void
+mp_set_multiply_threshold(mp_size s)
+{
+	multiply_threshold = s;
+}
+
+/* }}} */
+
+/* {{{ mp_int_init(z) */
+
+mp_result
+mp_int_init(mp_int z)
+{
+	return mp_int_init_size(z, default_precision);
+}
+
+/* }}} */
+
+/* {{{ mp_int_alloc() */
+
+mp_int
+mp_int_alloc(void)
+{
+	mp_int		out = px_alloc(sizeof(mpz_t));
+
+	assert(out != NULL);
+	out->digits = NULL;
+	out->used = 0;
+	out->alloc = 0;
+	out->sign = 0;
+
+	return out;
+}
+
+/* }}} */
+
+/* {{{ mp_int_init_size(z, prec) */
+
+mp_result
+mp_int_init_size(mp_int z, mp_size prec)
+{
+	CHECK(z != NULL);
+
+	prec = (mp_size) ROUND_PREC(prec);
+	prec = MAX(prec, default_precision);
+
+	if ((MP_DIGITS(z) = s_alloc(prec)) == NULL)
+		return MP_MEMORY;
+
+	z->digits[0] = 0;
+	MP_USED(z) = 1;
+	MP_ALLOC(z) = prec;
+	MP_SIGN(z) = MP_ZPOS;
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_init_copy(z, old) */
+
+mp_result
+mp_int_init_copy(mp_int z, mp_int old)
+{
+	mp_result	res;
+	mp_size		uold,
+				target;
+
+	CHECK(z != NULL && old != NULL);
+
+	uold = MP_USED(old);
+	target = MAX(uold, default_precision);
+
+	if ((res = mp_int_init_size(z, target)) != MP_OK)
+		return res;
+
+	MP_USED(z) = uold;
+	MP_SIGN(z) = MP_SIGN(old);
+	COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_init_value(z, value) */
+
+mp_result
+mp_int_init_value(mp_int z, int value)
+{
+	mp_result	res;
+
+	CHECK(z != NULL);
+
+	if ((res = mp_int_init(z)) != MP_OK)
+		return res;
+
+	return mp_int_set_value(z, value);
+}
+
+/* }}} */
+
+/* {{{ mp_int_set_value(z, value) */
+
+mp_result
+mp_int_set_value(mp_int z, int value)
+{
+	mp_size		ndig;
+
+	CHECK(z != NULL);
+
+	/* How many digits to copy */
+	ndig = (mp_size) MP_VALUE_DIGITS(value);
+
+	if (!s_pad(z, ndig))
+		return MP_MEMORY;
+
+	MP_USED(z) = (mp_size) s_vpack(value, MP_DIGITS(z));
+	MP_SIGN(z) = (value < 0) ? MP_NEG : MP_ZPOS;
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_clear(z) */
+
+void
+mp_int_clear(mp_int z)
+{
+	if (z == NULL)
+		return;
+
+	if (MP_DIGITS(z) != NULL)
+	{
+		s_free(MP_DIGITS(z));
+		MP_DIGITS(z) = NULL;
+	}
+}
+
+/* }}} */
+
+/* {{{ mp_int_free(z) */
+
+void
+mp_int_free(mp_int z)
+{
+	NRCHECK(z != NULL);
+
+	if (z->digits != NULL)
+		mp_int_clear(z);
+
+	px_free(z);
+}
+
+/* }}} */
+
+/* {{{ mp_int_copy(a, c) */
+
+mp_result
+mp_int_copy(mp_int a, mp_int c)
+{
+	CHECK(a != NULL && c != NULL);
+
+	if (a != c)
+	{
+		mp_size		ua = MP_USED(a);
+		mp_digit   *da,
+				   *dc;
+
+		if (!s_pad(c, ua))
+			return MP_MEMORY;
+
+		da = MP_DIGITS(a);
+		dc = MP_DIGITS(c);
+		COPY(da, dc, ua);
+
+		MP_USED(c) = ua;
+		MP_SIGN(c) = MP_SIGN(a);
+	}
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_swap(a, c) */
+
+void
+mp_int_swap(mp_int a, mp_int c)
+{
+	if (a != c)
+	{
+		mpz_t		tmp = *a;
+
+		*a = *c;
+		*c = tmp;
+	}
+}
+
+/* }}} */
+
+/* {{{ mp_int_zero(z) */
+
+void
+mp_int_zero(mp_int z)
+{
+	NRCHECK(z != NULL);
+
+	z->digits[0] = 0;
+	MP_USED(z) = 1;
+	MP_SIGN(z) = MP_ZPOS;
+}
+
+/* }}} */
+
+/* {{{ mp_int_abs(a, c) */
+
+mp_result
+mp_int_abs(mp_int a, mp_int c)
+{
+	mp_result	res;
+
+	CHECK(a != NULL && c != NULL);
+
+	if ((res = mp_int_copy(a, c)) != MP_OK)
+		return res;
+
+	MP_SIGN(c) = MP_ZPOS;
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_neg(a, c) */
+
+mp_result
+mp_int_neg(mp_int a, mp_int c)
+{
+	mp_result	res;
+
+	CHECK(a != NULL && c != NULL);
+
+	if ((res = mp_int_copy(a, c)) != MP_OK)
+		return res;
+
+	if (CMPZ(c) != 0)
+		MP_SIGN(c) = 1 - MP_SIGN(a);
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_add(a, b, c) */
+
+mp_result
+mp_int_add(mp_int a, mp_int b, mp_int c)
+{
+	mp_size		ua,
+				ub,
+				uc,
+				max;
+
+	CHECK(a != NULL && b != NULL && c != NULL);
+
+	ua = MP_USED(a);
+	ub = MP_USED(b);
+	uc = MP_USED(c);
+	max = MAX(ua, ub);
+
+	if (MP_SIGN(a) == MP_SIGN(b))
+	{
+		/* Same sign -- add magnitudes, preserve sign of addends */
+		mp_digit	carry;
+
+		if (!s_pad(c, max))
+			return MP_MEMORY;
+
+		carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
+		uc = max;
+
+		if (carry)
+		{
+			if (!s_pad(c, max + 1))
+				return MP_MEMORY;
+
+			c->digits[max] = carry;
+			++uc;
+		}
+
+		MP_USED(c) = uc;
+		MP_SIGN(c) = MP_SIGN(a);
+
+	}
+	else
+	{
+		/* Different signs -- subtract magnitudes, preserve sign of greater */
+		mp_int		x,
+					y;
+		int			cmp = s_ucmp(a, b); /* magnitude comparison, sign ignored */
+
+		/* Set x to max(a, b), y to min(a, b) to simplify later code */
+		if (cmp >= 0)
+		{
+			x = a;
+			y = b;
+		}
+		else
+		{
+			x = b;
+			y = a;
+		}
+
+		if (!s_pad(c, MP_USED(x)))
+			return MP_MEMORY;
+
+		/* Subtract smaller from larger */
+		s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
+		MP_USED(c) = MP_USED(x);
+		CLAMP(c);
+
+		/* Give result the sign of the larger */
+		MP_SIGN(c) = MP_SIGN(x);
+	}
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_add_value(a, value, c) */
+
+mp_result
+mp_int_add_value(mp_int a, int value, mp_int c)
+{
+	mpz_t		vtmp;
+	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
+
+	s_fake(&vtmp, value, vbuf);
+
+	return mp_int_add(a, &vtmp, c);
+}
+
+/* }}} */
+
+/* {{{ mp_int_sub(a, b, c) */
+
+mp_result
+mp_int_sub(mp_int a, mp_int b, mp_int c)
+{
+	mp_size		ua,
+				ub,
+				uc,
+				max;
+
+	CHECK(a != NULL && b != NULL && c != NULL);
+
+	ua = MP_USED(a);
+	ub = MP_USED(b);
+	uc = MP_USED(c);
+	max = MAX(ua, ub);
+
+	if (MP_SIGN(a) != MP_SIGN(b))
+	{
+		/* Different signs -- add magnitudes and keep sign of a */
+		mp_digit	carry;
+
+		if (!s_pad(c, max))
+			return MP_MEMORY;
+
+		carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
+		uc = max;
+
+		if (carry)
+		{
+			if (!s_pad(c, max + 1))
+				return MP_MEMORY;
+
+			c->digits[max] = carry;
+			++uc;
+		}
+
+		MP_USED(c) = uc;
+		MP_SIGN(c) = MP_SIGN(a);
+
+	}
+	else
+	{
+		/* Same signs -- subtract magnitudes */
+		mp_int		x,
+					y;
+		mp_sign		osign;
+		int			cmp = s_ucmp(a, b);
+
+		if (!s_pad(c, max))
+			return MP_MEMORY;
+
+		if (cmp >= 0)
+		{
+			x = a;
+			y = b;
+			osign = MP_ZPOS;
+		}
+		else
+		{
+			x = b;
+			y = a;
+			osign = MP_NEG;
+		}
+
+		if (MP_SIGN(a) == MP_NEG && cmp != 0)
+			osign = 1 - osign;
+
+		s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
+		MP_USED(c) = MP_USED(x);
+		CLAMP(c);
+
+		MP_SIGN(c) = osign;
+	}
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_sub_value(a, value, c) */
+
+mp_result
+mp_int_sub_value(mp_int a, int value, mp_int c)
+{
+	mpz_t		vtmp;
+	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
+
+	s_fake(&vtmp, value, vbuf);
+
+	return mp_int_sub(a, &vtmp, c);
+}
+
+/* }}} */
+
+/* {{{ mp_int_mul(a, b, c) */
+
+mp_result
+mp_int_mul(mp_int a, mp_int b, mp_int c)
+{
+	mp_digit   *out;
+	mp_size		osize,
+				ua,
+				ub,
+				p = 0;
+	mp_sign		osign;
+
+	CHECK(a != NULL && b != NULL && c != NULL);
+
+	/* If either input is zero, we can shortcut multiplication */
+	if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0)
+	{
+		mp_int_zero(c);
+		return MP_OK;
+	}
+
+	/* Output is positive if inputs have same sign, otherwise negative */
+	osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
+
+	/*
+	 * If the output is not equal to any of the inputs, we'll write the
+	 * results there directly; otherwise, allocate a temporary space.
+	 */
+	ua = MP_USED(a);
+	ub = MP_USED(b);
+	osize = ua + ub;
+
+	if (c == a || c == b)
+	{
+		p = ROUND_PREC(osize);
+		p = MAX(p, default_precision);
+
+		if ((out = s_alloc(p)) == NULL)
+			return MP_MEMORY;
+	}
+	else
+	{
+		if (!s_pad(c, osize))
+			return MP_MEMORY;
+
+		out = MP_DIGITS(c);
+	}
+	ZERO(out, osize);
+
+	if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
+		return MP_MEMORY;
+
+	/*
+	 * If we allocated a new buffer, get rid of whatever memory c was already
+	 * using, and fix up its fields to reflect that.
+	 */
+	if (out != MP_DIGITS(c))
+	{
+		s_free(MP_DIGITS(c));
+		MP_DIGITS(c) = out;
+		MP_ALLOC(c) = p;
+	}
+
+	MP_USED(c) = osize;			/* might not be true, but we'll fix it ... */
+	CLAMP(c);					/* ... right here */
+	MP_SIGN(c) = osign;
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_mul_value(a, value, c) */
+
+mp_result
+mp_int_mul_value(mp_int a, int value, mp_int c)
+{
+	mpz_t		vtmp;
+	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
+
+	s_fake(&vtmp, value, vbuf);
+
+	return mp_int_mul(a, &vtmp, c);
+}
+
+/* }}} */
+
+/* {{{ mp_int_mul_pow2(a, p2, c) */
+
+mp_result
+mp_int_mul_pow2(mp_int a, int p2, mp_int c)
+{
+	mp_result	res;
+
+	CHECK(a != NULL && c != NULL && p2 >= 0);
+
+	if ((res = mp_int_copy(a, c)) != MP_OK)
+		return res;
+
+	if (s_qmul(c, (mp_size) p2))
+		return MP_OK;
+	else
+		return MP_MEMORY;
+}
+
+/* }}} */
+
+/* {{{ mp_int_sqr(a, c) */
+
+mp_result
+mp_int_sqr(mp_int a, mp_int c)
+{
+	mp_digit   *out;
+	mp_size		osize,
+				p = 0;
+
+	CHECK(a != NULL && c != NULL);
+
+	/* Get a temporary buffer big enough to hold the result */
+	osize = (mp_size) 2 *MP_USED(a);
+
+	if (a == c)
+	{
+		p = ROUND_PREC(osize);
+		p = MAX(p, default_precision);
+
+		if ((out = s_alloc(p)) == NULL)
+			return MP_MEMORY;
+	}
+	else
+	{
+		if (!s_pad(c, osize))
+			return MP_MEMORY;
+
+		out = MP_DIGITS(c);
+	}
+	ZERO(out, osize);
+
+	s_ksqr(MP_DIGITS(a), out, MP_USED(a));
+
+	/*
+	 * Get rid of whatever memory c was already using, and fix up its fields
+	 * to reflect the new digit array it's using
+	 */
+	if (out != MP_DIGITS(c))
+	{
+		s_free(MP_DIGITS(c));
+		MP_DIGITS(c) = out;
+		MP_ALLOC(c) = p;
+	}
+
+	MP_USED(c) = osize;			/* might not be true, but we'll fix it ... */
+	CLAMP(c);					/* ... right here */
+	MP_SIGN(c) = MP_ZPOS;
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_div(a, b, q, r) */
+
+mp_result
+mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
+{
+	int			cmp,
+				last = 0,
+				lg;
+	mp_result	res = MP_OK;
+	mpz_t		temp[2];
+	mp_int		qout,
+				rout;
+	mp_sign		sa = MP_SIGN(a),
+				sb = MP_SIGN(b);
+
+	CHECK(a != NULL && b != NULL && q != r);
+
+	if (CMPZ(b) == 0)
+		return MP_UNDEF;
+	else if ((cmp = s_ucmp(a, b)) < 0)
+	{
+		/*
+		 * If |a| < |b|, no division is required: q = 0, r = a
+		 */
+		if (r && (res = mp_int_copy(a, r)) != MP_OK)
+			return res;
+
+		if (q)
+			mp_int_zero(q);
+
+		return MP_OK;
+	}
+	else if (cmp == 0)
+	{
+		/*
+		 * If |a| = |b|, no division is required: q = 1 or -1, r = 0
+		 */
+		if (r)
+			mp_int_zero(r);
+
+		if (q)
+		{
+			mp_int_zero(q);
+			q->digits[0] = 1;
+
+			if (sa != sb)
+				MP_SIGN(q) = MP_NEG;
+		}
+
+		return MP_OK;
+	}
+
+	/*
+	 * When |a| > |b|, real division is required.  We need someplace to store
+	 * quotient and remainder, but q and r are allowed to be NULL or to
+	 * overlap with the inputs.
+	 */
+	if ((lg = s_isp2(b)) < 0)
+	{
+		if (q && b != q && (res = mp_int_copy(a, q)) == MP_OK)
+		{
+			qout = q;
+		}
+		else
+		{
+			qout = TEMP(last);
+			SETUP(mp_int_init_copy(TEMP(last), a), last);
+		}
+
+		if (r && a != r && (res = mp_int_copy(b, r)) == MP_OK)
+		{
+			rout = r;
+		}
+		else
+		{
+			rout = TEMP(last);
+			SETUP(mp_int_init_copy(TEMP(last), b), last);
+		}
+
+		if ((res = s_udiv(qout, rout)) != MP_OK)
+			goto CLEANUP;
+	}
+	else
+	{
+		if (q && (res = mp_int_copy(a, q)) != MP_OK)
+			goto CLEANUP;
+		if (r && (res = mp_int_copy(a, r)) != MP_OK)
+			goto CLEANUP;
+
+		if (q)
+			s_qdiv(q, (mp_size) lg);
+		qout = q;
+		if (r)
+			s_qmod(r, (mp_size) lg);
+		rout = r;
+	}
+
+	/* Recompute signs for output */
+	if (rout)
+	{
+		MP_SIGN(rout) = sa;
+		if (CMPZ(rout) == 0)
+			MP_SIGN(rout) = MP_ZPOS;
+	}
+	if (qout)
+	{
+		MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG;
+		if (CMPZ(qout) == 0)
+			MP_SIGN(qout) = MP_ZPOS;
+	}
+
+	if (q && (res = mp_int_copy(qout, q)) != MP_OK)
+		goto CLEANUP;
+	if (r && (res = mp_int_copy(rout, r)) != MP_OK)
+		goto CLEANUP;
+
+CLEANUP:
+	while (--last >= 0)
+		mp_int_clear(TEMP(last));
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_mod(a, m, c) */
+
+mp_result
+mp_int_mod(mp_int a, mp_int m, mp_int c)
+{
+	mp_result	res;
+	mpz_t		tmp;
+	mp_int		out;
+
+	if (m == c)
+	{
+		if ((res = mp_int_init(&tmp)) != MP_OK)
+			return res;
+
+		out = &tmp;
+	}
+	else
+	{
+		out = c;
+	}
+
+	if ((res = mp_int_div(a, m, NULL, out)) != MP_OK)
+		goto CLEANUP;
+
+	if (CMPZ(out) < 0)
+		res = mp_int_add(out, m, c);
+	else
+		res = mp_int_copy(out, c);
+
+CLEANUP:
+	if (out != c)
+		mp_int_clear(&tmp);
+
+	return res;
+}
+
+/* }}} */
+
+
+/* {{{ mp_int_div_value(a, value, q, r) */
+
+mp_result
+mp_int_div_value(mp_int a, int value, mp_int q, int *r)
+{
+	mpz_t		vtmp,
+				rtmp;
+	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
+	mp_result	res;
+
+	if ((res = mp_int_init(&rtmp)) != MP_OK)
+		return res;
+	s_fake(&vtmp, value, vbuf);
+
+	if ((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
+		goto CLEANUP;
+
+	if (r)
+		(void) mp_int_to_int(&rtmp, r); /* can't fail */
+
+CLEANUP:
+	mp_int_clear(&rtmp);
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_div_pow2(a, p2, q, r) */
+
+mp_result
+mp_int_div_pow2(mp_int a, int p2, mp_int q, mp_int r)
+{
+	mp_result	res = MP_OK;
+
+	CHECK(a != NULL && p2 >= 0 && q != r);
+
+	if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
+		s_qdiv(q, (mp_size) p2);
+
+	if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
+		s_qmod(r, (mp_size) p2);
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_expt(a, b, c) */
+
+mp_result
+mp_int_expt(mp_int a, int b, mp_int c)
+{
+	mpz_t		t;
+	mp_result	res;
+	unsigned int v = abs(b);
+
+	CHECK(b >= 0 && c != NULL);
+
+	if ((res = mp_int_init_copy(&t, a)) != MP_OK)
+		return res;
+
+	(void) mp_int_set_value(c, 1);
+	while (v != 0)
+	{
+		if (v & 1)
+		{
+			if ((res = mp_int_mul(c, &t, c)) != MP_OK)
+				goto CLEANUP;
+		}
+
+		v >>= 1;
+		if (v == 0)
+			break;
+
+		if ((res = mp_int_sqr(&t, &t)) != MP_OK)
+			goto CLEANUP;
+	}
+
+CLEANUP:
+	mp_int_clear(&t);
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_expt_value(a, b, c) */
+
+mp_result
+mp_int_expt_value(int a, int b, mp_int c)
+{
+	mpz_t		t;
+	mp_result	res;
+	unsigned int v = abs(b);
+
+	CHECK(b >= 0 && c != NULL);
+
+	if ((res = mp_int_init_value(&t, a)) != MP_OK)
+		return res;
+
+	(void) mp_int_set_value(c, 1);
+	while (v != 0)
+	{
+		if (v & 1)
+		{
+			if ((res = mp_int_mul(c, &t, c)) != MP_OK)
+				goto CLEANUP;
+		}
+
+		v >>= 1;
+		if (v == 0)
+			break;
+
+		if ((res = mp_int_sqr(&t, &t)) != MP_OK)
+			goto CLEANUP;
+	}
+
+CLEANUP:
+	mp_int_clear(&t);
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_compare(a, b) */
+
+int
+mp_int_compare(mp_int a, mp_int b)
+{
+	mp_sign		sa;
+
+	CHECK(a != NULL && b != NULL);
+
+	sa = MP_SIGN(a);
+	if (sa == MP_SIGN(b))
+	{
+		int			cmp = s_ucmp(a, b);
+
+		/*
+		 * If they're both zero or positive, the normal comparison applies; if
+		 * both negative, the sense is reversed.
+		 */
+		if (sa == MP_ZPOS)
+			return cmp;
+		else
+			return -cmp;
+
+	}
+	else
+	{
+		if (sa == MP_ZPOS)
+			return 1;
+		else
+			return -1;
+	}
+}
+
+/* }}} */
+
+/* {{{ mp_int_compare_unsigned(a, b) */
+
+int
+mp_int_compare_unsigned(mp_int a, mp_int b)
+{
+	NRCHECK(a != NULL && b != NULL);
+
+	return s_ucmp(a, b);
+}
+
+/* }}} */
+
+/* {{{ mp_int_compare_zero(z) */
+
+int
+mp_int_compare_zero(mp_int z)
+{
+	NRCHECK(z != NULL);
+
+	if (MP_USED(z) == 1 && z->digits[0] == 0)
+		return 0;
+	else if (MP_SIGN(z) == MP_ZPOS)
+		return 1;
+	else
+		return -1;
+}
+
+/* }}} */
+
+/* {{{ mp_int_compare_value(z, value) */
+
+int
+mp_int_compare_value(mp_int z, int value)
+{
+	mp_sign		vsign = (value < 0) ? MP_NEG : MP_ZPOS;
+	int			cmp;
+
+	CHECK(z != NULL);
+
+	if (vsign == MP_SIGN(z))
+	{
+		cmp = s_vcmp(z, value);
+
+		if (vsign == MP_ZPOS)
+			return cmp;
+		else
+			return -cmp;
+	}
+	else
+	{
+		if (value < 0)
+			return 1;
+		else
+			return -1;
+	}
+}
+
+/* }}} */
+
+/* {{{ mp_int_exptmod(a, b, m, c) */
+
+mp_result
+mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
+{
+	mp_result	res;
+	mp_size		um;
+	mpz_t		temp[3];
+	mp_int		s;
+	int			last = 0;
+
+	CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
+
+	/* Zero moduli and negative exponents are not considered. */
+	if (CMPZ(m) == 0)
+		return MP_UNDEF;
+	if (CMPZ(b) < 0)
+		return MP_RANGE;
+
+	um = MP_USED(m);
+	SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
+	SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
+
+	if (c == b || c == m)
+	{
+		SETUP(mp_int_init_size(TEMP(2), 2 * um), last);
+		s = TEMP(2);
+	}
+	else
+	{
+		s = c;
+	}
+
+	if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK)
+		goto CLEANUP;
+
+	if ((res = s_brmu(TEMP(1), m)) != MP_OK)
+		goto CLEANUP;
+
+	if ((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
+		goto CLEANUP;
+
+	res = mp_int_copy(s, c);
+
+CLEANUP:
+	while (--last >= 0)
+		mp_int_clear(TEMP(last));
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_exptmod_evalue(a, value, m, c) */
+
+mp_result
+mp_int_exptmod_evalue(mp_int a, int value, mp_int m, mp_int c)
+{
+	mpz_t		vtmp;
+	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
+
+	s_fake(&vtmp, value, vbuf);
+
+	return mp_int_exptmod(a, &vtmp, m, c);
+}
+
+/* }}} */
+
+/* {{{ mp_int_exptmod_bvalue(v, b, m, c) */
+
+mp_result
+mp_int_exptmod_bvalue(int value, mp_int b,
+					  mp_int m, mp_int c)
+{
+	mpz_t		vtmp;
+	mp_digit	vbuf[MP_VALUE_DIGITS(value)];
+
+	s_fake(&vtmp, value, vbuf);
+
+	return mp_int_exptmod(&vtmp, b, m, c);
+}
+
+/* }}} */
+
+/* {{{ mp_int_exptmod_known(a, b, m, mu, c) */
+
+mp_result
+mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
+{
+	mp_result	res;
+	mp_size		um;
+	mpz_t		temp[2];
+	mp_int		s;
+	int			last = 0;
+
+	CHECK(a && b && m && c);
+
+	/* Zero moduli and negative exponents are not considered. */
+	if (CMPZ(m) == 0)
+		return MP_UNDEF;
+	if (CMPZ(b) < 0)
+		return MP_RANGE;
+
+	um = MP_USED(m);
+	SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
+
+	if (c == b || c == m)
+	{
+		SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
+		s = TEMP(1);
+	}
+	else
+	{
+		s = c;
+	}
+
+	if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK)
+		goto CLEANUP;
+
+	if ((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
+		goto CLEANUP;
+
+	res = mp_int_copy(s, c);
+
+CLEANUP:
+	while (--last >= 0)
+		mp_int_clear(TEMP(last));
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_redux_const(m, c) */
+
+mp_result
+mp_int_redux_const(mp_int m, mp_int c)
+{
+	CHECK(m != NULL && c != NULL && m != c);
+
+	return s_brmu(c, m);
+}
+
+/* }}} */
+
+/* {{{ mp_int_invmod(a, m, c) */
+
+mp_result
+mp_int_invmod(mp_int a, mp_int m, mp_int c)
+{
+	mp_result	res;
+	mp_sign		sa;
+	int			last = 0;
+	mpz_t		temp[2];
+
+	CHECK(a != NULL && m != NULL && c != NULL);
+
+	if (CMPZ(a) == 0 || CMPZ(m) <= 0)
+		return MP_RANGE;
+
+	sa = MP_SIGN(a);			/* need this for the result later */
+
+	for (last = 0; last < 2; ++last)
+		if ((res = mp_int_init(TEMP(last))) != MP_OK)
+			goto CLEANUP;
+
+	if ((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
+		goto CLEANUP;
+
+	if (mp_int_compare_value(TEMP(0), 1) != 0)
+	{
+		res = MP_UNDEF;
+		goto CLEANUP;
+	}
+
+	/* It is first necessary to constrain the value to the proper range */
+	if ((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
+		goto CLEANUP;
+
+	/*
+	 * Now, if 'a' was originally negative, the value we have is actually the
+	 * magnitude of the negative representative; to get the positive value we
+	 * have to subtract from the modulus.  Otherwise, the value is okay as it
+	 * stands.
+	 */
+	if (sa == MP_NEG)
+		res = mp_int_sub(m, TEMP(1), c);
+	else
+		res = mp_int_copy(TEMP(1), c);
+
+CLEANUP:
+	while (--last >= 0)
+		mp_int_clear(TEMP(last));
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_gcd(a, b, c) */
+
+/* Binary GCD algorithm due to Josef Stein, 1961 */
+mp_result
+mp_int_gcd(mp_int a, mp_int b, mp_int c)
+{
+	int			ca,
+				cb,
+				k = 0;
+	mpz_t		u,
+				v,
+				t;
+	mp_result	res;
+
+	CHECK(a != NULL && b != NULL && c != NULL);
+
+	ca = CMPZ(a);
+	cb = CMPZ(b);
+	if (ca == 0 && cb == 0)
+		return MP_UNDEF;
+	else if (ca == 0)
+		return mp_int_abs(b, c);
+	else if (cb == 0)
+		return mp_int_abs(a, c);
+
+	if ((res = mp_int_init(&t)) != MP_OK)
+		return res;
+	if ((res = mp_int_init_copy(&u, a)) != MP_OK)
+		goto U;
+	if ((res = mp_int_init_copy(&v, b)) != MP_OK)
+		goto V;
+
+	MP_SIGN(&u) = MP_ZPOS;
+	MP_SIGN(&v) = MP_ZPOS;
+
+	{							/* Divide out common factors of 2 from u and v */
+		int			div2_u = s_dp2k(&u),
+					div2_v = s_dp2k(&v);
+
+		k = MIN(div2_u, div2_v);
+		s_qdiv(&u, (mp_size) k);
+		s_qdiv(&v, (mp_size) k);
+	}
+
+	if (mp_int_is_odd(&u))
+	{
+		if ((res = mp_int_neg(&v, &t)) != MP_OK)
+			goto CLEANUP;
+	}
+	else
+	{
+		if ((res = mp_int_copy(&u, &t)) != MP_OK)
+			goto CLEANUP;
+	}
+
+	for (;;)
+	{
+		s_qdiv(&t, s_dp2k(&t));
+
+		if (CMPZ(&t) > 0)
+		{
+			if ((res = mp_int_copy(&t, &u)) != MP_OK)
+				goto CLEANUP;
+		}
+		else
+		{
+			if ((res = mp_int_neg(&t, &v)) != MP_OK)
+				goto CLEANUP;
+		}
+
+		if ((res = mp_int_sub(&u, &v, &t)) != MP_OK)
+			goto CLEANUP;
+
+		if (CMPZ(&t) == 0)
+			break;
+	}
+
+	if ((res = mp_int_abs(&u, c)) != MP_OK)
+		goto CLEANUP;
+	if (!s_qmul(c, (mp_size) k))
+		res = MP_MEMORY;
+
+CLEANUP:
+	mp_int_clear(&v);
+V: mp_int_clear(&u);
+U: mp_int_clear(&t);
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_egcd(a, b, c, x, y) */
+
+/* This is the binary GCD algorithm again, but this time we keep track
+   of the elementary matrix operations as we go, so we can get values
+   x and y satisfying c = ax + by.
+ */
+mp_result
+mp_int_egcd(mp_int a, mp_int b, mp_int c,
+			mp_int x, mp_int y)
+{
+	int			k,
+				last = 0,
+				ca,
+				cb;
+	mpz_t		temp[8];
+	mp_result	res;
+
+	CHECK(a != NULL && b != NULL && c != NULL &&
+		  (x != NULL || y != NULL));
+
+	ca = CMPZ(a);
+	cb = CMPZ(b);
+	if (ca == 0 && cb == 0)
+		return MP_UNDEF;
+	else if (ca == 0)
+	{
+		if ((res = mp_int_abs(b, c)) != MP_OK)
+			return res;
+		mp_int_zero(x);
+		(void) mp_int_set_value(y, 1);
+		return MP_OK;
+	}
+	else if (cb == 0)
+	{
+		if ((res = mp_int_abs(a, c)) != MP_OK)
+			return res;
+		(void) mp_int_set_value(x, 1);
+		mp_int_zero(y);
+		return MP_OK;
+	}
+
+	/*
+	 * Initialize temporaries: A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7
+	 */
+	for (last = 0; last < 4; ++last)
+	{
+		if ((res = mp_int_init(TEMP(last))) != MP_OK)
+			goto CLEANUP;
+	}
+	TEMP(0)->digits[0] = 1;
+	TEMP(3)->digits[0] = 1;
+
+	SETUP(mp_int_init_copy(TEMP(4), a), last);
+	SETUP(mp_int_init_copy(TEMP(5), b), last);
+
+	/* We will work with absolute values here */
+	MP_SIGN(TEMP(4)) = MP_ZPOS;
+	MP_SIGN(TEMP(5)) = MP_ZPOS;
+
+	{							/* Divide out common factors of 2 from u and v */
+		int			div2_u = s_dp2k(TEMP(4)),
+					div2_v = s_dp2k(TEMP(5));
+
+		k = MIN(div2_u, div2_v);
+		s_qdiv(TEMP(4), k);
+		s_qdiv(TEMP(5), k);
+	}
+
+	SETUP(mp_int_init_copy(TEMP(6), TEMP(4)), last);
+	SETUP(mp_int_init_copy(TEMP(7), TEMP(5)), last);
+
+	for (;;)
+	{
+		while (mp_int_is_even(TEMP(4)))
+		{
+			s_qdiv(TEMP(4), 1);
+
+			if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1)))
+			{
+				if ((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
+					goto CLEANUP;
+				if ((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
+					goto CLEANUP;
+			}
+
+			s_qdiv(TEMP(0), 1);
+			s_qdiv(TEMP(1), 1);
+		}
+
+		while (mp_int_is_even(TEMP(5)))
+		{
+			s_qdiv(TEMP(5), 1);
+
+			if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3)))
+			{
+				if ((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
+					goto CLEANUP;
+				if ((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
+					goto CLEANUP;
+			}
+
+			s_qdiv(TEMP(2), 1);
+			s_qdiv(TEMP(3), 1);
+		}
+
+		if (mp_int_compare(TEMP(4), TEMP(5)) >= 0)
+		{
+			if ((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK)
+				goto CLEANUP;
+			if ((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK)
+				goto CLEANUP;
+			if ((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK)
+				goto CLEANUP;
+		}
+		else
+		{
+			if ((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK)
+				goto CLEANUP;
+			if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK)
+				goto CLEANUP;
+			if ((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK)
+				goto CLEANUP;
+		}
+
+		if (CMPZ(TEMP(4)) == 0)
+		{
+			if (x && (res = mp_int_copy(TEMP(2), x)) != MP_OK)
+				goto CLEANUP;
+			if (y && (res = mp_int_copy(TEMP(3), y)) != MP_OK)
+				goto CLEANUP;
+			if (c)
+			{
+				if (!s_qmul(TEMP(5), k))
+				{
+					res = MP_MEMORY;
+					goto CLEANUP;
+				}
+
+				res = mp_int_copy(TEMP(5), c);
+			}
+
+			break;
+		}
+	}
+
+CLEANUP:
+	while (--last >= 0)
+		mp_int_clear(TEMP(last));
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_divisible_value(a, v) */
+
+int
+mp_int_divisible_value(mp_int a, int v)
+{
+	int			rem = 0;
+
+	if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
+		return 0;
+
+	return rem == 0;
+}
+
+/* }}} */
+
+/* {{{ mp_int_is_pow2(z) */
+
+int
+mp_int_is_pow2(mp_int z)
+{
+	CHECK(z != NULL);
+
+	return s_isp2(z);
+}
+
+/* }}} */
+
+/* {{{ mp_int_sqrt(a, c) */
+
+mp_result
+mp_int_sqrt(mp_int a, mp_int c)
+{
+	mp_result	res = MP_OK;
+	mpz_t		temp[2];
+	int			last = 0;
+
+	CHECK(a != NULL && c != NULL);
+
+	/* The square root of a negative value does not exist in the integers. */
+	if (MP_SIGN(a) == MP_NEG)
+		return MP_UNDEF;
+
+	SETUP(mp_int_init_copy(TEMP(last), a), last);
+	SETUP(mp_int_init(TEMP(last)), last);
+
+	for (;;)
+	{
+		if ((res = mp_int_sqr(TEMP(0), TEMP(1))) != MP_OK)
+			goto CLEANUP;
+
+		if (mp_int_compare_unsigned(a, TEMP(1)) == 0)
+			break;
+
+		if ((res = mp_int_copy(a, TEMP(1))) != MP_OK)
+			goto CLEANUP;
+		if ((res = mp_int_div(TEMP(1), TEMP(0), TEMP(1), NULL)) != MP_OK)
+			goto CLEANUP;
+		if ((res = mp_int_add(TEMP(0), TEMP(1), TEMP(1))) != MP_OK)
+			goto CLEANUP;
+		if ((res = mp_int_div_pow2(TEMP(1), 1, TEMP(1), NULL)) != MP_OK)
+			goto CLEANUP;
+
+		if (mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0)
+			break;
+		if ((res = mp_int_sub_value(TEMP(0), 1, TEMP(0))) != MP_OK)
+			goto CLEANUP;
+		if (mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0)
+			break;
+
+		if ((res = mp_int_copy(TEMP(1), TEMP(0))) != MP_OK)
+			goto CLEANUP;
+	}
+
+	res = mp_int_copy(TEMP(0), c);
+
+CLEANUP:
+	while (--last >= 0)
+		mp_int_clear(TEMP(last));
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_to_int(z, out) */
+
+mp_result
+mp_int_to_int(mp_int z, int *out)
+{
+	unsigned int uv = 0;
+	mp_size		uz;
+	mp_digit   *dz;
+	mp_sign		sz;
+
+	CHECK(z != NULL);
+
+	/* Make sure the value is representable as an int */
+	sz = MP_SIGN(z);
+	if ((sz == MP_ZPOS && mp_int_compare_value(z, INT_MAX) > 0) ||
+		mp_int_compare_value(z, INT_MIN) < 0)
+		return MP_RANGE;
+
+	uz = MP_USED(z);
+	dz = MP_DIGITS(z) + uz - 1;
+
+	while (uz > 0)
+	{
+		uv <<= MP_DIGIT_BIT / 2;
+		uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
+		--uz;
+	}
+
+	if (out)
+		*out = (sz == MP_NEG) ? -(int) uv : (int) uv;
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_to_string(z, radix, str, limit) */
+
+mp_result
+mp_int_to_string(mp_int z, mp_size radix,
+				 char *str, int limit)
+{
+	mp_result	res;
+	int			cmp = 0;
+
+	CHECK(z != NULL && str != NULL && limit >= 2);
+
+	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
+		return MP_RANGE;
+
+	if (CMPZ(z) == 0)
+	{
+		*str++ = s_val2ch(0, mp_flags & MP_CAP_DIGITS);
+	}
+	else
+	{
+		mpz_t		tmp;
+		char	   *h,
+				   *t;
+
+		if ((res = mp_int_init_copy(&tmp, z)) != MP_OK)
+			return res;
+
+		if (MP_SIGN(z) == MP_NEG)
+		{
+			*str++ = '-';
+			--limit;
+		}
+		h = str;
+
+		/* Generate digits in reverse order until finished or limit reached */
+		for ( /* */ ; limit > 0; --limit)
+		{
+			mp_digit	d;
+
+			if ((cmp = CMPZ(&tmp)) == 0)
+				break;
+
+			d = s_ddiv(&tmp, (mp_digit) radix);
+			*str++ = s_val2ch(d, mp_flags & MP_CAP_DIGITS);
+		}
+		t = str - 1;
+
+		/* Put digits back in correct output order */
+		while (h < t)
+		{
+			char		tc = *h;
+
+			*h++ = *t;
+			*t-- = tc;
+		}
+
+		mp_int_clear(&tmp);
+	}
+
+	*str = '\0';
+	if (cmp == 0)
+		return MP_OK;
+	else
+		return MP_TRUNC;
+}
+
+/* }}} */
+
+/* {{{ mp_int_string_len(z, radix) */
+
+mp_result
+mp_int_string_len(mp_int z, mp_size radix)
+{
+	int			len;
+
+	CHECK(z != NULL);
+
+	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
+		return MP_RANGE;
+
+	len = s_outlen(z, radix) + 1;		/* for terminator */
+
+	/* Allow for sign marker on negatives */
+	if (MP_SIGN(z) == MP_NEG)
+		len += 1;
+
+	return len;
+}
+
+/* }}} */
+
+/* {{{ mp_int_read_string(z, radix, *str) */
+
+/* Read zero-terminated string into z */
+mp_result
+mp_int_read_string(mp_int z, mp_size radix, const char *str)
+{
+	return mp_int_read_cstring(z, radix, str, NULL);
+
+}
+
+/* }}} */
+
+/* {{{ mp_int_read_cstring(z, radix, *str, **end) */
+
+mp_result
+mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
+{
+	int			ch;
+
+	CHECK(z != NULL && str != NULL);
+
+	if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
+		return MP_RANGE;
+
+	/* Skip leading whitespace */
+	while (isspace((unsigned char) *str))
+		++str;
+
+	/* Handle leading sign tag (+/-, positive default) */
+	switch (*str)
+	{
+		case '-':
+			MP_SIGN(z) = MP_NEG;
+			++str;
+			break;
+		case '+':
+			++str;				/* fallthrough */
+		default:
+			MP_SIGN(z) = MP_ZPOS;
+			break;
+	}
+
+	/* Skip leading zeroes */
+	while ((ch = s_ch2val(*str, radix)) == 0)
+		++str;
+
+	/* Make sure there is enough space for the value */
+	if (!s_pad(z, s_inlen(strlen(str), radix)))
+		return MP_MEMORY;
+
+	MP_USED(z) = 1;
+	z->digits[0] = 0;
+
+	while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0))
+	{
+		s_dmul(z, (mp_digit) radix);
+		s_dadd(z, (mp_digit) ch);
+		++str;
+	}
+
+	CLAMP(z);
+
+	/* Override sign for zero, even if negative specified. */
+	if (CMPZ(z) == 0)
+		MP_SIGN(z) = MP_ZPOS;
+
+	if (end != NULL)
+		*end = (char *) str;
+
+	/*
+	 * Return a truncation error if the string has unprocessed characters
+	 * remaining, so the caller can tell if the whole string was done
+	 */
+	if (*str != '\0')
+		return MP_TRUNC;
+	else
+		return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_count_bits(z) */
+
+mp_result
+mp_int_count_bits(mp_int z)
+{
+	mp_size		nbits = 0,
+				uz;
+	mp_digit	d;
+
+	CHECK(z != NULL);
+
+	uz = MP_USED(z);
+	if (uz == 1 && z->digits[0] == 0)
+		return 1;
+
+	--uz;
+	nbits = uz * MP_DIGIT_BIT;
+	d = z->digits[uz];
+
+	while (d != 0)
+	{
+		d >>= 1;
+		++nbits;
+	}
+
+	return nbits;
+}
+
+/* }}} */
+
+/* {{{ mp_int_to_binary(z, buf, limit) */
+
+mp_result
+mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
+{
+	static const int PAD_FOR_2C = 1;
+
+	mp_result	res;
+	int			limpos = limit;
+
+	CHECK(z != NULL && buf != NULL);
+
+	res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
+
+	if (MP_SIGN(z) == MP_NEG)
+		s_2comp(buf, limpos);
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ mp_int_read_binary(z, buf, len) */
+
+mp_result
+mp_int_read_binary(mp_int z, unsigned char *buf, int len)
+{
+	mp_size		need,
+				i;
+	unsigned char *tmp;
+	mp_digit   *dz;
+
+	CHECK(z != NULL && buf != NULL && len > 0);
+
+	/* Figure out how many digits are needed to represent this value */
+	need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
+	if (!s_pad(z, need))
+		return MP_MEMORY;
+
+	mp_int_zero(z);
+
+	/*
+	 * If the high-order bit is set, take the 2's complement before reading
+	 * the value (it will be restored afterward)
+	 */
+	if (buf[0] >> (CHAR_BIT - 1))
+	{
+		MP_SIGN(z) = MP_NEG;
+		s_2comp(buf, len);
+	}
+
+	dz = MP_DIGITS(z);
+	for (tmp = buf, i = len; i > 0; --i, ++tmp)
+	{
+		s_qmul(z, (mp_size) CHAR_BIT);
+		*dz |= *tmp;
+	}
+
+	/* Restore 2's complement if we took it before */
+	if (MP_SIGN(z) == MP_NEG)
+		s_2comp(buf, len);
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_binary_len(z) */
+
+mp_result
+mp_int_binary_len(mp_int z)
+{
+	mp_result	res = mp_int_count_bits(z);
+	int			bytes = mp_int_unsigned_len(z);
+
+	if (res <= 0)
+		return res;
+
+	bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
+
+	/*
+	 * If the highest-order bit falls exactly on a byte boundary, we need to
+	 * pad with an extra byte so that the sign will be read correctly when
+	 * reading it back in.
+	 */
+	if (bytes * CHAR_BIT == res)
+		++bytes;
+
+	return bytes;
+}
+
+/* }}} */
+
+/* {{{ mp_int_to_unsigned(z, buf, limit) */
+
+mp_result
+mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
+{
+	static const int NO_PADDING = 0;
+
+	CHECK(z != NULL && buf != NULL);
+
+	return s_tobin(z, buf, &limit, NO_PADDING);
+}
+
+/* }}} */
+
+/* {{{ mp_int_read_unsigned(z, buf, len) */
+
+mp_result
+mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
+{
+	mp_size		need,
+				i;
+	unsigned char *tmp;
+	mp_digit   *dz;
+
+	CHECK(z != NULL && buf != NULL && len > 0);
+
+	/* Figure out how many digits are needed to represent this value */
+	need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
+	if (!s_pad(z, need))
+		return MP_MEMORY;
+
+	mp_int_zero(z);
+
+	dz = MP_DIGITS(z);
+	for (tmp = buf, i = len; i > 0; --i, ++tmp)
+	{
+		(void) s_qmul(z, CHAR_BIT);
+		*dz |= *tmp;
+	}
+
+	return MP_OK;
+}
+
+/* }}} */
+
+/* {{{ mp_int_unsigned_len(z) */
+
+mp_result
+mp_int_unsigned_len(mp_int z)
+{
+	mp_result	res = mp_int_count_bits(z);
+	int			bytes;
+
+	if (res <= 0)
+		return res;
+
+	bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
+
+	return bytes;
+}
+
+/* }}} */
+
+/* {{{ mp_error_string(res) */
+
+const char *
+mp_error_string(mp_result res)
+{
+	int			ix;
+
+	if (res > 0)
+		return s_unknown_err;
+
+	res = -res;
+	for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
+		;
+
+	if (s_error_msg[ix] != NULL)
+		return s_error_msg[ix];
+	else
+		return s_unknown_err;
+}
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* Private functions for internal use.	These make assumptions.			  */
+
+/* {{{ s_alloc(num) */
+
+static mp_digit *
+s_alloc(mp_size num)
+{
+	mp_digit   *out = px_alloc(num * sizeof(mp_digit));
+
+	assert(out != NULL);		/* for debugging */
+
+	return out;
+}
+
+/* }}} */
+
+/* {{{ s_realloc(old, num) */
+
+static mp_digit *
+s_realloc(mp_digit *old, mp_size num)
+{
+	mp_digit   *new = px_realloc(old, num * sizeof(mp_digit));
+
+	assert(new != NULL);		/* for debugging */
+
+	return new;
+}
+
+/* }}} */
+
+/* {{{ s_free(ptr) */
+
+#if TRACEABLE_FREE
+static void
+s_free(void *ptr)
+{
+	px_free(ptr);
+}
+#endif
+
+/* }}} */
+
+/* {{{ s_pad(z, min) */
+
+static int
+s_pad(mp_int z, mp_size min)
+{
+	if (MP_ALLOC(z) < min)
+	{
+		mp_size		nsize = ROUND_PREC(min);
+		mp_digit   *tmp = s_realloc(MP_DIGITS(z), nsize);
+
+		if (tmp == NULL)
+			return 0;
+
+		MP_DIGITS(z) = tmp;
+		MP_ALLOC(z) = nsize;
+	}
+
+	return 1;
+}
+
+/* }}} */
+
+/* {{{ s_clamp(z) */
+
+#if TRACEABLE_CLAMP
+static void
+s_clamp(mp_int z)
+{
+	mp_size		uz = MP_USED(z);
+	mp_digit   *zd = MP_DIGITS(z) + uz - 1;
+
+	while (uz > 1 && (*zd-- == 0))
+		--uz;
+
+	MP_USED(z) = uz;
+}
+#endif
+
+/* }}} */
+
+/* {{{ s_fake(z, value, vbuf) */
+
+static void
+s_fake(mp_int z, int value, mp_digit vbuf[])
+{
+	mp_size		uv = (mp_size) s_vpack(value, vbuf);
+
+	z->used = uv;
+	z->alloc = MP_VALUE_DIGITS(value);
+	z->sign = (value < 0) ? MP_NEG : MP_ZPOS;
+	z->digits = vbuf;
+}
+
+/* }}} */
+
+/* {{{ s_cdig(da, db, len) */
+
+static int
+s_cdig(mp_digit *da, mp_digit *db, mp_size len)
+{
+	mp_digit   *dat = da + len - 1,
+			   *dbt = db + len - 1;
+
+	for ( /* */ ; len != 0; --len, --dat, --dbt)
+	{
+		if (*dat > *dbt)
+			return 1;
+		else if (*dat < *dbt)
+			return -1;
+	}
+
+	return 0;
+}
+
+/* }}} */
+
+/* {{{ s_vpack(v, t[]) */
+
+static int
+s_vpack(int v, mp_digit t[])
+{
+	unsigned int uv = (unsigned int) ((v < 0) ? -v : v);
+	int			ndig = 0;
+
+	if (uv == 0)
+		t[ndig++] = 0;
+	else
+	{
+		while (uv != 0)
+		{
+			t[ndig++] = (mp_digit) uv;
+			uv >>= MP_DIGIT_BIT / 2;
+			uv >>= MP_DIGIT_BIT / 2;
+		}
+	}
+
+	return ndig;
+}
+
+/* }}} */
+
+/* {{{ s_ucmp(a, b) */
+
+static int
+s_ucmp(mp_int a, mp_int b)
+{
+	mp_size		ua = MP_USED(a),
+				ub = MP_USED(b);
+
+	if (ua > ub)
+		return 1;
+	else if (ub > ua)
+		return -1;
+	else
+		return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
+}
+
+/* }}} */
+
+/* {{{ s_vcmp(a, v) */
+
+static int
+s_vcmp(mp_int a, int v)
+{
+	mp_digit	vdig[MP_VALUE_DIGITS(v)];
+	int			ndig = 0;
+	mp_size		ua = MP_USED(a);
+
+	ndig = s_vpack(v, vdig);
+
+	if (ua > ndig)
+		return 1;
+	else if (ua < ndig)
+		return -1;
+	else
+		return s_cdig(MP_DIGITS(a), vdig, ndig);
+}
+
+/* }}} */
+
+/* {{{ s_uadd(da, db, dc, size_a, size_b) */
+
+static mp_digit
+s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
+	   mp_size size_a, mp_size size_b)
+{
+	mp_size		pos;
+	mp_word		w = 0;
+
+	/* Insure that da is the longer of the two to simplify later code */
+	if (size_b > size_a)
+	{
+		SWAP(mp_digit *, da, db);
+		SWAP(mp_size, size_a, size_b);
+	}
+
+	/* Add corresponding digits until the shorter number runs out */
+	for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
+	{
+		w = w + (mp_word) *da + (mp_word) *db;
+		*dc = LOWER_HALF(w);
+		w = UPPER_HALF(w);
+	}
+
+	/* Propagate carries as far as necessary */
+	for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
+	{
+		w = w + *da;
+
+		*dc = LOWER_HALF(w);
+		w = UPPER_HALF(w);
+	}
+
+	/* Return carry out */
+	return (mp_digit) w;
+}
+
+/* }}} */
+
+/* {{{ s_usub(da, db, dc, size_a, size_b) */
+
+static void
+s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
+	   mp_size size_a, mp_size size_b)
+{
+	mp_size		pos;
+	mp_word		w = 0;
+
+	/* We assume that |a| >= |b| so this should definitely hold */
+	assert(size_a >= size_b);
+
+	/* Subtract corresponding digits and propagate borrow */
+	for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
+	{
+		w = ((mp_word) MP_DIGIT_MAX + 1 +		/* MP_RADIX */
+			 (mp_word) *da) - w - (mp_word) *db;
+
+		*dc = LOWER_HALF(w);
+		w = (UPPER_HALF(w) == 0);
+	}
+
+	/* Finish the subtraction for remaining upper digits of da */
+	for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
+	{
+		w = ((mp_word) MP_DIGIT_MAX + 1 +		/* MP_RADIX */
+			 (mp_word) *da) - w;
+
+		*dc = LOWER_HALF(w);
+		w = (UPPER_HALF(w) == 0);
+	}
+
+	/* If there is a borrow out at the end, it violates the precondition */
+	assert(w == 0);
+}
+
+/* }}} */
+
+/* {{{ s_kmul(da, db, dc, size_a, size_b) */
+
+static int
+s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
+	   mp_size size_a, mp_size size_b)
+{
+	mp_size		bot_size;
+
+	/* Make sure b is the smaller of the two input values */
+	if (size_b > size_a)
+	{
+		SWAP(mp_digit *, da, db);
+		SWAP(mp_size, size_a, size_b);
+	}
+
+	/*
+	 * Insure that the bottom is the larger half in an odd-length split; the
+	 * code below relies on this being true.
+	 */
+	bot_size = (size_a + 1) / 2;
+
+	/*
+	 * If the values are big enough to bother with recursion, use the
+	 * Karatsuba algorithm to compute the product; otherwise use the normal
+	 * multiplication algorithm
+	 */
+	if (multiply_threshold &&
+		size_a >= multiply_threshold &&
+		size_b > bot_size)
+	{
+
+		mp_digit   *t1,
+				   *t2,
+				   *t3,
+					carry;
+
+		mp_digit   *a_top = da + bot_size;
+		mp_digit   *b_top = db + bot_size;
+
+		mp_size		at_size = size_a - bot_size;
+		mp_size		bt_size = size_b - bot_size;
+		mp_size		buf_size = 2 * bot_size;
+
+		/*
+		 * Do a single allocation for all three temporary buffers needed; each
+		 * buffer must be big enough to hold the product of two bottom halves,
+		 * and one buffer needs space for the completed product; twice the
+		 * space is plenty.
+		 */
+		if ((t1 = s_alloc(4 * buf_size)) == NULL)
+			return 0;
+		t2 = t1 + buf_size;
+		t3 = t2 + buf_size;
+		ZERO(t1, 4 * buf_size);
+
+		/*
+		 * t1 and t2 are initially used as temporaries to compute the inner
+		 * product (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
+		 */
+		carry = s_uadd(da, a_top, t1, bot_size, at_size);		/* t1 = a1 + a0 */
+		t1[bot_size] = carry;
+
+		carry = s_uadd(db, b_top, t2, bot_size, bt_size);		/* t2 = b1 + b0 */
+		t2[bot_size] = carry;
+
+		(void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1);	/* t3 = t1 * t2 */
+
+		/*
+		 * Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so
+		 * that we're left with only the pieces we want:  t3 = a1b0 + a0b1
+		 */
+		ZERO(t1, bot_size + 1);
+		ZERO(t2, bot_size + 1);
+		(void) s_kmul(da, db, t1, bot_size, bot_size);	/* t1 = a0 * b0 */
+		(void) s_kmul(a_top, b_top, t2, at_size, bt_size);		/* t2 = a1 * b1 */
+
+		/* Subtract out t1 and t2 to get the inner product */
+		s_usub(t3, t1, t3, buf_size + 2, buf_size);
+		s_usub(t3, t2, t3, buf_size + 2, buf_size);
+
+		/* Assemble the output value */
+		COPY(t1, dc, buf_size);
+		(void) s_uadd(t3, dc + bot_size, dc + bot_size,
+					  buf_size + 1, buf_size + 1);
+
+		(void) s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size,
+					  buf_size, buf_size);
+
+		s_free(t1);				/* note t2 and t3 are just internal pointers
+								 * to t1 */
+	}
+	else
+	{
+		s_umul(da, db, dc, size_a, size_b);
+	}
+
+	return 1;
+}
+
+/* }}} */
+
+/* {{{ s_umul(da, db, dc, size_a, size_b) */
+
+static void
+s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
+	   mp_size size_a, mp_size size_b)
+{
+	mp_size		a,
+				b;
+	mp_word		w;
+
+	for (a = 0; a < size_a; ++a, ++dc, ++da)
+	{
+		mp_digit   *dct = dc;
+		mp_digit   *dbt = db;
+
+		if (*da == 0)
+			continue;
+
+		w = 0;
+		for (b = 0; b < size_b; ++b, ++dbt, ++dct)
+		{
+			w = (mp_word) *da * (mp_word) *dbt + w + (mp_word) *dct;
+
+			*dct = LOWER_HALF(w);
+			w = UPPER_HALF(w);
+		}
+
+		*dct = (mp_digit) w;
+	}
+}
+
+/* }}} */
+
+/* {{{ s_ksqr(da, dc, size_a) */
+
+static int
+s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
+{
+	if (multiply_threshold && size_a > multiply_threshold)
+	{
+		mp_size		bot_size = (size_a + 1) / 2;
+		mp_digit   *a_top = da + bot_size;
+		mp_digit   *t1,
+				   *t2,
+				   *t3;
+		mp_size		at_size = size_a - bot_size;
+		mp_size		buf_size = 2 * bot_size;
+
+		if ((t1 = s_alloc(4 * buf_size)) == NULL)
+			return 0;
+		t2 = t1 + buf_size;
+		t3 = t2 + buf_size;
+		ZERO(t1, 4 * buf_size);
+
+		(void) s_ksqr(da, t1, bot_size);		/* t1 = a0 ^ 2 */
+		(void) s_ksqr(a_top, t2, at_size);		/* t2 = a1 ^ 2 */
+
+		(void) s_kmul(da, a_top, t3, bot_size, at_size);		/* t3 = a0 * a1 */
+
+		/* Quick multiply t3 by 2, shifting left (can't overflow) */
+		{
+			int			i,
+						top = bot_size + at_size;
+			mp_word		w,
+						save = 0;
+
+			for (i = 0; i < top; ++i)
+			{
+				w = t3[i];
+				w = (w << 1) | save;
+				t3[i] = LOWER_HALF(w);
+				save = UPPER_HALF(w);
+			}
+			t3[i] = LOWER_HALF(save);
+		}
+
+		/* Assemble the output value */
+		COPY(t1, dc, 2 * bot_size);
+		(void) s_uadd(t3, dc + bot_size, dc + bot_size,
+					  buf_size + 1, buf_size + 1);
+
+		(void) s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size,
+					  buf_size, buf_size);
+
+		px_free(t1);			/* note that t2 and t2 are internal pointers
+								 * only */
+
+	}
+	else
+	{
+		s_usqr(da, dc, size_a);
+	}
+
+	return 1;
+}
+
+/* }}} */
+
+/* {{{ s_usqr(da, dc, size_a) */
+
+static void
+s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
+{
+	mp_size		i,
+				j;
+	mp_word		w;
+
+	for (i = 0; i < size_a; ++i, dc += 2, ++da)
+	{
+		mp_digit   *dct = dc,
+				   *dat = da;
+
+		if (*da == 0)
+			continue;
+
+		/* Take care of the first digit, no rollover */
+		w = (mp_word) *dat * (mp_word) *dat + (mp_word) *dct;
+		*dct = LOWER_HALF(w);
+		w = UPPER_HALF(w);
+		++dat;
+		++dct;
+
+		for (j = i + 1; j < size_a; ++j, ++dat, ++dct)
+		{
+			mp_word		t = (mp_word) *da * (mp_word) *dat;
+			mp_word		u = w + (mp_word) *dct,
+						ov = 0;
+
+			/* Check if doubling t will overflow a word */
+			if (HIGH_BIT_SET(t))
+				ov = 1;
+
+			w = t + t;
+
+			/* Check if adding u to w will overflow a word */
+			if (ADD_WILL_OVERFLOW(w, u))
+				ov = 1;
+
+			w += u;
+
+			*dct = LOWER_HALF(w);
+			w = UPPER_HALF(w);
+			if (ov)
+			{
+				w += MP_DIGIT_MAX;		/* MP_RADIX */
+				++w;
+			}
+		}
+
+		w = w + *dct;
+		*dct = (mp_digit) w;
+		while ((w = UPPER_HALF(w)) != 0)
+		{
+			++dct;
+			w = w + *dct;
+			*dct = LOWER_HALF(w);
+		}
+
+		assert(w == 0);
+	}
+}
+
+/* }}} */
+
+/* {{{ s_dadd(a, b) */
+
+static void
+s_dadd(mp_int a, mp_digit b)
+{
+	mp_word		w = 0;
+	mp_digit   *da = MP_DIGITS(a);
+	mp_size		ua = MP_USED(a);
+
+	w = (mp_word) *da + b;
+	*da++ = LOWER_HALF(w);
+	w = UPPER_HALF(w);
+
+	for (ua -= 1; ua > 0; --ua, ++da)
+	{
+		w = (mp_word) *da + w;
+
+		*da = LOWER_HALF(w);
+		w = UPPER_HALF(w);
+	}
+
+	if (w)
+	{
+		*da = (mp_digit) w;
+		MP_USED(a) += 1;
+	}
+}
+
+/* }}} */
+
+/* {{{ s_dmul(a, b) */
+
+static void
+s_dmul(mp_int a, mp_digit b)
+{
+	mp_word		w = 0;
+	mp_digit   *da = MP_DIGITS(a);
+	mp_size		ua = MP_USED(a);
+
+	while (ua > 0)
+	{
+		w = (mp_word) *da * b + w;
+		*da++ = LOWER_HALF(w);
+		w = UPPER_HALF(w);
+		--ua;
+	}
+
+	if (w)
+	{
+		*da = (mp_digit) w;
+		MP_USED(a) += 1;
+	}
+}
+
+/* }}} */
+
+/* {{{ s_dbmul(da, b, dc, size_a) */
+
+static void
+s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
+{
+	mp_word		w = 0;
+
+	while (size_a > 0)
+	{
+		w = (mp_word) *da++ * (mp_word) b + w;
+
+		*dc++ = LOWER_HALF(w);
+		w = UPPER_HALF(w);
+		--size_a;
+	}
+
+	if (w)
+		*dc = LOWER_HALF(w);
+}
+
+/* }}} */
+
+/* {{{ s_ddiv(da, d, dc, size_a) */
+
+static mp_digit
+s_ddiv(mp_int a, mp_digit b)
+{
+	mp_word		w = 0,
+				qdigit;
+	mp_size		ua = MP_USED(a);
+	mp_digit   *da = MP_DIGITS(a) + ua - 1;
+
+	for ( /* */ ; ua > 0; --ua, --da)
+	{
+		w = (w << MP_DIGIT_BIT) | *da;
+
+		if (w >= b)
+		{
+			qdigit = w / b;
+			w = w % b;
+		}
+		else
+		{
+			qdigit = 0;
+		}
+
+		*da = (mp_digit) qdigit;
+	}
+
+	CLAMP(a);
+	return (mp_digit) w;
+}
+
+/* }}} */
+
+/* {{{ s_qdiv(z, p2) */
+
+static void
+s_qdiv(mp_int z, mp_size p2)
+{
+	mp_size		ndig = p2 / MP_DIGIT_BIT,
+				nbits = p2 % MP_DIGIT_BIT;
+	mp_size		uz = MP_USED(z);
+
+	if (ndig)
+	{
+		mp_size		mark;
+		mp_digit   *to,
+				   *from;
+
+		if (ndig >= uz)
+		{
+			mp_int_zero(z);
+			return;
+		}
+
+		to = MP_DIGITS(z);
+		from = to + ndig;
+
+		for (mark = ndig; mark < uz; ++mark)
+			*to++ = *from++;
+
+		MP_USED(z) = uz - ndig;
+	}
+
+	if (nbits)
+	{
+		mp_digit	d = 0,
+				   *dz,
+					save;
+		mp_size		up = MP_DIGIT_BIT - nbits;
+
+		uz = MP_USED(z);
+		dz = MP_DIGITS(z) + uz - 1;
+
+		for ( /* */ ; uz > 0; --uz, --dz)
+		{
+			save = *dz;
+
+			*dz = (*dz >> nbits) | (d << up);
+			d = save;
+		}
+
+		CLAMP(z);
+	}
+
+	if (MP_USED(z) == 1 && z->digits[0] == 0)
+		MP_SIGN(z) = MP_ZPOS;
+}
+
+/* }}} */
+
+/* {{{ s_qmod(z, p2) */
+
+static void
+s_qmod(mp_int z, mp_size p2)
+{
+	mp_size		start = p2 / MP_DIGIT_BIT + 1,
+				rest = p2 % MP_DIGIT_BIT;
+	mp_size		uz = MP_USED(z);
+	mp_digit	mask = (1 << rest) - 1;
+
+	if (start <= uz)
+	{
+		MP_USED(z) = start;
+		z->digits[start - 1] &= mask;
+		CLAMP(z);
+	}
+}
+
+/* }}} */
+
+/* {{{ s_qmul(z, p2) */
+
+static int
+s_qmul(mp_int z, mp_size p2)
+{
+	mp_size		uz,
+				need,
+				rest,
+				extra,
+				i;
+	mp_digit   *from,
+			   *to,
+				d;
+
+	if (p2 == 0)
+		return 1;
+
+	uz = MP_USED(z);
+	need = p2 / MP_DIGIT_BIT;
+	rest = p2 % MP_DIGIT_BIT;
+
+	/*
+	 * Figure out if we need an extra digit at the top end; this occurs if the
+	 * topmost `rest' bits of the high-order digit of z are not zero, meaning
+	 * they will be shifted off the end if not preserved
+	 */
+	extra = 0;
+	if (rest != 0)
+	{
+		mp_digit   *dz = MP_DIGITS(z) + uz - 1;
+
+		if ((*dz >> (MP_DIGIT_BIT - rest)) != 0)
+			extra = 1;
+	}
+
+	if (!s_pad(z, uz + need + extra))
+		return 0;
+
+	/*
+	 * If we need to shift by whole digits, do that in one pass, then to back
+	 * and shift by partial digits.
+	 */
+	if (need > 0)
+	{
+		from = MP_DIGITS(z) + uz - 1;
+		to = from + need;
+
+		for (i = 0; i < uz; ++i)
+			*to-- = *from--;
+
+		ZERO(MP_DIGITS(z), need);
+		uz += need;
+	}
+
+	if (rest)
+	{
+		d = 0;
+		for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from)
+		{
+			mp_digit	save = *from;
+
+			*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
+			d = save;
+		}
+
+		d >>= (MP_DIGIT_BIT - rest);
+		if (d != 0)
+		{
+			*from = d;
+			uz += extra;
+		}
+	}
+
+	MP_USED(z) = uz;
+	CLAMP(z);
+
+	return 1;
+}
+
+/* }}} */
+
+/* {{{ s_qsub(z, p2) */
+
+/* Subtract |z| from 2^p2, assuming 2^p2 > |z|, and set z to be positive */
+static int
+s_qsub(mp_int z, mp_size p2)
+{
+	mp_digit	hi = (1 << (p2 % MP_DIGIT_BIT)),
+			   *zp;
+	mp_size		tdig = (p2 / MP_DIGIT_BIT),
+				pos;
+	mp_word		w = 0;
+
+	if (!s_pad(z, tdig + 1))
+		return 0;
+
+	for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp)
+	{
+		w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word) *zp;
+
+		*zp = LOWER_HALF(w);
+		w = UPPER_HALF(w) ? 0 : 1;
+	}
+
+	w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word) *zp;
+	*zp = LOWER_HALF(w);
+
+	assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
+
+	MP_SIGN(z) = MP_ZPOS;
+	CLAMP(z);
+
+	return 1;
+}
+
+/* }}} */
+
+/* {{{ s_dp2k(z) */
+
+static int
+s_dp2k(mp_int z)
+{
+	int			k = 0;
+	mp_digit   *dp = MP_DIGITS(z),
+				d;
+
+	if (MP_USED(z) == 1 && *dp == 0)
+		return 1;
+
+	while (*dp == 0)
+	{
+		k += MP_DIGIT_BIT;
+		++dp;
+	}
+
+	d = *dp;
+	while ((d & 1) == 0)
+	{
+		d >>= 1;
+		++k;
+	}
+
+	return k;
+}
+
+/* }}} */
+
+/* {{{ s_isp2(z) */
+
+static int
+s_isp2(mp_int z)
+{
+	mp_size		uz = MP_USED(z),
+				k = 0;
+	mp_digit   *dz = MP_DIGITS(z),
+				d;
+
+	while (uz > 1)
+	{
+		if (*dz++ != 0)
+			return -1;
+		k += MP_DIGIT_BIT;
+		--uz;
+	}
+
+	d = *dz;
+	while (d > 1)
+	{
+		if (d & 1)
+			return -1;
+		++k;
+		d >>= 1;
+	}
+
+	return (int) k;
+}
+
+/* }}} */
+
+/* {{{ s_2expt(z, k) */
+
+static int
+s_2expt(mp_int z, int k)
+{
+	mp_size		ndig,
+				rest;
+	mp_digit   *dz;
+
+	ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
+	rest = k % MP_DIGIT_BIT;
+
+	if (!s_pad(z, ndig))
+		return 0;
+
+	dz = MP_DIGITS(z);
+	ZERO(dz, ndig);
+	*(dz + ndig - 1) = (1 << rest);
+	MP_USED(z) = ndig;
+
+	return 1;
+}
+
+/* }}} */
+
+/* {{{ s_norm(a, b) */
+
+static int
+s_norm(mp_int a, mp_int b)
+{
+	mp_digit	d = b->digits[MP_USED(b) - 1];
+	int			k = 0;
+
+	while (d < (mp_digit) ((mp_digit) 1 << (MP_DIGIT_BIT - 1)))
+	{							/* d < (MP_RADIX / 2) */
+		d <<= 1;
+		++k;
+	}
+
+	/* These multiplications can't fail */
+	if (k != 0)
+	{
+		(void) s_qmul(a, (mp_size) k);
+		(void) s_qmul(b, (mp_size) k);
+	}
+
+	return k;
+}
+
+/* }}} */
+
+/* {{{ s_brmu(z, m) */
+
+static mp_result
+s_brmu(mp_int z, mp_int m)
+{
+	mp_size		um = MP_USED(m) * 2;
+
+	if (!s_pad(z, um))
+		return MP_MEMORY;
+
+	s_2expt(z, MP_DIGIT_BIT * um);
+	return mp_int_div(z, m, z, NULL);
+}
+
+/* }}} */
+
+/* {{{ s_reduce(x, m, mu, q1, q2) */
+
+static int
+s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
+{
+	mp_size		um = MP_USED(m),
+				umb_p1,
+				umb_m1;
+
+	umb_p1 = (um + 1) * MP_DIGIT_BIT;
+	umb_m1 = (um - 1) * MP_DIGIT_BIT;
+
+	if (mp_int_copy(x, q1) != MP_OK)
+		return 0;
+
+	/* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
+	s_qdiv(q1, umb_m1);
+	UMUL(q1, mu, q2);
+	s_qdiv(q2, umb_p1);
+
+	/* Set x = x mod b^(k+1) */
+	s_qmod(x, umb_p1);
+
+	/*
+	 * Now, q is a guess for the quotient a / m. Compute x - q * m mod
+	 * b^(k+1), replacing x.  This may be off by a factor of 2m, but no more
+	 * than that.
+	 */
+	UMUL(q2, m, q1);
+	s_qmod(q1, umb_p1);
+	(void) mp_int_sub(x, q1, x);	/* can't fail */
+
+	/*
+	 * The result may be < 0; if it is, add b^(k+1) to pin it in the proper
+	 * range.
+	 */
+	if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
+		return 0;
+
+	/*
+	 * If x > m, we need to back it off until it is in range. This will be
+	 * required at most twice.
+	 */
+	if (mp_int_compare(x, m) >= 0)
+		(void) mp_int_sub(x, m, x);
+	if (mp_int_compare(x, m) >= 0)
+		(void) mp_int_sub(x, m, x);
+
+	/* At this point, x has been properly reduced. */
+	return 1;
+}
+
+/* }}} */
+
+/* {{{ s_embar(a, b, m, mu, c) */
+
+/* Perform modular exponentiation using Barrett's method, where mu is
+   the reduction constant for m.  Assumes a < m, b > 0. */
+static mp_result
+s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
+{
+	mp_digit   *db,
+			   *dbt,
+				umu,
+				d;
+	mpz_t		temp[3];
+	mp_result	res;
+	int			last = 0;
+
+	umu = MP_USED(mu);
+	db = MP_DIGITS(b);
+	dbt = db + MP_USED(b) - 1;
+
+	while (last < 3)
+		SETUP(mp_int_init_size(TEMP(last), 2 * umu), last);
+
+	(void) mp_int_set_value(c, 1);
+
+	/* Take care of low-order digits */
+	while (db < dbt)
+	{
+		int			i;
+
+		for (d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1)
+		{
+			if (d & 1)
+			{
+				/* The use of a second temporary avoids allocation */
+				UMUL(c, a, TEMP(0));
+				if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
+				{
+					res = MP_MEMORY;
+					goto CLEANUP;
+				}
+				mp_int_copy(TEMP(0), c);
+			}
+
+
+			USQR(a, TEMP(0));
+			assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
+			if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
+			{
+				res = MP_MEMORY;
+				goto CLEANUP;
+			}
+			assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
+			mp_int_copy(TEMP(0), a);
+
+
+		}
+
+		++db;
+	}
+
+	/* Take care of highest-order digit */
+	d = *dbt;
+	for (;;)
+	{
+		if (d & 1)
+		{
+			UMUL(c, a, TEMP(0));
+			if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
+			{
+				res = MP_MEMORY;
+				goto CLEANUP;
+			}
+			mp_int_copy(TEMP(0), c);
+		}
+
+		d >>= 1;
+		if (!d)
+			break;
+
+		USQR(a, TEMP(0));
+		if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
+		{
+			res = MP_MEMORY;
+			goto CLEANUP;
+		}
+		(void) mp_int_copy(TEMP(0), a);
+	}
+
+CLEANUP:
+	while (--last >= 0)
+		mp_int_clear(TEMP(last));
+
+	return res;
+}
+
+/* }}} */
+
+/* {{{ s_udiv(a, b) */
+
+/* Precondition:  a >= b and b > 0
+   Postcondition: a' = a / b, b' = a % b
+ */
+static mp_result
+s_udiv(mp_int a, mp_int b)
+{
+	mpz_t		q,
+				r,
+				t;
+	mp_size		ua,
+				ub,
+				qpos = 0;
+	mp_digit   *da,
+				btop;
+	mp_result	res = MP_OK;
+	int			k,
+				skip = 0;
+
+	/* Force signs to positive */
+	MP_SIGN(a) = MP_ZPOS;
+	MP_SIGN(b) = MP_ZPOS;
+
+	/* Normalize, per Knuth */
+	k = s_norm(a, b);
+
+	ua = MP_USED(a);
+	ub = MP_USED(b);
+	btop = b->digits[ub - 1];
+	if ((res = mp_int_init_size(&q, ua)) != MP_OK)
+		return res;
+	if ((res = mp_int_init_size(&t, ua + 1)) != MP_OK)
+		goto CLEANUP;
+
+	da = MP_DIGITS(a);
+	r.digits = da + ua - 1;		/* The contents of r are shared with a */
+	r.used = 1;
+	r.sign = MP_ZPOS;
+	r.alloc = MP_ALLOC(a);
+	ZERO(t.digits, t.alloc);
+
+	/* Solve for quotient digits, store in q.digits in reverse order */
+	while (r.digits >= da)
+	{
+		assert(qpos <= q.alloc);
+
+		if (s_ucmp(b, &r) > 0)
+		{
+			r.digits -= 1;
+			r.used += 1;
+
+			if (++skip > 1)
+				q.digits[qpos++] = 0;
+
+			CLAMP(&r);
+		}
+		else
+		{
+			mp_word		pfx = r.digits[r.used - 1];
+			mp_word		qdigit;
+
+			if (r.used > 1 && (pfx < btop || r.digits[r.used - 2] == 0))
+			{
+				pfx <<= MP_DIGIT_BIT / 2;
+				pfx <<= MP_DIGIT_BIT / 2;
+				pfx |= r.digits[r.used - 2];
+			}
+
+			qdigit = pfx / btop;
+			if (qdigit > MP_DIGIT_MAX)
+				qdigit = 1;
+
+			s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub);
+			t.used = ub + 1;
+			CLAMP(&t);
+			while (s_ucmp(&t, &r) > 0)
+			{
+				--qdigit;
+				(void) mp_int_sub(&t, b, &t);	/* cannot fail */
+			}
+
+			s_usub(r.digits, t.digits, r.digits, r.used, t.used);
+			CLAMP(&r);
+
+			q.digits[qpos++] = (mp_digit) qdigit;
+			ZERO(t.digits, t.used);
+			skip = 0;
+		}
+	}
+
+	/* Put quotient digits in the correct order, and discard extra zeroes */
+	q.used = qpos;
+	REV(mp_digit, q.digits, qpos);
+	CLAMP(&q);
+
+	/* Denormalize the remainder */
+	CLAMP(a);
+	if (k != 0)
+		s_qdiv(a, k);
+
+	mp_int_copy(a, b);			/* ok:	0 <= r < b */
+	mp_int_copy(&q, a);			/* ok:	q <= a	   */
+
+	mp_int_clear(&t);
+CLEANUP:
+	mp_int_clear(&q);
+	return res;
+}
+
+/* }}} */
+
+/* {{{ s_outlen(z, r) */
+
+/* Precondition:  2 <= r < 64 */
+static int
+s_outlen(mp_int z, mp_size r)
+{
+	mp_result	bits;
+	double		raw;
+
+	bits = mp_int_count_bits(z);
+	raw = (double) bits *s_log2[r];
+
+	return (int) (raw + 0.999999);
+}
+
+/* }}} */
+
+/* {{{ s_inlen(len, r) */
+
+static mp_size
+s_inlen(int len, mp_size r)
+{
+	double		raw = (double) len / s_log2[r];
+	mp_size		bits = (mp_size) (raw + 0.5);
+
+	return (mp_size) ((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT);
+}
+
+/* }}} */
+
+/* {{{ s_ch2val(c, r) */
+
+static int
+s_ch2val(char c, int r)
+{
+	int			out;
+
+	if (isdigit((unsigned char) c))
+		out = c - '0';
+	else if (r > 10 && isalpha((unsigned char) c))
+		out = toupper((unsigned char) c) - 'A' + 10;
+	else
+		return -1;
+
+	return (out >= r) ? -1 : out;
+}
+
+/* }}} */
+
+/* {{{ s_val2ch(v, caps) */
+
+static char
+s_val2ch(int v, int caps)
+{
+	assert(v >= 0);
+
+	if (v < 10)
+		return v + '0';
+	else
+	{
+		char		out = (v - 10) + 'a';
+
+		if (caps)
+			return toupper((unsigned char) out);
+		else
+			return out;
+	}
+}
+
+/* }}} */
+
+/* {{{ s_2comp(buf, len) */
+
+static void
+s_2comp(unsigned char *buf, int len)
+{
+	int			i;
+	unsigned short s = 1;
+
+	for (i = len - 1; i >= 0; --i)
+	{
+		unsigned char c = ~buf[i];
+
+		s = c + s;
+		c = s & UCHAR_MAX;
+		s >>= CHAR_BIT;
+
+		buf[i] = c;
+	}
+
+	/* last carry out is ignored */
+}
+
+/* }}} */
+
+/* {{{ s_tobin(z, buf, *limpos) */
+
+static mp_result
+s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
+{
+	mp_size		uz;
+	mp_digit   *dz;
+	int			pos = 0,
+				limit = *limpos;
+
+	uz = MP_USED(z);
+	dz = MP_DIGITS(z);
+	while (uz > 0 && pos < limit)
+	{
+		mp_digit	d = *dz++;
+		int			i;
+
+		for (i = sizeof(mp_digit); i > 0 && pos < limit; --i)
+		{
+			buf[pos++] = (unsigned char) d;
+			d >>= CHAR_BIT;
+
+			/* Don't write leading zeroes */
+			if (d == 0 && uz == 1)
+				i = 0;			/* exit loop without signaling truncation */
+		}
+
+		/* Detect truncation (loop exited with pos >= limit) */
+		if (i > 0)
+			break;
+
+		--uz;
+	}
+
+	if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1)))
+	{
+		if (pos < limit)
+			buf[pos++] = 0;
+		else
+			uz = 1;
+	}
+
+	/* Digits are in reverse order, fix that */
+	REV(unsigned char, buf, pos);
+
+	/* Return the number of bytes actually written */
+	*limpos = pos;
+
+	return (uz == 0) ? MP_OK : MP_TRUNC;
+}
+
+/* }}} */
+
+/* {{{ s_print(tag, z) */
+
+#if 0
+void
+s_print(char *tag, mp_int z)
+{
+	int			i;
+
+	fprintf(stderr, "%s: %c ", tag,
+			(MP_SIGN(z) == MP_NEG) ? '-' : '+');
+
+	for (i = MP_USED(z) - 1; i >= 0; --i)
+		fprintf(stderr, "%0*X", (int) (MP_DIGIT_BIT / 4), z->digits[i]);
+
+	fputc('\n', stderr);
+
+}
+
+void
+s_print_buf(char *tag, mp_digit *buf, mp_size num)
+{
+	int			i;
+
+	fprintf(stderr, "%s: ", tag);
+
+	for (i = num - 1; i >= 0; --i)
+		fprintf(stderr, "%0*X", (int) (MP_DIGIT_BIT / 4), buf[i]);
+
+	fputc('\n', stderr);
+}
+#endif
+
+/* }}} */
+
+/* HERE THERE BE DRAGONS */

http://git-wip-us.apache.org/repos/asf/incubator-hawq/blob/801100ed/contrib/pgcrypto/imath.h
----------------------------------------------------------------------
diff --git a/contrib/pgcrypto/imath.h b/contrib/pgcrypto/imath.h
new file mode 100644
index 0000000..f2b02d0
--- /dev/null
+++ b/contrib/pgcrypto/imath.h
@@ -0,0 +1,217 @@
+/*
+  Name:		imath.h
+  Purpose:	Arbitrary precision integer arithmetic routines.
+  Author:	M. J. Fromberger <http://spinning-yarns.org/michael/sw/>
+  Info:		Id: imath.h 21 2006-04-02 18:58:36Z sting
+
+  Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
+
+  Permission is hereby granted, free of charge, to any person
+  obtaining a copy of this software and associated documentation files
+  (the "Software"), to deal in the Software without restriction,
+  including without limitation the rights to use, copy, modify, merge,
+  publish, distribute, sublicense, and/or sell copies of the Software,
+  and to permit persons to whom the Software is furnished to do so,
+  subject to the following conditions:
+
+  The above copyright notice and this permission notice shall be
+  included in all copies or substantial portions of the Software.
+
+  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+  NONINFRINGEMENT.	IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+  ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+  CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+  SOFTWARE.
+ */
+/* contrib/pgcrypto/imath.h */
+
+#ifndef IMATH_H_
+#define IMATH_H_
+
+/* use always 32bit digits - should some arch use 16bit digits? */
+#define USE_LONG_LONG
+
+#include <limits.h>
+
+typedef unsigned char mp_sign;
+typedef unsigned int mp_size;
+typedef int mp_result;
+
+#ifdef USE_LONG_LONG
+typedef uint32 mp_digit;
+typedef uint64 mp_word;
+
+#define MP_DIGIT_MAX	   0xFFFFFFFFULL
+#define MP_WORD_MAX		   0xFFFFFFFFFFFFFFFFULL
+#else
+typedef uint16 mp_digit;
+typedef uint32 mp_word;
+
+#define MP_DIGIT_MAX	   0xFFFFUL
+#define MP_WORD_MAX		   0xFFFFFFFFUL
+#endif
+
+typedef struct mpz
+{
+	mp_digit   *digits;
+	mp_size		alloc;
+	mp_size		used;
+	mp_sign		sign;
+} mpz_t    ,
+		   *mp_int;
+
+#define MP_DIGITS(Z) ((Z)->digits)
+#define MP_ALLOC(Z)  ((Z)->alloc)
+#define MP_USED(Z)	 ((Z)->used)
+#define MP_SIGN(Z)	 ((Z)->sign)
+
+extern const mp_result MP_OK;
+extern const mp_result MP_FALSE;
+extern const mp_result MP_TRUE;
+extern const mp_result MP_MEMORY;
+extern const mp_result MP_RANGE;
+extern const mp_result MP_UNDEF;
+extern const mp_result MP_TRUNC;
+extern const mp_result MP_BADARG;
+
+#define MP_DIGIT_BIT	(sizeof(mp_digit) * CHAR_BIT)
+#define MP_WORD_BIT		(sizeof(mp_word) * CHAR_BIT)
+
+#define MP_MIN_RADIX	2
+#define MP_MAX_RADIX	36
+
+extern const mp_sign MP_NEG;
+extern const mp_sign MP_ZPOS;
+
+#define mp_int_is_odd(Z)  ((Z)->digits[0] & 1)
+#define mp_int_is_even(Z) !((Z)->digits[0] & 1)
+
+mp_size		mp_get_default_precision(void);
+void		mp_set_default_precision(mp_size s);
+mp_size		mp_get_multiply_threshold(void);
+void		mp_set_multiply_threshold(mp_size s);
+
+mp_result	mp_int_init(mp_int z);
+mp_int		mp_int_alloc(void);
+mp_result	mp_int_init_size(mp_int z, mp_size prec);
+mp_result	mp_int_init_copy(mp_int z, mp_int old);
+mp_result	mp_int_init_value(mp_int z, int value);
+mp_result	mp_int_set_value(mp_int z, int value);
+void		mp_int_clear(mp_int z);
+void		mp_int_free(mp_int z);
+
+mp_result	mp_int_copy(mp_int a, mp_int c);	/* c = a	 */
+void		mp_int_swap(mp_int a, mp_int c);	/* swap a, c */
+void		mp_int_zero(mp_int z);		/* z = 0	 */
+mp_result	mp_int_abs(mp_int a, mp_int c);		/* c = |a|	 */
+mp_result	mp_int_neg(mp_int a, mp_int c);		/* c = -a	 */
+mp_result	mp_int_add(mp_int a, mp_int b, mp_int c);	/* c = a + b */
+mp_result	mp_int_add_value(mp_int a, int value, mp_int c);
+mp_result	mp_int_sub(mp_int a, mp_int b, mp_int c);	/* c = a - b */
+mp_result	mp_int_sub_value(mp_int a, int value, mp_int c);
+mp_result	mp_int_mul(mp_int a, mp_int b, mp_int c);	/* c = a * b */
+mp_result	mp_int_mul_value(mp_int a, int value, mp_int c);
+mp_result	mp_int_mul_pow2(mp_int a, int p2, mp_int c);
+mp_result	mp_int_sqr(mp_int a, mp_int c);		/* c = a * a */
+
+mp_result
+mp_int_div(mp_int a, mp_int b,	/* q = a / b */
+		   mp_int q, mp_int r); /* r = a % b */
+mp_result
+mp_int_div_value(mp_int a, int value,	/* q = a / value */
+				 mp_int q, int *r);		/* r = a % value */
+mp_result
+mp_int_div_pow2(mp_int a, int p2,		/* q = a / 2^p2  */
+				mp_int q, mp_int r);	/* r = q % 2^p2  */
+mp_result	mp_int_mod(mp_int a, mp_int m, mp_int c);	/* c = a % m */
+
+#define   mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
+mp_result	mp_int_expt(mp_int a, int b, mp_int c);		/* c = a^b	 */
+mp_result	mp_int_expt_value(int a, int b, mp_int c);	/* c = a^b	 */
+
+int			mp_int_compare(mp_int a, mp_int b); /* a <=> b	   */
+int			mp_int_compare_unsigned(mp_int a, mp_int b);		/* |a| <=> |b| */
+int			mp_int_compare_zero(mp_int z);		/* a <=> 0	   */
+int			mp_int_compare_value(mp_int z, int value);	/* a <=> v	   */
+
+/* Returns true if v|a, false otherwise (including errors) */
+int			mp_int_divisible_value(mp_int a, int v);
+
+/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
+int			mp_int_is_pow2(mp_int z);
+
+mp_result
+mp_int_exptmod(mp_int a, mp_int b, mp_int m,
+			   mp_int c);		/* c = a^b (mod m) */
+mp_result
+mp_int_exptmod_evalue(mp_int a, int value,
+					  mp_int m, mp_int c);		/* c = a^v (mod m) */
+mp_result
+mp_int_exptmod_bvalue(int value, mp_int b,
+					  mp_int m, mp_int c);		/* c = v^b (mod m) */
+mp_result
+mp_int_exptmod_known(mp_int a, mp_int b,
+					 mp_int m, mp_int mu,
+					 mp_int c); /* c = a^b (mod m) */
+mp_result	mp_int_redux_const(mp_int m, mp_int c);
+
+mp_result	mp_int_invmod(mp_int a, mp_int m, mp_int c);		/* c = 1/a (mod m) */
+
+mp_result	mp_int_gcd(mp_int a, mp_int b, mp_int c);	/* c = gcd(a, b)   */
+
+mp_result
+mp_int_egcd(mp_int a, mp_int b, mp_int c,		/* c = gcd(a, b)   */
+			mp_int x, mp_int y);	/* c = ax + by	   */
+
+mp_result	mp_int_sqrt(mp_int a, mp_int c);	/* c = floor(sqrt(q)) */
+
+/* Convert to an int, if representable (returns MP_RANGE if not). */
+mp_result	mp_int_to_int(mp_int z, int *out);
+
+/* Convert to nul-terminated string with the specified radix, writing at
+   most limit characters including the nul terminator  */
+mp_result mp_int_to_string(mp_int z, mp_size radix,
+				 char *str, int limit);
+
+/* Return the number of characters required to represent
+   z in the given radix.  May over-estimate. */
+mp_result	mp_int_string_len(mp_int z, mp_size radix);
+
+/* Read zero-terminated string into z */
+mp_result	mp_int_read_string(mp_int z, mp_size radix, const char *str);
+mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
+					char **end);
+
+/* Return the number of significant bits in z */
+mp_result	mp_int_count_bits(mp_int z);
+
+/* Convert z to two's complement binary, writing at most limit bytes */
+mp_result	mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
+
+/* Read a two's complement binary value into z from the given buffer */
+mp_result	mp_int_read_binary(mp_int z, unsigned char *buf, int len);
+
+/* Return the number of bytes required to represent z in binary. */
+mp_result	mp_int_binary_len(mp_int z);
+
+/* Convert z to unsigned binary, writing at most limit bytes */
+mp_result	mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
+
+/* Read an unsigned binary value into z from the given buffer */
+mp_result	mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
+
+/* Return the number of bytes required to represent z as unsigned output */
+mp_result	mp_int_unsigned_len(mp_int z);
+
+/* Return a statically allocated string describing error code res */
+const char *mp_error_string(mp_result res);
+
+#if 0
+void		s_print(char *tag, mp_int z);
+void		s_print_buf(char *tag, mp_digit *buf, mp_size num);
+#endif
+
+#endif   /* end IMATH_H_ */

http://git-wip-us.apache.org/repos/asf/incubator-hawq/blob/801100ed/contrib/pgcrypto/internal-sha2.c
----------------------------------------------------------------------
diff --git a/contrib/pgcrypto/internal-sha2.c b/contrib/pgcrypto/internal-sha2.c
new file mode 100644
index 0000000..f86b478
--- /dev/null
+++ b/contrib/pgcrypto/internal-sha2.c
@@ -0,0 +1,316 @@
+/*
+ * internal.c
+ *		Wrapper for builtin functions
+ *
+ * Copyright (c) 2001 Marko Kreen
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *	  notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *	  notice, this list of conditions and the following disclaimer in the
+ *	  documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.	IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * contrib/pgcrypto/internal-sha2.c
+ */
+
+#include "postgres.h"
+
+#include <time.h>
+
+#include "px.h"
+#include "sha2.h"
+
+void		init_sha224(PX_MD *h);
+void		init_sha256(PX_MD *h);
+void		init_sha384(PX_MD *h);
+void		init_sha512(PX_MD *h);
+
+/* SHA224 */
+
+static unsigned
+int_sha224_len(PX_MD *h)
+{
+	return SHA224_DIGEST_LENGTH;
+}
+
+static unsigned
+int_sha224_block_len(PX_MD *h)
+{
+	return SHA224_BLOCK_LENGTH;
+}
+
+static void
+int_sha224_update(PX_MD *h, const uint8 *data, unsigned dlen)
+{
+	SHA224_CTX *ctx = (SHA224_CTX *) h->p.ptr;
+
+	SHA224_Update(ctx, data, dlen);
+}
+
+static void
+int_sha224_reset(PX_MD *h)
+{
+	SHA224_CTX *ctx = (SHA224_CTX *) h->p.ptr;
+
+	SHA224_Init(ctx);
+}
+
+static void
+int_sha224_finish(PX_MD *h, uint8 *dst)
+{
+	SHA224_CTX *ctx = (SHA224_CTX *) h->p.ptr;
+
+	SHA224_Final(dst, ctx);
+}
+
+static void
+int_sha224_free(PX_MD *h)
+{
+	SHA224_CTX *ctx = (SHA224_CTX *) h->p.ptr;
+
+	memset(ctx, 0, sizeof(*ctx));
+	px_free(ctx);
+	px_free(h);
+}
+
+/* SHA256 */
+
+static unsigned
+int_sha256_len(PX_MD *h)
+{
+	return SHA256_DIGEST_LENGTH;
+}
+
+static unsigned
+int_sha256_block_len(PX_MD *h)
+{
+	return SHA256_BLOCK_LENGTH;
+}
+
+static void
+int_sha256_update(PX_MD *h, const uint8 *data, unsigned dlen)
+{
+	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
+
+	SHA256_Update(ctx, data, dlen);
+}
+
+static void
+int_sha256_reset(PX_MD *h)
+{
+	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
+
+	SHA256_Init(ctx);
+}
+
+static void
+int_sha256_finish(PX_MD *h, uint8 *dst)
+{
+	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
+
+	SHA256_Final(dst, ctx);
+}
+
+static void
+int_sha256_free(PX_MD *h)
+{
+	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
+
+	memset(ctx, 0, sizeof(*ctx));
+	px_free(ctx);
+	px_free(h);
+}
+
+/* SHA384 */
+
+static unsigned
+int_sha384_len(PX_MD *h)
+{
+	return SHA384_DIGEST_LENGTH;
+}
+
+static unsigned
+int_sha384_block_len(PX_MD *h)
+{
+	return SHA384_BLOCK_LENGTH;
+}
+
+static void
+int_sha384_update(PX_MD *h, const uint8 *data, unsigned dlen)
+{
+	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
+
+	SHA384_Update(ctx, data, dlen);
+}
+
+static void
+int_sha384_reset(PX_MD *h)
+{
+	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
+
+	SHA384_Init(ctx);
+}
+
+static void
+int_sha384_finish(PX_MD *h, uint8 *dst)
+{
+	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
+
+	SHA384_Final(dst, ctx);
+}
+
+static void
+int_sha384_free(PX_MD *h)
+{
+	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
+
+	memset(ctx, 0, sizeof(*ctx));
+	px_free(ctx);
+	px_free(h);
+}
+
+/* SHA512 */
+
+static unsigned
+int_sha512_len(PX_MD *h)
+{
+	return SHA512_DIGEST_LENGTH;
+}
+
+static unsigned
+int_sha512_block_len(PX_MD *h)
+{
+	return SHA512_BLOCK_LENGTH;
+}
+
+static void
+int_sha512_update(PX_MD *h, const uint8 *data, unsigned dlen)
+{
+	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
+
+	SHA512_Update(ctx, data, dlen);
+}
+
+static void
+int_sha512_reset(PX_MD *h)
+{
+	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
+
+	SHA512_Init(ctx);
+}
+
+static void
+int_sha512_finish(PX_MD *h, uint8 *dst)
+{
+	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
+
+	SHA512_Final(dst, ctx);
+}
+
+static void
+int_sha512_free(PX_MD *h)
+{
+	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
+
+	memset(ctx, 0, sizeof(*ctx));
+	px_free(ctx);
+	px_free(h);
+}
+
+/* init functions */
+
+void
+init_sha224(PX_MD *md)
+{
+	SHA224_CTX *ctx;
+
+	ctx = px_alloc(sizeof(*ctx));
+	memset(ctx, 0, sizeof(*ctx));
+
+	md->p.ptr = ctx;
+
+	md->result_size = int_sha224_len;
+	md->block_size = int_sha224_block_len;
+	md->reset = int_sha224_reset;
+	md->update = int_sha224_update;
+	md->finish = int_sha224_finish;
+	md->free = int_sha224_free;
+
+	md->reset(md);
+}
+
+void
+init_sha256(PX_MD *md)
+{
+	SHA256_CTX *ctx;
+
+	ctx = px_alloc(sizeof(*ctx));
+	memset(ctx, 0, sizeof(*ctx));
+
+	md->p.ptr = ctx;
+
+	md->result_size = int_sha256_len;
+	md->block_size = int_sha256_block_len;
+	md->reset = int_sha256_reset;
+	md->update = int_sha256_update;
+	md->finish = int_sha256_finish;
+	md->free = int_sha256_free;
+
+	md->reset(md);
+}
+
+void
+init_sha384(PX_MD *md)
+{
+	SHA384_CTX *ctx;
+
+	ctx = px_alloc(sizeof(*ctx));
+	memset(ctx, 0, sizeof(*ctx));
+
+	md->p.ptr = ctx;
+
+	md->result_size = int_sha384_len;
+	md->block_size = int_sha384_block_len;
+	md->reset = int_sha384_reset;
+	md->update = int_sha384_update;
+	md->finish = int_sha384_finish;
+	md->free = int_sha384_free;
+
+	md->reset(md);
+}
+
+void
+init_sha512(PX_MD *md)
+{
+	SHA512_CTX *ctx;
+
+	ctx = px_alloc(sizeof(*ctx));
+	memset(ctx, 0, sizeof(*ctx));
+
+	md->p.ptr = ctx;
+
+	md->result_size = int_sha512_len;
+	md->block_size = int_sha512_block_len;
+	md->reset = int_sha512_reset;
+	md->update = int_sha512_update;
+	md->finish = int_sha512_finish;
+	md->free = int_sha512_free;
+
+	md->reset(md);
+}